How to unit test works in salesforce? - unit-testing

I've done writing code on salesforce and in order to release the unit tests have to cover at least 75%.
What I am facing is that the classOne that calls methods from classTwo also have to cover classTwo's unit test within classOne even though it is done in classTwo file already.
File MyClassTwo
public with sharing class ClassTwo {
public String method1() {
return 'one';
}
public String method2() {
return 'two';
}
public static testMethod void testMethod1() {
ClassTwo two = new ClassTwo();
String out = two.method1();
system.assertEquals(out, 'one'); //valid
}
public static testMethod void testMethod2() {
ClassTwo two = new ClassTwo();
String out = two.method2();
system.assertEquals(out, 'two'); // valid
}
}
File MyClassOne
public with sharing class ClassOne {
public String callClassTwo() {
ClassTwo foo = new ClassTwo();
String something = foo.method1();
return something;
}
public static testMethod void testCallClassTwo() {
ClassOne one = new ClassOne();
String out = one.callClassTwo();
system.assertEquals(out, 'one');
}
}
The result of testing MyClassOne would not return 100% test coverage because it says I have not covered MyClassTwo method2() part inside of MyClassOne file.
But I already wrote unit test for MyClassTwo inside of MyClassTwo file as you can see.
So does this mean I have to copy and paste the unit test in MyClassTwo file over to MyClassOne?
Doing so gives me 100% coverage but this seems really annoying and rediculous. Having same test in ClassA and ClassB....? Am I doing wrong or is this the way?
Having said, is it possible to create mock object in salesforce? I haven't figure how yet..
http://sites.force.com/answers/ideaView?c=09a30000000D9xt&id=087300000007m3fAAA&returnUrl=/apex/ideaList%3Fc%3D09a30000000D9xt%26category%3DApex%2B%2526%2BVisualforce%26p%3D19%26sort%3Dpopular
UDPATE
I re-wrote the code and updated above, this time for sure classOne test would not return 100% even though it is not calling classTwo method2()

Comments about Java mock libraries aren't very helpful in Salesforce world ;) At my projects we usually aimed for making our own test data in the test method, calling real functionality, checking the results... and whole test framework on Salesforce side is responsible for transaction rollback (so no test data is saved to DB in the end regardless whether the test failed or passed).
Anyway...
Masato, your classes do not compile (methods outside class scope, public String hello() without any String returned)... After I fixed it I simply right-clicked the MyClassA -> Force.com -> run tests and got full code coverage without any problems so your issue must lie somewhere else...
Here's how it looks: http://dl.dropbox.com/u/709568/stackoverflow/masato_code_coverage.png
I'm trying to think what might have gone wrong... are you sure all classes compile and were saved on server side? Did you put test methods in same classes as functionality or in separate ones (generally I make separate class name with similar name like MyClassATest). If it's a separate class - on which file did you click "run tests"?
Last but not least - if you're facing this issue during deployment from sandbox to production, make sure you selected all classes you need in the deployment wizard?

If you really want to "unit" test, you should test the behavior of your class B AND the behavior of your class A, mocking the call to the class B method.
That's a tough conversation between mock lovers and others (Martin Fowler I think is not a "mocker").
Anyway. You should stop thinking about 100% coverage. You should think about:
Why am i testing?
How am i testing?
Here, i'd definitely go for 2 tests:
One test for the B class into the b class test file to be sure the B method is well implemented, with all the side effects, side values etc.
one test for the A class mocking the class B
What is a mock?
To stay VERY simple: A mock is a portion of code in your test which is gonna say: when the B class method is called, always return this value: "+++" .
By doing this, you allow yourself having a maintanable and modulable test suite.
In java, I love mockito : http://mockito.org/
Although one of my colleagues is lead maintainer for easymock: http://easymock.org/
Hope this helps. Ask me if you need further help.
EDIT SOME EXAMPLE
With Java and mockito:
public class aUTest {
protected A a;
#Mock protected B b;
#Before
public void setUp(){
MockitoAnnotations.initMocks(this);
a = new A();
ReflectionTestUtils.setField(a, "b", b);
}
#Test
public void test_A_method_should_not_throw_exception()
when(b. execute()).thenReturn(true); //just an example of a return value from b. execute()
Boolean result = a.testHello();
// Assert
Assert.assertEquals(true, result);
}

I created an Apex class called TestHelper for all my mock objects. I use constants (static final) for values that I might need elsewhere and public static fields for objects. Works great and since no methods are used, no test coverage is needed.
public without sharing class TestHelper {
public static final string testPRODUCTNAME = 'test Product Name';
public static final string testCOMPANYID = '2508';
public static Account testAccount {
get{
Account tAccount = new Account(
Name = 'Test Account',
BillingStreet = '123 Main St',
BillingCity = 'Dallas',
BillingState = 'TX',
BillingPostalCode = '75234',
Website = 'http://www.google.com',
Phone = '222 345 4567',
Subscription_Start_Date__c = system.today(),
Subscription_End_Date__c = system.today().addDays(30),
Number_Of_Seats__c = 1,
companyId__c = testCOMPANYID,
ZProduct_Name__c = testPRODUCTNAME);
insert tAccount;
return tAccount;
}
}
}

Related

Google Mock for NonVirtual and Private Functions

I'm attempting to write Mocks for Private / Non Virtual / Static functions and come across a way to do the same.
Here is how it looks like..
Lets assume that I have a class A which needs to be mocked and used inside class UsingA. The definition of both classes looks like
class A
{
friend class UsingA;
int privateFn() {}
public:
int nonVirtual() {}
};
// The UsingA class
class UsingA {
A &a1;
public:
UsingA(A & _a1) : a1(_a1) {}
int CallFn() {
return a1.nonVirtual();
}
int CallFn2() {
return a1.privateFn();
}
};
I know that Mocks are meant for generating the behavior of the class and while creating Mocks, we need to derive from the original class.
However, to Mock the behavior I decided not to derive from the original class, instead comment the class A and generate a Mock class with the same Name i.e class A.
Here is how my mock class looks like
// Original class A is commented / header file removed
class A {
public:
MOCK_METHOD0(nonVirtual, int());
MOCK_METHOD0(privateFn, int());
};
And my tests are usual mock tests
TEST(MyMockTest, NonVirtualTest) {
A mstat;
UsingA ua(mstat);
EXPECT_CALL(mstat, nonVirtual())
.Times(1)
.WillOnce(Return(100));
int retVal = ua.CallFn();
EXPECT_EQ(retVal,100);
}
TEST(MyMockTest, PrivateTest) {
A mstat;
UsingA ua(mstat);
EXPECT_CALL(mstat, privateFn())
.Times(1)
.WillOnce(Return(100));
int retVal = ua.CallFn2();
EXPECT_EQ(retVal,100);
}
And everything works fine and I'm able to test UsingA by this mock.
Question is.
This looks easier and serves the purpose, still I haven't seen this kind of examples while browsing for google mock examples. Is there anything that would go wrong if I do this?
Honestly, I didn't find any.
NOTE: Folks, I'm using friend for demonstration only. My actual use case is totally different. Thanks
The wrong is that you are not testing real code, because of that:
comment the class A
generate a Mock class with the same name
These operations alter the code under test.
An example what can go wrong:
Change return type: long nonVirtual in Mock - previously was int
Test that on, let say, nonVirtual() == 0xFF'FFFF'FFFF (which is bigger than INTMAX) some action is being done
Forget to change in real A - so real UsingA have branch that is tested but never reachable in real code
An example code:
class A {
public:
MOCK_METHOD0(nonVirtual, long()); // change
MOCK_METHOD0(privateFn, int());
};
void UsingA::processA()
{
if (a.nonVirtual() > VERY_BIG_NUMBER)
{
throw runtime_error("oops");
}
}
TEST_F(UsingATest, throwOnVeryBigNumber)
{
EXPECT_CALL(aMock, nonVirtual()).WillOnce(Return(VERY_BIG_NUMBER + 1));
ASSERT_THROW(objectUndertTest.processA());
}
But real A did not change - so we test non reachable code in UsingA class:
class A {
public:
int nonVirtual(); // not changed
...
};
The best solution is (in order):
To test in isolation you have to isolate classes - so to use dependency injection (virtual functions etc, base interfaces, etc...) - this is sometimes called London School of TDD
Test both classes A and UsingA w/o any stubbing - test them together in one testcase - thus you test real code - this is called Detroit Shool of TDD
Separate by template code with good restriction on interface - this approach is most similar to yours:
Regarding 3 - you might use something like this:
template <class T = A>
class UsingA {
T &a1;
public:
UsingA(T & _a1) : a1(_a1) {}
long CallFn() {
using ANonVirtualResult = std::invoke_result_t<&T::nonVirtual>;
static_assert(std::is_same<long, ANonVirtualResult>::value);
return a1.nonVirtual();
}
...
};
And in test:
class UsingATest : public ::testing::Test
{
protected:
StrictMock<AMock> aMock;
using ClassUnderTest = UsingA<AMock>;
ClassUnderTest objectUnderTest{aMock};
};
TEST_F(UsingATest, useNonVirtual)
{
const auto VALUE = 123456;
EXPECT_CALL(aMock, nonVirtual()).WillOnce(Return(VALUE));
ASSERT_EQ(VALUE, objectUnderTest.CallFn());
}
You might note that some assumption about A might be tested during compilation as static_assert or via some SFINAE technics (more complicated).
Actually, there are examples with template code in googlemock as workaround for mocking classes w/o virtual functions.
We use your type of using mocks inside a few of our test projects to check callbacks on a larger class that we pass along using dependency injection. In our case, the methods are declared virtual.
In your case, they are not. Your mock implementation would hide the original implementation - if there was any. So I don't think there's an issue here.

XUnit, RhinoMocks, or TestDriven.Net Issue

Having some issues wrapping my head around class instantiation and TestDriven.Net(v4.0.3478) or XUnit(v2.2.0), RhinoMocks(v3.6.1), and structuremap.automocking(v4.0.0.315).
Given this code:
public class Tests1
{
[Fact]
public void passing_test()
{
var mocker = new RhinoAutoMocker<Subject>();
mocker.Get<IData>().Stub(x => x.Strings).Return(new List<string> {""});
var result = mocker.ClassUnderTest.GetStrings();
result.Count().ShouldEqual(1);
}
}
public class Tests2
{
[Fact]
public void passing_test()
{
var mocker = new RhinoAutoMocker<Subject>();
mocker.Get<IData>().Stub(x => x.Strings).Return(new List<string> {""});
var result = mocker.ClassUnderTest.GetStrings();
result.Count().ShouldEqual(1);
}
}
public class Subject
{
private readonly IData _data;
public Subject(IData data)
{
_data = data;
}
public IEnumerable<string> GetStrings()
{
return _data.Strings;
}
}
public interface IData
{
IEnumerable<string> Strings { get; set; }
}
All tests run fine when I right click -> Run Test(s) on specific test method or a specific class definition.
Tests fail when I right click on project, folder containing tests or the namespace definition of the class above.
The errors are NullReferenceException, when doing asserts, it seems to be the stub's data. It's random, sometimes Tests1.passing_test fails, sometimes Tests2.passing_test fails. Never both.
Thinking it has to with RhinoAutoMocker and/or the MockRepository not being reset between test fixtures?
UPDATE: simplified the code to show the problem, also given code is complete, using NUnit [Test] instead of XUnit [Fact] attributes works, everything behaves as normal.
In your example, you have two separate test classes.
By default, xUnit v2 will run these tests in parallel.
I have experienced the same issue, but in my case using the static MockRepository.GenerateMock.
The static class being used across the parallel tests results in exceptions.
The seeming randomness of the test failures depends on which tests run first.
There are two alternatives I can see.
1. Tests in a single class - not really workable
2. Use the XUnit Collection attribute to place all tests classes in the same collection - this worked for me.
see: http://xunit.github.io/docs/running-tests-in-parallel.html
Another alternative is to turn off parallelism for xUnit using the following attribute in your test assembly
[assembly: CollectionBehavior(DisableTestParallelization = true)]

Unit Testing abstract classes and or interfaces

I'm trying to start using Unit Testing on my current project in Visual Studio 2010. My class structure, however, contains a number of interface and abstract class inheritance relationships.
If two classes are derived from the same abstract class, or interface I'd like to be able to share the testing code between them. I'm not sure how to do this exactly. I'm thinking I create a test class for each interface I want to test, but I'm not sure the correct way to feed my concrete classes into the applicable unit tests.
Update
OK here's an example. Say I have an interface IEmployee , which is implemented by an abstract class Employee, which is then inherited by the two concrete classes Worker and Employee. (Code show below)
Now say I want to create tests that apply to all IEmployees or Employees. Or alternatively create specific tests for specific types of Employees. For example I may want to assert that setting IEmployee.Number to a number less then zero for any implementation of IEmployee throws an exception. I'd prefer to write the tests from the perspective of any IEmployee and then be able to use the tests on any implementation of IEmployee.
Here's another example. I may also want to assert that setting the vacation time for any employee to a value less then zero throws and error. Yet I may also want to have different tests that apply to a specific concrete version of Employee. Say I want to test that Worker throws an exception if they are provided more then 14 days vacation, but a manager can be provided up to 36.
public interface IEmployee
{
string Name {get; set;}
int Number {get; set;}
}
public abstract class Employee:IEmploee
{
string Name {get; set;}
int Number {get;set;}
public abstract int VacationTime(get; set;)
}
public abstract class Worker:IEmployee
{
private int v;
private int vTime;
public abstract int VacationTime
{
get
{
return VTime;
}
set
{
if(value>36) throw new ArgumentException("Exceeded allowed vaction");
if(value<0)throw new ArgumentException("Vacation time must be >0");
vTime= value;
}
}
public void DoSomWork()
{
//Work
}
}
public abstract class Manager:IEmployee
{
public abstract int VacationTime
{
get
{
return VTime;
}
set
{
if(value>14) throw new ArgumentException("Exceeded allowed vaction");
if(value<0)throw new ArgumentException("Vacation time must be >0");
vTime= value;
}
}
public void DoSomeManaging()
{
//manage
}
}
So I guess what I'm looking for is a work flow that will allow me to nest unit tests. So for example when I test the Manager class I want to first test that it passes the Employee and IEmployee tests, and then test specific members such as DoSomeManaging().
I guess I know what you mean. I had the same issue.
My solution was to create a hierarchy also for testing. I'll use the same example you show.
First, have an abstract test class for the base IEmployee.
It has two main things:
i. All the test methods you want.
ii. An abstract method that returns the desired instance of the IEmployee.
[TestClass()]
public abstract class IEmployeeTests
{
protected abstract GetIEmployeeInstance();
[TestMethod()]
public void TestMethod1()
{
IEmployee target = GetIEmployeeInstance();
// do your IEmployee test here
}
}
Second, you have a test class for each implementation of IEmployee, implementing the abstract method and providing appropriate instances of IEmployee.
[TestClass()]
public class WorkerTests : IEmployeeTests
{
protected override GetIEmployeeInstance()
{
return new Worker();
}
}
[TestClass()]
public class ManagerTests : IEmployeeTests
{
protected override GetIEmployeeInstance()
{
return new Manager();
}
}
You can see everything works as expected and VS gives you the expected test methods for each WorkerTests and ManagerTests classes in the TestView window.
You can run them and have the test results for each implementation of the IEmployee interface, having to create the tests only in the base IEmployeeTests class.
You can always add specific test for the derived WorkerTests and ManagerTests classes.
The question would be now, what about classes that implement multiple interfaces, let's say EmployedProgrammer?
public EmployedProgrammer : IEmployee, IProgrammer
{
}
We don't have multiple inheritance in C#, so this is not an option:
[TestClass()]
public EmployedProgrammerIEmployeeTests : IEmployeeTests, IProgrammerTests
{
// this doesn't compile as IEmployeeTests, IProgrammerTests are classes, not interfaces
}
For this scenario, a solution is to have the following test classes:
[TestClass()]
public EmployedProgrammerIEmployeeTests : IEmployeeTests
{
protected override GetIEmployeeInstance()
{
return new EmployedProgrammer();
}
}
[TestClass()]
public EmployedProgrammerIProgrammerTests : IProgrammerTests
{
protected override GetIProgrammerInstance()
{
return new EmployedProgrammer();
}
}
with
[TestClass()]
public abstract class IProgrammerTests
{
protected abstract GetIProgrammerInstance();
[TestMethod()]
public void TestMethod1()
{
IProgrammer target = GetIProgrammerInstance();
// do your IProgrammerTest test here
}
}
I'm using this with good results.
Hope it helps.
Regards,
Jose
What I think you want to do is create unit tests for methods in abstract classes.
I'm not sure it makes sense to want to test a protected method on an abstract class, but if you insist simply extend the class in a class used exclusively for unittesting. That way you can expose the protected methods on the abstract class you want to test through public methods on the extending class that simply call through to the method on the abstract class.
If you have methods in abstract classes that you want unittested, I suggest refactoring them into separate classes and simply expose them as public methods and put those under test. Try looking at your inheritance tree from a 'test-first' perspective and I'm pretty sure you'll come up with that solution (or a similar one) as well.
It seems that you have described "composite unit testing" which is not supported by Visual Studio 2010 unit tests. Such things can be done in MbUnit according to this article. It is possible to create abstract tests in Visual Studio 2010 which is probably not exactly what you want. Here is description how to implement abstract tests in VS (Inheritance Example section).
Use microsoft moles for better testing. so you can mock the abstract base class / static methods etc easily. Please refer the following post for more info
detouring-abstract-base-classes-using-moles
BenzCar benzCar = new BenzCar();
new MCar(benzCar)
{
Drive= () => "Testing"
}.InstanceBehavior = MoleBehaviors.Fallthrough;
var hello = child.Drive();
Assert.AreEqual("Benz Car driving. Testing", hello);
The desire to run the same test against multiple classes usually means you have an opportunity to extract the behavior you want to test into a single class (whether it's the base class or an entirely new class you compose into your existing classes).
Consider your example: instead of implementing vacation limits in Worker and Manager, add a new member variable to Employee, 'MaximumVacationDays', implement the limit in the employee class' setter, and check the limit there:
abstract class Employee {
private int maximumVacationDays;
protected Employee(int maximumVacationDays) {
this.maximumVacationDays = maximumVacationDays
}
public int VacationDays {
set {
if (value > maximumVacationDays)
throw new ArgumentException("Exceeded maximum vacation");
}
}
}
class Worker: Employee {
public Worker(): Employee(14) {}
}
class Manager: Employee {
public Manager(): Employee(36) {}
}
Now you have only one method to test and less code to maintain.

Splitting a test to a set of smaller tests

I want to be able to split a big test to smaller tests so that when the smaller tests pass they imply that the big test would also pass (so there is no reason to run the original big test). I want to do this because smaller tests usually take less time, less effort and are less fragile. I would like to know if there are test design patterns or verification tools that can help me to achieve this test splitting in a robust way.
I fear that the connection between the smaller tests and the original test is lost when someone changes something in the set of smaller tests. Another fear is that the set of smaller tests doesn't really cover the big test.
An example of what I am aiming at:
//Class under test
class A {
public void setB(B b){ this.b = b; }
public Output process(Input i){
return b.process(doMyProcessing(i));
}
private InputFromA doMyProcessing(Input i){ .. }
..
}
//Another class under test
class B {
public Output process(InputFromA i){ .. }
..
}
//The Big Test
#Test
public void theBigTest(){
A systemUnderTest = createSystemUnderTest(); // <-- expect that this is expensive
Input i = createInput();
Output o = systemUnderTest.process(i); // <-- .. or expect that this is expensive
assertEquals(o, expectedOutput());
}
//The splitted tests
#PartlyDefines("theBigTest") // <-- so something like this should come from the tool..
#Test
public void smallerTest1(){
// this method is a bit too long but its just an example..
Input i = createInput();
InputFromA x = expectedInputFromA(); // this should be the same in both tests and it should be ensured somehow
Output expected = expectedOutput(); // this should be the same in both tests and it should be ensured somehow
B b = mock(B.class);
when(b.process(x)).thenReturn(expected);
A classUnderTest = createInstanceOfClassA();
classUnderTest.setB(b);
Output o = classUnderTest.process(i);
assertEquals(o, expected);
verify(b).process(x);
verifyNoMoreInteractions(b);
}
#PartlyDefines("theBigTest") // <-- so something like this should come from the tool..
#Test
public void smallerTest2(){
InputFromA x = expectedInputFromA(); // this should be the same in both tests and it should be ensured somehow
Output expected = expectedOutput(); // this should be the same in both tests and it should be ensured somehow
B classUnderTest = createInstanceOfClassB();
Output o = classUnderTest.process(x);
assertEquals(o, expected);
}
The first suggestion that I'll make is to re-factor your tests on red (failing). To do so, you'll have to break your production code temporarily. This way, you know the tests are still valid.
One common pattern is to use a separate test fixture per collection of "big" tests. You don't have to stick to the "all tests for one class in one test class" pattern. If a a set of tests are related to each other, but are unrelated to another set of tests, then put them in their own class.
The biggest advantage to using a separate class to hold the individual small tests for the big test is that you can take advantage of setup and tear-down methods. In your case, I would move the lines you have commented with:
// this should be the same in both tests and it should be ensured somehow
to the setup method (in JUnit, a method annotated with #Before). If you have some unusually expensive setup that needs to be done, most xUnit testing frameworks have a way to define a setup method that runs once before all of the tests. In JUnit, this is a public static void method that has the #BeforeClass annotation.
If the test data is immutable, I tend to define the variables as constants.
Putting all this together, you might have something like:
public class TheBigTest {
// If InputFromA is immutable, it could be declared as a constant
private InputFromA x;
// If Output is immutable, it could be declared as a constant
private Output expected;
// You could use
// #BeforeClass public static void setupExpectations()
// instead if it is very expensive to setup the data
#Before
public void setUpExpectations() throws Exception {
x = expectedInputFromA();
expected = expectedOutput();
}
#Test
public void smallerTest1(){
// this method is a bit too long but its just an example..
Input i = createInput();
B b = mock(B.class);
when(b.process(x)).thenReturn(expected);
A classUnderTest = createInstanceOfClassA();
classUnderTest.setB(b);
Output o = classUnderTest.process(i);
assertEquals(o, expected);
verify(b).process(x);
verifyNoMoreInteractions(b);
}
#Test
public void smallerTest2(){
B classUnderTest = createInstanceOfClassB();
Output o = classUnderTest.process(x);
assertEquals(o, expected);
}
}
All I can suggest is the book xUnit Test Patterns. If there is a solution it should be in there.
theBigTest is missing the dependency on B. Also smallerTest1 mocks B dependency. In smallerTest2 you should mock InputFromA.
Why did you create a dependency graph like you did?
A takes a B then when A::process Input, you then post process InputFromA in B.
Keep the big test and refactor A and B to change the dependency mapping.
[EDIT] in response to remarks.
#mkorpela, my point is that by looking at the code and their dependencies is how you start to get an idea of how to create smaller tests. A has a dependency on B. In order for it to complete its process() it must use B's process(). Because of this, B has a dependency on A.

How to use Rhino Mock to mock a local function calling?

Here is my situation:
I want to test on the "HasSomething()" function, which is in the following class:
public class Something
{
private object _thing;
public virtual bool HasSomething()
{
if (HasSomething(_thing))
return true;
return false;
}
public virtual bool HasSomething(object thing)
{
....some algo here to check on the object...
return true;
}
}
So, i write my test to be like this:
public void HasSomethingTest1()
{
MockRepository mocks = new MockRepository();
Something target = mocks.DynamicMock(typeof(Something)) as Something;
Expect.Call(target.HasSomething(new Object())).IgnoreArguments().Return(true);
bool expected = true;
bool actual;
actual = target.HasSomething();
Assert.AreEqual(expected, actual);
}
Is my test written correctly?
Please help me as i can't even get the result as expected. the "HasSomething(object)" just can't be mock in that way. it did not return me 'true' as being set in expectation.
Thanks.
In response to OP's 'answer': Your main problem is that RhinoMocks does not mock members of classes - instead it creates mock classes and we can then set expectations and canned responses for its members (i.e. Properties and Functions). If you attempt to test a member function of a mock/stub class, you run the risk of testing the mocking framework rather than your implementation.
For the particular scenario of the logical path being dependent on the return value of a local (usually private) function, you really need an external dependency (another object) which would affect the return value that you require from that local function. For your code snippet above, I would write the test as follows:
[Test]
public void TestHasSomething()
{
// here I am assuming that _thing is being injected in via the constructor
// you could also do it via a property setter or a function
var sut = new Something(new object());
Assert.IsTrue(sut.HasSomething);
}
i.e. no mocking required.
This is one point of misunderstanding that I often had in the past with regards to mocking; we mock the behaviour of a dependency of the system under test (SUT). Something like: the SUT calls several methods of the dependency and the mocking process provides canned responses (rather than going to the database, etc) to guide the way the logic flows.
A simple example would be as follows (note that I have used RhinoMocks AAA syntax for this test. As an aside, I notice that the syntax that you are using in your code sample is using the Record-Replay paradigm, except that it isn't using Record and Replay! That would probably cause problems as well):
public class SUT
{
Dependency _depend
public SUT (Dependency depend)
{
_depend = depend;
}
...
public int MethodUnderTest()
{
if (_depend.IsReady)
return 1;
else
return -1;
}
}
...
[Test]
public void TestSUT_MethodUnderTest()
{
var dependency = MockRepository.GenerateMock<Dependency>();
dependency.Stub(d => d.IsReady).Return(true);
var sut = new SUT(dependency);
Assert.AreEqual(1, sut.MethodUnderTest());
}
And so the problem that you have is that you are attempting to test the behaviour of a mocked object. Which means that you aren't actually testing your class at all!
In a case like this, your test double should be a derived version of class Something. Then you override the method HasSomething(object) and ensure that HasSomething() calls your one.
If I understand correctly, you are actually interested in testing the method HasDynamicFlow (not depicted in your example above) without concerning yourself with the algorithm for HasSomething.
Preet is right in that you could simply subclass Something and override the behavior of HasSomething to short-circuit the algorithm, but that would require creating some additional test-dummy code which Rhino is efficient at eliminating.
Consider using a Partial Mock Stub instead of a Dynamic Mock. A stub is less strict and is ideal for working with Properties. Methods however require some extra effort.
[Test]
public void CanStubMethod()
{
Foo foo = MockRepository.GenerateStub<Foo>();
foo.Expect(f => f.HasDynamicFlow()).CallOriginalMethod(OriginalCallOptions.NoExpectation);
foo.Expect(f => f.HasSomething()).CallOriginalMethod(OriginalCallOptions.NoExpectation);
foo.Expect(f => f.HasSomething(null)).IgnoreArguments().Return(true);
Assert.IsTrue(foo.HasDynamicFlow());
}
EDIT: added code example and switched Partial Mock to Stub