Would this optimization in the implementation of std::string be allowed? - c++

I was just thinking about the implementation of std::string::substr. It returns a new std::string object, which seems a bit wasteful to me. Why not return an object that refers to the contents of the original string and can be implicitly assigned to a std::string? A kind of lazy evaluation of the actual copying. Such a class could look something like this:
template <class Ch, class Tr, class A>
class string_ref {
public:
// not important yet, but *looks* like basic_string's for the most part
private:
const basic_string<Ch, Tr, A> &s_;
const size_type pos_;
const size_type len_;
};
The public interface of this class would mimic all of the read-only operations of a real std::string, so the usage would be seamless. std::string could then have a new constructor which takes a string_ref so the user would never be the wiser. The moment you try to "store" the result, you end up creating a copy, so no real issues with the reference pointing to data and then having it modified behind its back.
The idea being that code like this:
std::string s1 = "hello world";
std::string s2 = "world";
if(s1.substr(6) == s2) {
std::cout << "match!" << std::endl;
}
would have no more than 2 std::string objects constructed in total. This seems like a useful optimization for code which that performs a lot of string manipulations. Of course, this doesn't just apply to std::string, but to any type which can return a subset of its contents.
As far as I know, no implementations do this.
I suppose the core of the question is:
Given a class that can be implicitly converted to a std::string as needed, would it be conforming to the standard for a library writer to change the prototype of a member's to return type? Or more generally, do the library writers have the leeway to return "proxy objects" instead of regular objects in these types of cases as an optimization?
My gut is that this is not allowed and that the prototypes must match exactly. Given that you cannot overload on return type alone, that would leave no room for library writers to take advantage of these types of situations. Like I said, I think the answer is no, but I figured I'd ask :-).

This idea is copy-on-write, but instead of COW'ing the entire buffer, you keep track of which subset of the buffer is the "real" string. (COW, in its normal form, was (is?) used in some library implementations.)
So you don't need a proxy object or change of interface at all because these details can be made completely internal. Conceptually, you need to keep track of four things: a source buffer, a reference count for the buffer, and the start and end of the string within this buffer.
Anytime an operation modifies the buffer at all, it creates its own copy (from the start and end delimiters), decreases the old buffer's reference count by one, and sets the new buffer's reference count to one. The rest of the reference counting rules are the same: copy and increase count by one, destruct a string and decrease count by one, reach zero and delete, etc.
substr just makes a new string instance, except with the start and end delimiters explicitly specified.

This is a quite well-known optimization that is relatively widely used, called copy-on-write or COW. The basic thing is not even to do with substrings, but with something as simple as
s1 = s2;
Now, the problem with this optimization is that for C++ libraries that are supposed to be used on targets supporting multiple threads, the reference count for the string has to be accessed using atomic operations (or worse, protected with a mutex in case the target platform doesn't supply atomic operations). This is expensive enough that in most cases the simple non-COW string implementation is faster.
See GOTW #43-45:
http://www.gotw.ca/gotw/043.htm
http://www.gotw.ca/gotw/044.htm
http://www.gotw.ca/gotw/045.htm
To make matters worse, libraries that have used COW, such as the GNU C++ library, cannot simply revert to the simple implementation since that would break the ABI. (Although, C++0x to the rescue, as that will require an ABI bump anyway! :) )

Since substr returns std::string, there is no way to return a proxy object, and they can't just change the return type or overload on it (for the reasons you mentioned).
They could do this by making string itself capable of being a sub of another string. This would mean a memory penalty for all usages (to hold an extra string and two size_types). Also, every operation would need to check to see if it has the characters or is a proxy. Perhaps this could be done with an implementation pointer -- the problem is, now we're making a general purpose class slower for a possible edge case.
If you need this, the best way is to create another class, substring, that constructs from a string, pos, and length, and coverts to string. You can't use it as s1.substr(6), but you can do
substring sub(s1, 6);
You would also need to create common operations that take a substring and string to avoid the conversion (since that's the whole point).

Regarding your specific example, this worked for me:
if (&s1[6] == s2) {
std::cout << "match!" << std::endl;
}
That may not answer your question for a general-purpose solution. For that, you'd need sub-string CoW, as #GMan suggests.

What you are talking about is (or was) one of the core features of Java's java.lang.String class (http://fishbowl.pastiche.org/2005/04/27/the_string_memory_gotcha/). In many ways, the designs of Java's String class and C++'s basic_string template are similar, so I would imagine that writing an implementation of the basic_string template utilizing this "substring optimization" is possible.
One thing that you will need to consider is how to write the implementation of the c_str() const member. Depending on the location of a string as a substring of another, it may have to create a new copy. It definitely would have to create a new copy of the internal array if the string for which the c_str was requested is not a trailing substring. I think that this necessitates using the mutable keyword on most, if not all, of the data members of the basic_string implementation, greatly complicating the implementation of other const methods because the compiler is no longer able to assist the programmer with const correctness.
EDIT: Actually, to accommodate c_str() const and data() const, you could use a single mutable field of type const charT*. Initially set to NULL, it could be per-instance, initialized to a pointer to a new charT array whenever c_str() const or data() const are called, and deleted in the basic_string destructor if non-NULL.

If and only if you really need more performance than std::string provides then go ahead and write something that works the way you need it to. I have worked with variants of strings before.
My own preference is to use non-mutable strings rather than copy-on-write, and to use boost::shared_ptr or equivalent but only when the string is actually beyond 16 in length, so the string class also has a private buffer for short strings.
This does mean that the string class might carry a bit of weight.
I also have in my collection list a "slice" class that can look at a "subset" of a class that lives elsewhere as long as the lifetime of the original object is intact. So in your case I could slice the string to see a substring. Of course it would not be null-terminated, nor is there any way of making it such without copying it. And it is not a string class.

Related

Advantages of string_view literals vs string literals in simple scenarios

So I am reading code written for newer versions of CPP and frequently see string_view literals used almost exclusively, even in simple use cases.
For example:
std::cout<<"Hello world"sv<<std::endl;
Is there any particular reason for that? It is obviously not about storage duration, because string_view only wraps string literal. Do the string_view's have lower overhead or something?
Thanks you for your time.
Shown example do not introduce any significant gains.
The only case where there might be a difference is when you use zero inside literal:
std::cout << "zerro \0insde"sv << std::endl;
std::cout << "zerro \0insde" << std::endl;
https://godbolt.org/z/54v1a518f
Creating a std::string can be costly as it often involves allocating memory dynamically. When the cost of creating a std::string is a concern, using const char* and length parameters as an alternative may reduce the expense, but it can also make the code less readable and harder to use.
std::string_view, introduced in C++17, is a non-owning, read-only reference to a sequence of characters. Its purpose is to provide a way for functions to take a read-only reference to an object resembling std::string, without needing to specify the exact type. The downside of using a const std::string& in such cases is that it creates a std::string object.
std::string_view is a lightweight object that holds a pointer to the original string, and its length. Because it doesn't own the memory it points to, it doesn't need to manage the memory itself, which can make it more efficient than std::string. However, it can also have more overhead in certain cases. For example, if a std::string_view is frequently copied, it will need to create a new object each time, which can be more expensive than copying a std::string.
Additionally, because it doesn't own the memory it points to, it must ensure that the original string remains valid as long as the std::string_view is being used, which can also add some overhead.
P.S. be careful and use it with caution, as you do not own it
Additionally really great article to read https://quuxplusone.github.io/blog/2021/11/09/pass-string-view-by-value/

Questions and Verifications on immutable [string] objects c++

I've been doing some reading on immutable strings in general and in c++, here, here, and I think I have a decent understanding of how things work. However I have built a few assumptions that I would just like to run by some people for verification. Some of the assumptions are more general than the title would suggest:
While a const string in c++ is the closest thing to an immutable string in STL, it is only locally immutable and therefore doesn't experience the benefit of being a smaller object. So it has all the trimmings of a standard string object but it can't access all of the member functions. This means that it doesn't create any optimization in the program over non-const? But rather just protects the object from modification? I understand that this is an important attribute but I'm simply looking to know what it means to use this
I'm assuming that an object's member functions exist only once in read-only memory, and how is probably implementation specific, so does a const object have a separate location in memory? Or are the member functions limited in another way? If there are only 'const string' objects and no non-const strings in a code base, does the compiler leave out the inaccessible functions?
I recall hearing that each string literal is stored only once in read-only memory in c++, however I don't find anything on this here. In other words, if I use some string literal multiple times in the same program, each instance references the same location in memory. I'm going to assume no, but would two string objects initialized by the same string literal point to the same string until one is modified?
I apologize if I have included too many disjunct thoughts in the same post, they are all related to me as string representation and just learning how to code better.
As far as I know, std::string cannot assume that the input string is a read-only constant string from your data segment. Therefore, point (3) does not apply. It will most likely allocate a buffer and copy the string in the buffer.
Note that C++ (like C) has a const qualifier for compilation time, it is a good idea to use it for two reasons: (a) it will help you find bugs, a statement such as a = 5; if a is declared const fails to compile; (b) the compile may be able to optimize the code more easily (it may otherwise not be able to figure out that the object is constant.)
However, C++ has a special cast to remove the const-ness of a variable. So our a variable can be cast and assigned a value as in const_cast<int&>(a) = 5;. An std::string can also get its const-ness removed. (Note that C does not have a special cast, but it offers the exact same behavior: * (int *) &a = 5)
Are all class members defined in the final binary?
No. std::string as most of the STL uses templates. Templates are compiled once per unit (your .o object files) and the link will reduce duplicates automatically. So if you look at the size of all the .o files and add them up, the final output will be a lot small.
That also means only the functions that are used in a unit are compiled and saved in the object file. Any other function "disappear". That being said, often function A calls function B, so B will be defined, even if you did not explicitly call it.
On the other hand, because these are templates, very often the functions get inlined. But that is a choice by the compiler, not the language or the STL (although you can use the inline keyword for fun; the compiler has the right to ignore it anyway).
Smaller objects... No, in C++ an object has a very specific size that cannot change. Otherwise the sizeof(something) would vary from place to place and C/C++ would go berserk!
Static strings that are saved in read-only data sections, however, can be optimized. If the linker/compiler are good enough, they will be able to merge the same string in a single location. These are just plan char * or wchar_t *, of course. The Microsoft compiler has been able to do that one for a while now.
Yet, the const on a string does not always force your string to be put in a read-only data section. That will generally depend on your command line option. C++ may have corrected that, but I think C still put everything in a read/write section unless you use the correct command line option. That's something you need to test to make sure (your compiler is likely to do it, but without testing you won't know.)
Finally, although std::string may not use it, C++ offers a quite interesting keyword called mutable. If you heard about it, you would know that a variable member can be marked as mutable and that means even const functions can modify that variable member. There are two main reason for using that keyword: (1) you are writing a multi-thread program and that class has to be multi-thread safe, in that case you mark the mutex as mutable, very practical; (2) you want to have a buffer used to cache a computed value which is costly, that buffer is only initialized when that value is requested to not waste time otherwise, that buffer is made mutable too.
Therefore the "immutable" concept is only really something that you can count on at a higher level. In practice, reality is often quite different. For example, an std::string c_str() function may reallocate the buffer to add the necessary '\0' terminator, yet that function is marked as being a const:
const CharT* c_str() const;
Actually, an implementation is free to allocate a completely different buffer, copy its existing data to that buffer and return that bare pointer. That means internally the std::string could be allocate many buffers to store large strings (instead of using realloc() which can be costly.)
Once thing, though... when you copy string A into string B (B = A;) the string data does not get copied. Instead A and B will share the same data buffer. Once you modify A or B, and only then, the data gets copied. This means calling a function which accepts a string by copy does not waste that much time:
int func(std::string a)
{
...
if(some_test)
{
// deep copy only happens here
a += "?";
}
}
std::string b;
func(b);
The characters of string b do not get copied at the time func() gets called. And if func() never modifies 'a', the string data remains the same all along. This is often referenced as a shallow copy or copy on write.

C++ Passing a long string to constructor or setter

I have a class with a Glib::ustring member (if you're not familar with it, assume it's std::string) which is expected to contain a long string, i.e. at lest one paragraph, maybe a few more. Maybe even more than 10 paragraphs. The string is planned to be displayed in a GUI, so maybe in the future it will be stored in the text widget's buffer, but for now it's just a string member object of my C++ class.
The question is: how to pass a string to the constructor, and how to pass it to the set_string() setter method. A long string means a big copy, so I though a good solution would be to take an rvalue reference and std::move the argument into the member object. But I also don't want the class interface to be suprising and hard to use/understand. You know, the rule of least surprise.
So I was thinking, what's the expected/common solution in this case?
(for the setter method here's another option: since editing is done in GUI, just let the GUI edit the string directly, and then the only use of the setter method is to completely replace the string programatically, e.g. reset it or undo a recent edit)
class MyClass
{
public:
explicit MyClass (Glib::ustring str);
void set_string (Glib::ustring str);
private:
Glib::ustring str;
}
(I've seen code of existing libraries, e.g. gtkmm, taking strings by const reference, but I also saw SO posts with answers saying pass-by-value to allow optimization)
http://cpp-next.com/archive/2009/08/want-speed-pass-by-value/
Your function should take the string by value, assuming your string has an efficient move-constructor.
When you expect that a string will be long, the caller calls std::move and passes the value to the setter/constructor. This isn't surprising, because std::move makes it pretty explicit that you are moving the data.
If your system has no more than a modest amount of concurrency, and you rarely modify strings (really, most strings are shared far more than they are modified) shared pointers to immutable strings is actually a pretty useful pattern. (The shared write data is the reference count, so with high levels of concurrency can cause contention)
I'd go for references (not only passing them but also storing a reference). However, a setter has to re-seat the reference, which isn't possible. If you really need to change the string after construction, you have to use pointers (maybe smart pointers).
Depending on the surrounding code you might want to use shared ownership of a string. In this case, I'd use a std::shared_pointer<GLib::ustring>. If you need a setter. (Otherwise, a reference is better.)
Please note that "some paragraphs" aren't very long strings. In user interfaces, a couple of milliseconds of delay, let's say when loading some text file, is totally acceptable. As always: please first profile your code, detect the bottleneck, then optimize if you need it to be faster.

immutable strings vs std::string

I've recent been reading about immutable strings Why can't strings be mutable in Java and .NET? and Why .NET String is immutable? as well some stuff about why D chose immutable strings. There seem to be many advantages.
trivially thread safe
more secure
more memory efficient in most use cases.
cheap substrings (tokenizing and slicing)
Not to mention most new languages have immutable strings, D2.0, Java, C#, Python, etc.
Would C++ benefit from immutable strings?
Is it possible to implement an immutable string class in c++ (or c++0x) that would have all of these advantages?
update:
There are two attempts at immutable strings const_string and fix_str. Neither have been updated in half a decade. Are they even used? Why didn't const_string ever make it into boost?
I found most people in this thread do not really understand what immutable_string is. It is not only about the constness. The really power of immutable_string is the performance (even in single thread program) and the memory usage.
Imagine that, if all strings are immutable, and all string are implemented like
class string {
char* _head ;
size_t _len ;
} ;
How can we implement a sub-str operation? We don't need to copy any char. All we have to do is assign the _head and the _len. Then the sub-string shares the same memory segment with the source string.
Of course we can not really implement a immutable_string only with the two data members. The real implementation might need a reference-counted(or fly-weighted) memory block. Like this
class immutable_string {
boost::fly_weight<std::string> _s ;
char* _head ;
size_t _len ;
} ;
Both the memory and the performance would be better than the traditional string in most cases, especially when you know what you are doing.
Of course C++ can benefit from immutable string, and it is nice to have one. I have checked the boost::const_string and the fix_str mentioned by Cubbi. Those should be what I am talking about.
As an opinion:
Yes, I'd quite like an immutable string library for C++.
No, I would not like std::string to be immutable.
Is it really worth doing (as a standard library feature)? I would say not. The use of const gives you locally immutable strings, and the basic nature of systems programming languages means that you really do need mutable strings.
My conclusion is that C++ does not require the immutable pattern because it has const semantics.
In Java, if you have a Person class and you return the String name of the person with the getName() method, your only protection is the immutable pattern. If it would not be there you would have to clone() your strings all night and day (as you have to do with data members that are not typical value-objects, but still needs to be protected).
In C++ you have const std::string& getName() const. So you can write SomeFunction(person.getName()) where it is like void SomeFunction(const std::string& subject).
No copy happened
If anyone wants to copy he is free to do so
Technique applies to all data types, not just strings
You're certainly not the only person who though that. In fact, there is const_string library by Maxim Yegorushkin, which seems to have been written with inclusion into boost in mind. And here's a little newer library, fix_str by Roland Pibinger. I'm not sure how tricky would full string interning at run-time be, but most of the advantages are achievable when necessary.
I don't think there's a definitive answer here. It's subjective—if not because personal taste then at least because of the type of code one most often deals with. (Still, a valuable question.)
Immutable strings are great when memory is cheap—this wasn't true when C++ was developed, and it isn't the case on all platforms targeted by C++. (OTOH on more limited platforms C seems much more common than C++, so that argument is weak.)
You can create an immutable string class in C++, and you can make it largely compatible with std::string—but you will still lose when comparing to a built-in string class with dedicated optimizations and language features.
std::string is the best standard string we get, so I wouldn't like to see any messing with it. I use it very rarely, though; std::string has too many drawbacks from my point of view.
const std::string
There you go. A string literal is also immutable, unless you want to get into undefined behavior.
Edit: Of course that's only half the story. A const string variable isn't useful because you can't make it reference a new string. A reference to a const string would do it, except that C++ won't allow you to reassign a reference as in other languages like Python. The closest thing would be a smart pointer to a dynamically allocated string.
Immutable strings are great if, whenever it's necessary to create a new a string, the memory manager will always be able to determine determine the whereabouts of every string reference. On most platforms, language support for such ability could be provided at relatively modest cost, but on platforms without such language support built in it's much harder.
If, for example, one wanted to design a Pascal implementation on x86 that supported immutable strings, it would be necessary for the string allocator to be able to walk the stack to find all string references; the only execution-time cost of that would be requiring a consistent function-call approach [e.g. not using tail calls, and having every non-leaf function maintain a frame pointer]. Each memory area allocated with new would need to have a bit to indicate whether it contained any strings and those that do contain strings would need to have an index to a memory-layout descriptor, but those costs would be pretty slight.
If a GC wasn't table to walk the stack, then it would be necessary to have code use handles rather than pointers, and have code create string handles when local variables come into scope, and destroy the handles when they go out of scope. Much greater overhead.
Qt also uses immutable strings with copy-on-write.
There is some debate about how much performance it really buys you with decent compilers.
constant strings make little sense with value semantics, and sharing isn't one of C++'s greatest strengths...
Strings are mutable in Ruby.
$ irb
>> foo="hello"
=> "hello"
>> bar=foo
=> "hello"
>> foo << "world"
=> "helloworld"
>> print bar
helloworld=> nil
trivially thread safe
I would tend to forget safety arguments. If you want to be thread-safe, lock it, or don't touch it. C++ is not a convenient language, have your own conventions.
more secure
No. As soon as you have pointer arithmetics and unprotected access to the address space, forget about being secure. Safer against innocently bad coding, yes.
more memory efficient in most use cases.
Unless you implement CPU-intensive mechanisms, I don't see how.
cheap substrings (tokenizing and slicing)
That would be one very good point. Could be done by referring to a string with backreferences, where modifications to a string would cause a copy. Tokenizing and slicing become free, mutations become expensive.
C++ strings are thread safe, all immutable objects are guaranteed to be thread safe but Java's StringBuffer is mutable like C++ string is and the both of them are thread safe. Why worry about speed, define your method or function parameters with the const keyword to tell the compiler the string will be immutable in that scope. Also if string object is immutable on demand, waiting when you absolutely need to use the string, in other words, when you append other strings to the main string, you have a list of strings until you actually need the whole string then they are joined together at that point.
immutable and mutable object operate at the same speed to my knowledge , except their methods which is a matter of pro and cons. constant primitives and variable primitives move at different speeds because at the machine level, variables are assigned to a register or a memory space which require a few binary operations, while constants are labels that don't require any of those and are thus faster (or less work is done). works only for primitives and not for object.

When is it not a good idea to pass by reference?

This is a memory allocation issue that I've never really understood.
void unleashMonkeyFish()
{
MonkeyFish * monkey_fish = new MonkeyFish();
std::string localname = "Wanda";
monkey_fish->setName(localname);
monkey_fish->go();
}
In the above code, I've created a MonkeyFish object on the heap, assigned it a name, and then unleashed it upon the world. Let's say that ownership of the allocated memory has been transferred to the MonkeyFish object itself - and only the MonkeyFish itself will decide when to die and delete itself.
Now, when I define the "name" data member inside the MonkeyFish class, I can choose one of the following:
std::string name;
std::string & name;
When I define the prototype for the setName() function inside the MonkeyFish class, I can choose one of the following:
void setName( const std::string & parameter_name );
void setName( const std::string parameter_name );
I want to be able to minimize string copies. In fact, I want to eliminate them entirely if I can. So, it seems like I should pass the parameter by reference...right?
What bugs me is that it seems that my localname variable is going to go out of scope once the unleashMonkeyFish() function completes. Does that mean I'm FORCED to pass the parameter by copy? Or can I pass it by reference and "get away with it" somehow?
Basically, I want to avoid these scenarios:
I don't want to set the MonkeyFish's name, only to have the memory for the localname string go away when the unleashMonkeyFish() function terminates. (This seems like it would be very bad.)
I don't want to copy the string if I can help it.
I would prefer not to new localname
What prototype and data member combination should I use?
CLARIFICATION: Several answers suggested using the static keyword to ensure that the memory is not automatically de-allocated when unleashMonkeyFish() ends. Since the ultimate goal of this application is to unleash N MonkeyFish (all of which must have unique names) this is not a viable option. (And yes, MonkeyFish - being fickle creatures - often change their names, sometime several times in a single day.)
EDIT: Greg Hewgil has pointed out that it is illegal to store the name variable as a reference, since it is not being set in the constructor. I'm leaving the mistake in the question as-is, since I think my mistake (and Greg's correction) might be useful to someone seeing this problem for the first time.
One way to do this is to have your string
std::string name;
As the data-member of your object. And then, in the unleashMonkeyFish function create a string like you did, and pass it by reference like you showed
void setName( const std::string & parameter_name ) {
name = parameter_name;
}
It will do what you want - creating one copy to copy the string into your data-member. It's not like it has to re-allocate a new buffer internally if you assign another string. Probably, assigning a new string just copies a few bytes. std::string has the capability to reserve bytes. So you can call "name.reserve(25);" in your constructor and it will likely not reallocate if you assign something smaller. (i have done tests, and it looks like GCC always reallocates if you assign from another std::string, but not if you assign from a c-string. They say they have a copy-on-write string, which would explain that behavior).
The string you create in the unleashMonkeyFish function will automatically release its allocated resources. That's the key feature of those objects - they manage their own stuff. Classes have a destructor that they use to free allocated resources once objects die, std::string has too. In my opinion, you should not worry about having that std::string local in the function. It will not do anything noticeable to your performance anyway most likely. Some std::string implementations (msvc++ afaik) have a small-buffer optimization: For up to some small limit, they keep characters in an embedded buffer instead of allocating from the heap.
Edit:
As it turns out, there is a better way to do this for classes that have an efficient swap implementation (constant time):
void setName(std::string parameter_name) {
name.swap(parameter_name);
}
The reason that this is better, is that now the caller knows that the argument is being copied. Return value optimization and similar optimizations can now be applied easily by the compiler. Consider this case, for example
obj.setName("Mr. " + things.getName());
If you had the setName take a reference, then the temporary created in the argument would be bound to that reference, and within setName it would be copied, and after it returns, the temporary would be destroyed - which was a throw-away product anyway. This is only suboptimal, because the temporary itself could have been used, instead of its copy. Having the parameter not a reference will make the caller see that the argument is being copied anyway, and make the optimizer's job much more easy - because it wouldn't have to inline the call to see that the argument is copied anyway.
For further explanation, read the excellent article BoostCon09/Rvalue-References
If you use the following method declaration:
void setName( const std::string & parameter_name );
then you would also use the member declaration:
std::string name;
and the assignment in the setName body:
name = parameter_name;
You cannot declare the name member as a reference because you must initialise a reference member in the object constructor (which means you couldn't set it in setName).
Finally, your std::string implementation probably uses reference counted strings anyway, so no copy of the actual string data is being made in the assignment. If you're that concerned about performance, you had better be intimately familiar with the STL implementation you are using.
Just to clarify the terminology, you've created MonkeyFish from the heap (using new) and localname on the stack.
Ok, so storing a reference to an object is perfectly legit, but obviously you must be aware of the scope of that object. Much easier to pass the string by reference, then copy to the class member variable. Unless the string is very large, or your performing this operation a lot (and I mean a lot, a lot) then there's really no need to worry.
Can you clarify exactly why you don't want to copy the string?
Edit
An alternative approach is to create a pool of MonkeyName objects. Each MonkeyName stores a pointer to a string. Then get a new MonkeyName by requesting one from the pool (sets the name on the internal string *). Now pass that into the class by reference and perform a straight pointer swap. Of course, the MonkayName object passed in is changed, but if it goes straight back into the pool, that won't make a difference. The only overhead is then the actual setting of the name when you get the MonkeyName from the pool.
... hope that made some sense :)
This is precisely the problem that reference counting is meant to solve. You could use the Boost shared_ptr<> to reference the string object in a way such that it lives at least as long as every pointer at it.
Personally I never trust it, though, preferring to be explicit about the allocation and lifespan of all my objects. litb's solution is preferable.
When the compiler sees ...
std::string localname = "Wanda";
... it will (barring optimization magic) emit 0x57 0x61 0x6E 0x64 0x61 0x00 [Wanda with the null terminator] and store it somewhere in the the static section of your code. Then it will invoke std::string(const char *) and pass it that address. Since the author of the constructor has no way of knowing the lifetime of the supplied const char *, s/he must make a copy. In MonkeyFish::setName(const std::string &), the compiler will see std::string::operator=(const std::string &), and, if your std::string is implemented with copy-on-write semantics, the compiler will emit code to increment the reference count but make no copy.
You will thus pay for one copy. Do you need even one? Do you know at compile time what the names of the MonkeyFish shall be? Do the MonkeyFish ever change their names to something that is not known at compile time? If all the possible names of MonkeyFish are known at compile time, you can avoid all the copying by using a static table of string literals, and implementing MonkeyFish's data member as a const char *.
As a simple rule of thumb store your data as a copy within a class, and pass and return data by (const) reference, use reference counting pointers wherever possible.
I'm not so concerned about copying a few 1000s bytes of string data, until such time that the profiler says it is a significant cost. OTOH I do care that the data structures that hold several 10s of MBs of data don't get copied.
In your example code, yes, you are forced to copy the string at least once. The cleanest solution is defining your object like this:
class MonkeyFish {
public:
void setName( const std::string & parameter_name ) { name = parameter_name; }
private:
std::string name;
};
This will pass a reference to the local string, which is copied into a permanent string inside the object. Any solutions that involve zero copying are extremely fragile, because you would have to be careful that the string you pass stays alive until after the object is deleted. Better not go there unless it's absolutely necessary, and string copies aren't THAT expensive -- worry about that only when you have to. :-)
You could make the string in unleashMonkeyFish static but I don't think that really helps anything (and could be quite bad depending on how this is implemented).
I've moved "down" from higher-level languages (like C#, Java) and have hit this same issue recently. I assume that often the only choice is to copy the string.
If you use a temporary variable to assign the name (as in your sample code) you will eventually have to copy the string to your MonkeyFish object in order to avoid the temporary string object going end-of-scope on you.
As Andrew Flanagan mentioned, you can avoid the string copy by using a local static variable or a constant.
Assuming that that isn't an option, you can at least minimize the number of string copies to exactly one. Pass the string as a reference pointer to setName(), and then perform the copy inside the setName() function itself. This way, you can be sure that the copy is being performed only once.