I have to permute N first elements of a singly linked list of length n, randomly. Each element is defined as:
typedef struct E_s
{
struct E_s *next;
}E_t;
I have a root element and I can traverse the whole linked list of size n. What is the most efficient technique to permute only N first elements (starting from root) randomly?
So, given a->b->c->d->e->f->...x->y->z I need to make smth. like f->a->e->c->b->...x->y->z
My specific case:
n-N is about 20% relative to n
I have limited RAM resources, the best algorithm should make it in place
I have to do it in a loop, in many iterations, so the speed does matter
The ideal randomness (uniform distribution) is not required, it's Ok if it's "almost" random
Before making permutations, I traverse the N elements already (for other needs), so maybe I could use this for permutations as well
UPDATE: I found this paper. It states it presents an algorithm of O(log n) stack space and expected O(n log n) time.
I've not tried it, but you could use a "randomized merge-sort".
To be more precise, you randomize the merge-routine. You do not merge the two sub-lists systematically, but you do it based on a coin toss (i.e. with probability 0.5 you select the first element of the first sublist, with probability 0.5 you select the first element of the right sublist).
This should run in O(n log n) and use O(1) space (if properly implemented).
Below you find a sample implementation in C you might adapt to your needs. Note that this implementation uses randomisation at two places: In splitList and in merge. However, you might choose just one of these two places. I'm not sure if the distribution is random (I'm almost sure it is not), but some test cases yielded decent results.
#include <stdio.h>
#include <stdlib.h>
#define N 40
typedef struct _node{
int value;
struct _node *next;
} node;
void splitList(node *x, node **leftList, node **rightList){
int lr=0; // left-right-list-indicator
*leftList = 0;
*rightList = 0;
while (x){
node *xx = x->next;
lr=rand()%2;
if (lr==0){
x->next = *leftList;
*leftList = x;
}
else {
x->next = *rightList;
*rightList = x;
}
x=xx;
lr=(lr+1)%2;
}
}
void merge(node *left, node *right, node **result){
*result = 0;
while (left || right){
if (!left){
node *xx = right;
while (right->next){
right = right->next;
}
right->next = *result;
*result = xx;
return;
}
if (!right){
node *xx = left;
while (left->next){
left = left->next;
}
left->next = *result;
*result = xx;
return;
}
if (rand()%2==0){
node *xx = right->next;
right->next = *result;
*result = right;
right = xx;
}
else {
node *xx = left->next;
left->next = *result;
*result = left;
left = xx;
}
}
}
void mergeRandomize(node **x){
if ((!*x) || !(*x)->next){
return;
}
node *left;
node *right;
splitList(*x, &left, &right);
mergeRandomize(&left);
mergeRandomize(&right);
merge(left, right, &*x);
}
int main(int argc, char *argv[]) {
srand(time(NULL));
printf("Original Linked List\n");
int i;
node *x = (node*)malloc(sizeof(node));;
node *root=x;
x->value=0;
for(i=1; i<N; ++i){
node *xx;
xx = (node*)malloc(sizeof(node));
xx->value=i;
xx->next=0;
x->next = xx;
x = xx;
}
x=root;
do {
printf ("%d, ", x->value);
x=x->next;
} while (x);
x = root;
node *left, *right;
mergeRandomize(&x);
if (!x){
printf ("Error.\n");
return -1;
}
printf ("\nNow randomized:\n");
do {
printf ("%d, ", x->value);
x=x->next;
} while (x);
printf ("\n");
return 0;
}
Convert to an array, use a Fisher-Yates shuffle, and convert back to a list.
I don't believe there's any efficient way to randomly shuffle singly-linked lists without an intermediate data structure. I'd just read the first N elements into an array, perform a Fisher-Yates shuffle, then reconstruct those first N elements into the singly-linked list.
First, get the length of the list and the last element. You say you already do a traversal before randomization, that would be a good time.
Then, turn it into a circular list by linking the first element to the last element. Get four pointers into the list by dividing the size by four and iterating through it for a second pass. (These pointers could also be obtained from the previous pass by incrementing once, twice, and three times per four iterations in the previous traversal.)
For the randomization pass, traverse again and swap pointers 0 and 2 and pointers 1 and 3 with 50% probability. (Do either both swap operations or neither; just one swap will split the list in two.)
Here is some example code. It looks like it could be a little more random, but I suppose a few more passes could do the trick. Anyway, analyzing the algorithm is more difficult than writing it :vP . Apologies for the lack of indentation; I just punched it into ideone in the browser.
http://ideone.com/9I7mx
#include <iostream>
#include <cstdlib>
#include <ctime>
using namespace std;
struct list_node {
int v;
list_node *n;
list_node( int inv, list_node *inn )
: v( inv ), n( inn) {}
};
int main() {
srand( time(0) );
// initialize the list and 4 pointers at even intervals
list_node *n_first = new list_node( 0, 0 ), *n = n_first;
list_node *p[4];
p[0] = n_first;
for ( int i = 1; i < 20; ++ i ) {
n = new list_node( i, n );
if ( i % (20/4) == 0 ) p[ i / (20/4) ] = n;
}
// intervals must be coprime to list length!
p[2] = p[2]->n;
p[3] = p[3]->n;
// turn it into a circular list
n_first->n = n;
// swap the pointers around to reshape the circular list
// one swap cuts a circular list in two, or joins two circular lists
// so perform one cut and one join, effectively reordering elements.
for ( int i = 0; i < 20; ++ i ) {
list_node *p_old[4];
copy( p, p + 4, p_old );
p[0] = p[0]->n;
p[1] = p[1]->n;
p[2] = p[2]->n;
p[3] = p[3]->n;
if ( rand() % 2 ) {
swap( p_old[0]->n, p_old[2]->n );
swap( p_old[1]->n, p_old[3]->n );
}
}
// you might want to turn it back into a NULL-terminated list
// print results
for ( int i = 0; i < 20; ++ i ) {
cout << n->v << ", ";
n = n->n;
}
cout << '\n';
}
For the case when N is really big (so it doesn't fit your memory), you can do the following (a sort of Knuth's 3.4.2P):
j = N
k = random between 1 and j
traverse the input list, find k-th item and output it; remove the said item from the sequence (or mark it somehow so that you won't consider it at the next traversal)
decrease j and return to 2 unless j==0
output the rest of the list
Beware that this is O(N^2), unless you can ensure random access in the step 3.
In case the N is relatively small, so that N items fit into the memory, just load them into array and shuffle, like #Mitch proposes.
If you know both N and n, I think you can do it simply. It's fully random, too. You only iterate through the whole list once, and through the randomized part each time you add a node. I think that's O(n+NlogN) or O(n+N^2). I'm not sure. It's based upon updating the conditional probability that a node is selected for the random portion given what happened to previous nodes.
Determine the probability that a certain node will be selected for the random portion given what happened to previous nodes (p=(N-size)/(n-position) where size is number of nodes previously chosen and position is number of nodes previously considered)
If node is not selected for random part, move to step 4. If node is selected for the random part, randomly choose place in random part based upon the size so far (place=(random between 0 and 1) * size, size is again number of previous nodes).
Place the node where it needs to go, update the pointers. Increment size. Change to looking at the node that previously pointed at what you were just looking at and moved.
Increment position, look at the next node.
I don't know C, but I can give you the pseudocode. In this, I refer to the permutation as the first elements that are randomized.
integer size=0; //size of permutation
integer position=0 //number of nodes you've traversed so far
Node head=head of linked list //this holds the node at the head of your linked list.
Node current_node=head //Starting at head, you'll move this down the list to check each node, whether you put it in the list.
Node previous=head //stores the previous node for changing pointers. starts at head to avoid asking for the next field on a null node
While ((size not equal to N) or (current_node is not null)){ //iterating through the list until the permutation is full. We should never pass the end of list, but just in case, I include that condition)
pperm=(N-size)/(n-position) //probability that a selected node will be in the permutation.
if ([generate a random decimal between 0 and 1] < pperm) //this decides whether or not the current node will go in the permutation
if (j is not equal to 0){ //in case we are at start of list, there's no need to change the list
pfirst=1/(size+1) //probability that, if you select a node to be in the permutation, that it will be first. Since the permutation has
//zero elements at start, adding an element will make it the initial node of a permutation and percent chance=1.
integer place_in_permutation = round down([generate a random decimal between 0 and 1]/pfirst) //place in the permutation. note that the head =0.
previous.next=current_node.next
if(place_in_permutation==0){ //if placing current node first, must change the head
current_node.next=head //set the current Node to point to the previous head
head=current_node //set the variable head to point to the current node
}
else{
Node temp=head
for (counter starts at zero. counter is less than place_in_permutation-1. Each iteration, increment counter){
counter=counter.next
} //at this time, temp should point to the node right before the insertion spot
current_node.next=temp.next
temp.next=current_node
}
current_node=previous
}
size++ //since we add one to the permutation, increase the size of the permutation
}
j++;
previous=current_node
current_node=current_node.next
}
You could probably increase the efficiency if you held on to the most recently added node in case you had to add one to the right of it.
Similar to Vlad's answer, here is a slight improvement (statistically):
Indices in algorithm are 1 based.
Initialize lastR = -1
If N <= 1 go to step 6.
Randomize number r between 1 and N.
if r != N
4.1 Traverse the list to item r and its predecessor.
If lastR != -1
If r == lastR, your pointer for the of the r'th item predecessor is still there.
If r < lastR, traverse to it from the beginning of the list.
If r > lastR, traverse to it from the predecessor of the lastR'th item.
4.2 remove the r'th item from the list into a result list as the tail.
4.3 lastR = r
Decrease N by one and go to step 2.
link the tail of the result list to the head of the remaining input list. You now have the original list with the first N items permutated.
Since you do not have random access, this will reduce the traversing time you will need within the list (I assume that by half, so asymptotically, you won't gain anything).
O(NlogN) easy to implement solution that does not require extra storage:
Say you want to randomize L:
is L has 1 or 0 elements you are done
create two empty lists L1 and L2
loop over L destructively moving its elements to L1 or L2 choosing between the two at random.
repeat the process for L1 and L2 (recurse!)
join L1 and L2 into L3
return L3
Update
At step 3, L should be divided into equal sized (+-1) lists L1 and L2 in order to guaranty best case complexity (N*log N). That can be done adjusting the probability of one element going into L1 or L2 dynamically:
p(insert element into L1) = (1/2 * len0(L) - len(L1)) / len(L)
where
len(M) is the current number of elements in list M
len0(L) is the number of elements there was in L at the beginning of step 3
There is an algorithm takes O(sqrt(N)) space and O(N) time, for a singly linked list.
It does not generate a uniform distribution over all permutation sequence, but it can gives good permutation that is not easily distinguishable. The basic idea is similar to permute a matrix by rows and columns as described below.
Algorithm
Let the size of the elements to be N, and m = floor(sqrt(N)). Assuming a "square matrix" N = m*m will make this method much clear.
In the first pass, you should store the pointers of elements that is separated by every m elements as p_0, p_1, p_2, ..., p_m. That is, p_0->next->...->next(m times) == p_1 should be true.
Permute each row
For i = 0 to m do:
Index all elements between p_i->next to p_(i+1)->next in the link list by an array of size O(m)
Shuffle this array using standard method
Relink the elements using this shuffled array
Permute each column.
Initialize an array A to store pointers p_0, ..., p_m. It is used to traverse the columns
For i = 0 to m do
Index all elements pointed A[0], A[1], ..., A[m-1] in the link list by an array of size m
Shuffle this array
Relink the elements using this shuffled array
Advance the pointer to next column A[i] := A[i]->next
Note that p_0 is an element point to the first element and the p_m point to the last element. Also, if N != m*m, you may use m+1 separation for some p_i instead. Now you get a "matrix" such that the p_i point to the start of each row.
Analysis and randomness
Space complexity: This algorithm need O(m) space to store the start of row. O(m) space to store the array and O(m) space to store the extra pointer during column permutation. Hence, time complexity is ~ O(3*sqrt(N)). For N = 1000000, it is around 3000 entries and 12 kB memory.
Time complexity: It is obviously O(N). It either walk through the "matrix" row by row or column by column
Randomness: The first thing to note is that each element can go to anywhere in the matrix by row and column permutation. It is very important that elements can go to anywhere in the linked list. Second, though it does not generate all permutation sequence, it does generate part of them. To find the number of permutation, we assume N=m*m, each row permutation has m! and there is m row, so we have (m!)^m. If column permutation is also include, it is exactly equal to (m!)^(2*m), so it is almost impossible to get the same sequence.
It is highly recommended to repeat the second and third step by at least one more time to get an more random sequence. Because it can suppress almost all the row and column correlation to its original location. It is also important when your list is not "square". Depends on your need, you may want to use even more repetition. The more repetition you use, the more permutation it can be and the more random it is. I remember that it is possible to generate uniform distribution for N=9 and I guess that it is possible to prove that as repetition tends to infinity, it is the same as the true uniform distribution.
Edit: The time and space complexity is tight bound and is almost the same in any situation. I think this space consumption can satisfy your need. If you have any doubt, you may try it in a small list and I think you will find it useful.
The list randomizer below has complexity O(N*log N) and O(1) memory usage.
It is based on the recursive algorithm described on my other post modified to be iterative instead of recursive in order to eliminate the O(logN) memory usage.
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
typedef struct node {
struct node *next;
char *str;
} node;
unsigned int
next_power_of_two(unsigned int v) {
v--;
v |= v >> 1;
v |= v >> 2;
v |= v >> 4;
v |= v >> 8;
v |= v >> 16;
return v + 1;
}
void
dump_list(node *l) {
printf("list:");
for (; l; l = l->next) printf(" %s", l->str);
printf("\n");
}
node *
array_to_list(unsigned int len, char *str[]) {
unsigned int i;
node *list;
node **last = &list;
for (i = 0; i < len; i++) {
node *n = malloc(sizeof(node));
n->str = str[i];
*last = n;
last = &n->next;
}
*last = NULL;
return list;
}
node **
reorder_list(node **last, unsigned int po2, unsigned int len) {
node *l = *last;
node **last_a = last;
node *b = NULL;
node **last_b = &b;
unsigned int len_a = 0;
unsigned int i;
for (i = len; i; i--) {
double pa = (1.0 + RAND_MAX) * (po2 - len_a) / i;
unsigned int r = rand();
if (r < pa) {
*last_a = l;
last_a = &l->next;
len_a++;
}
else {
*last_b = l;
last_b = &l->next;
}
l = l->next;
}
*last_b = l;
*last_a = b;
return last_b;
}
unsigned int
min(unsigned int a, unsigned int b) {
return (a > b ? b : a);
}
randomize_list(node **l, unsigned int len) {
unsigned int po2 = next_power_of_two(len);
for (; po2 > 1; po2 >>= 1) {
unsigned int j;
node **last = l;
for (j = 0; j < len; j += po2)
last = reorder_list(last, po2 >> 1, min(po2, len - j));
}
}
int
main(int len, char *str[]) {
if (len > 1) {
node *l;
len--; str++; /* skip program name */
l = array_to_list(len, str);
randomize_list(&l, len);
dump_list(l);
}
return 0;
}
/* try as: a.out list of words foo bar doz li 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
*/
Note that this version of the algorithm is completely cache unfriendly, the recursive version would probably perform much better!
If both the following conditions are true:
you have plenty of program memory (many embedded hardwares execute directly from flash);
your solution does not suffer that your "randomness" repeats often,
Then you can choose a sufficiently large set of specific permutations, defined at programming time, write a code to write the code that implements each, and then iterate over them at runtime.
Related
I have two types of queries.
1 X Y
Add element X ,Y times in the collection.
2 N
Number of queries < 5 * 10^5
X < 10^9
Y < 10^9
Find Nth element in the sorted collection.
I tried STL set but it did not work.
I think we need balanced tree with each node containing two data values.
First value will be element X. And another will be prefix sum of all the Ys of elements smaller than or equal to value.
When we are adding element X find preprocessor of that first value.Add second value associated with preprocessor to Y.
When finding Nth element. Search in tree(second value) for value immediately lower than N.
How to efficiently implement this data structure ?
This can easily be done using segment tree data structure with complexity of O(Q*log(10^9))
We should use so called "sparse" segment tree so that we only create nodes when needed, instead of creating all nodes.
In every node we will save count of elements in range [L, R]
Now additions of some element y times can easily be done by traversing segment tree from root to leaf and updating the values (also creating nodes that do not exist yet).
Since the height of segment tree is logarithmic this takes log N time where N is our initial interval length (10^9)
Finding k-th element can easily be done using binary search on segment tree, since on every node we know the count of elements in some range, we can use this information to traverse left or right to the element which contains the k-th
Sample code (C++):
#include <bits/stdc++.h>
using namespace std;
#define ll long long
const int sz = 31*4*5*100000;
ll seg[sz];
int L[sz],R[sz];
int nxt = 2;
void IncNode(int c, int l, int r, int idx, int val)
{
if(l==r)
{
seg[c]+=val;
return;
}
int m = (l+r)/2;
if(idx <= m)
{
if(!L[c])L[c]=nxt++;
IncNode(L[c],l,m,idx,val);
}
else
{
if(!R[c])R[c]=nxt++;
IncNode(R[c],m+1,r,idx,val);
}
seg[c] = seg[L[c]] + seg[R[c]];
}
int FindKth(int c, int l, int r, ll k)
{
if(l==r)return r;
int m = (l+r)/2;
if(seg[L[c]] >= k)return FindKth(L[c],l,m,k);
return FindKth(R[c],m+1,r,k-seg[L[c]]);
}
int main()
{
ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
int Q;
cin>>Q;
int L = 0, R = 1e9;
while(Q--)
{
int type;
cin>>type;
if(type==1)
{
int x,y;
cin>>x>>y;
IncNode(1,L,R,x,y);
}
else
{
int k;
cin>>k;
cout<<FindKth(1,L,R,k)<<"\n";
}
}
}
Maintaining a prefix sum in each node is not practical. It would mean that every time you add a new node, you have to update the prefix sum in every node succeeding it in the tree. Instead, you need to maintain subtree sums: each node should contain the sum of Y-values for its own key and the keys of all descendants. Maintaining subtree sums when the tree is updated should be straightforward.
When you answer a query of type 2, at each node, you would descend into the left subtree if N is less than or equal to the subtree sum value S of the left child (I'm assuming N is 1-indexed). Otherwise, subtract S + 1 from N and descend into the right subtree.
By the way, if the entire set of X values is known in advance, then instead of a balanced BST, you could use a range tree or a binary indexed tree.
I have a question about this problem.
Question
You are given a sequence a[0], a 1],..., a[N-1], and set of range (l[i], r[i]) (0 <= i <= Q - 1).
Calculate mex(a[l[i]], a[l[i] + 1],..., a[r[i] - 1]) for all (l[i], r[i]).
The function mex is minimum excluded value.
Wikipedia Page of mex function
You can assume that N <= 100000, Q <= 100000, and a[i] <= 100000.
O(N * (r[i] - l[i]) log(r[i] - l[i]) ) algorithm is obvious, but it is not efficient.
My Current Approach
#include <bits/stdc++.h>
using namespace std;
int N, Q, a[100009], l, r;
int main() {
cin >> N >> Q;
for(int i = 0; i < N; i++) cin >> a[i];
for(int i = 0; i < Q; i++) {
cin >> l >> r;
set<int> s;
for(int j = l; j < r; j++) s.insert(a[i]);
int ret = 0;
while(s.count(ret)) ret++;
cout << ret << endl;
}
return 0;
}
Please tell me how to solve.
EDIT: O(N^2) is slow. Please tell me more fast algorithm.
Here's an O((Q + N) log N) solution:
Let's iterate over all positions in the array from left to right and store the last occurrences for each value in a segment tree (the segment tree should store the minimum in each node).
After adding the i-th number, we can answer all queries with the right border equal to i.
The answer is the smallest value x such that last[x] < l. We can find by going down the segment tree starting from the root (if the minimum in the left child is smaller than l, we go there. Otherwise, we go to the right child).
That's it.
Here is some pseudocode:
tree = new SegmentTree() // A minimum segment tree with -1 in each position
for i = 0 .. n - 1
tree.put(a[i], i)
for all queries with r = i
ans for this query = tree.findFirstSmaller(l)
The find smaller function goes like this:
int findFirstSmaller(node, value)
if node.isLeaf()
return node.position()
if node.leftChild.minimum < value
return findFirstSmaller(node.leftChild, value)
return findFirstSmaller(node.rightChild)
This solution is rather easy to code (all you need is a point update and the findFisrtSmaller function shown above and I'm sure that it's fast enough for the given constraints.
Let's process both our queries and our elements in a left-to-right manner, something like
for (int i = 0; i < N; ++i) {
// 1. Add a[i] to all internal data structures
// 2. Calculate answers for all queries q such that r[q] == i
}
Here we have O(N) iterations of this loop and we want to do both update of the data structure and query the answer for suffix of currently processed part in o(N) time.
Let's use the array contains[i][j] which has 1 if suffix starting at the position i contains number j and 0 otherwise. Consider also that we have calculated prefix sums for each contains[i] separately. In this case we could answer each particular suffix query in O(log N) time using binary search: we should just find the first zero in the corresponding contains[l[i]] array which is exactly the first position where the partial sum is equal to index, and not to index + 1. Unfortunately, such arrays would take O(N^2) space and need O(N^2) time for each update.
So, we have to optimize. Let's build a 2-dimensional range tree with "sum query" and "assignment" range operations. In such tree we can query sum on any sub-rectangle and assign the same value to all the elements of any sub-rectangle in O(log^2 N) time, which allows us to do the update in O(log^2 N) time and queries in O(log^3 N) time, giving the time complexity O(Nlog^2 N + Qlog^3 N). The space complexity O((N + Q)log^2 N) (and the same time for initialization of the arrays) is achieved using lazy initialization.
UP: Let's revise how the query works in range trees with "sum". For 1-dimensional tree (to not make this answer too long), it's something like this:
class Tree
{
int l, r; // begin and end of the interval represented by this vertex
int sum; // already calculated sum
int overriden; // value of override or special constant
Tree *left, *right; // pointers to children
}
// returns sum of the part of this subtree that lies between from and to
int Tree::get(int from, int to)
{
if (from > r || to < l) // no intersection
{
return 0;
}
if (l <= from && to <= r) // whole subtree lies within the interval
{
return sum;
}
if (overriden != NO_OVERRIDE) // should push override to children
{
left->overriden = right->overriden = overriden;
left->sum = right->sum = (r - l) / 2 * overriden;
overriden = NO_OVERRIDE;
}
return left->get(from, to) + right->get(from, to); // split to 2 queries
}
Given that in our particular case all queries to the tree are prefix sum queries, from is always equal to 0, so, one of the calls to children always return a trivial answer (0 or already computed sum). So, instead of doing O(log N) queries to the 2-dimensional tree in the binary search algorithm, we could implement an ad-hoc procedure for search, very similar to this get query. It should first get the value of the left child (which takes O(1) since it's already calculated), then check if the node we're looking for is to the left (this sum is less than number of leafs in the left subtree) and go to the left or to the right based on this information. This approach will further optimize the query to O(log^2 N) time (since it's one tree operation now), giving the resulting complexity of O((N + Q)log^2 N)) both time and space.
Not sure this solution is fast enough for both Q and N up to 10^5, but it may probably be further optimized.
I have the following problem:
I have a line with numbers that I have to read. The first number from the line is the amount of operations I will have to perform on the rest of the sequence.
There are two types of operations I will have to do:
Remove- we remove the number after the current one, then we move forward X steps in the sequence, where X=value of removed element)
Insert- we insert a new number after the current one with a value of (current element's value-1), then we move forward by X steps in the sequence where X = value of the current element (i.e not the new one)
We do "Remove" if the current number's value is even, and "Insert" if the value is odd.
After the amount of operations we have to print the whole sequence, starting from the number we ended the operations.
Properly working example:
Input: 3 1 2 3
Output:0 0 3 1
3 is the first number and it becomes the OperCount value.
First operation:
Sequence: 1 2 3, first element: 1
1 is odd, so we insert 0 (currNum's value-1)
We move forward by 1(currNum's value)
Output sequence: 1 0 2 3, current position: 0
Second operation:
0 is even so we remove the next value (2)
Move forward by the removed element's value(2):
From 0 to 3
From 3 to 1
Output sequence: 1 0 3, current position: 1
Third operation:
1 is even, so once again we insert new element with value of 0
Move by current element's value(1), onto the created 0.
Output sequence: 1 0 0 3, current position: first 0
Now here is the deal, we have reached the final condition and now we have to print whole sequence, but starting from the current position.
Final Output:
0 0 3 1
I have the working version, but its using the linked list, and because of that, it doesn't pass all the tests. Linked list traversal is too long, thats why I need to use the binary tree, but I kinda don't know how to start with it. I would appreciate any help.
First redefine the operations to put most (but not all) the work into a container object: We want 4 operations supported by the container object:
1) Construct from a [first,limit) pair of input random access iterators
2) insert(K) finds the value X at position K, inserts a X-1 after it and returns X
3) remove(K) finds the value X at position K, deletes it and returns X
4) size() reports the size of the contents
The work outside the container would just keep track of incremental changes to K:
K += insert(K); K %= size();
or
K += remove(K); K %= size();
Notice the importance of a sequence point before reading size()
The container data is just a root pointing to a node.
struct node {
unsigned weight;
unsigned value;
node* child[2];
unsigned cweight(unsigned s)
{ return child[s] ? child[s]->weight : 0; }
};
The container member functions insert and remove would be wrappers around recursive static insert and remove functions that each take a node*& in addition to K.
The first thing each of either recursive insert or remove must do is:
if (K<cweight(0)) recurse passing (child[0], K);
else if ((K-=cweight(0))>0) recurse passing (child[1], K-1);
else do the basic operation (read the result, create or destroy a node)
After doing that, you fix the weight at each level up the recursive call stack (starting where you did the work for insert or the level above that for remove).
After incrementing or decrementing the weight at the current level, you may need to re-balance, remembering which side you recursively changed. Insert is simpler: If child[s]->weight*4 >= This->weight*3 you need to re-balance. The re-balance is one of the two basic tree rotations and you select which one based on whether child[s]->cweight(s)<child[s]->cweight(1-s). rebalance for remove is the same idea but different details.
This system does a lot more worst case re-balancing than a red-black or AVL tree. But still is entirely logN. Maybe there is a better algorithm for a weight-semi-balanced tree. But I couldn't find that with a few google searches, nor even the real name of nor other details about what I just arbitrarily called a "weight-semi-balanced tree".
Getting the nearly 2X speed up of strangely mixing the read operation into the insert and remove operations, means you will need yet another recursive version of insert that doesn't mix in the read, and is used for the portion of the path below the point you read from (so it does the same recursive weight changes and re-balancing but with different input and output).
Given random access input iterators, the construction is a more trivial recursive function. Grab the middle item from the range of iterators and make a node of it with the total weight of the whole range, then recursively pass the sub ranges before and after the middle one to the same recursive function to create child subtree.
I haven't tested any of this, but I think the following is all the code you need for remove as well as the rebalance needed for both insert and remove. Functions taking node*& are static member function of tree and those not taking node*& are non static.
unsigned tree::remove(unsigned K)
{
node* removed = remove(root, K);
unsigned result = removed->value;
delete removed;
return result;
}
// static
node* tree::remove( node*& There, unsigned K) // Find, unlink and return the K'th node
{
node* result;
node* This = There;
unsigned s=0; // Guess at child NOT removed from
This->weight -= 1;
if ( K < This->cweight(0) )
{
s = 1;
result = remove( This->child[0], K );
}
else
{
K -= This->cweight(0);
if ( K > 0 )
{
result = remove( This->child[1], K-1 );
}
else if ( ! This->child[1] )
{
// remove This replacing it with child[0]
There = This->child[0];
return This; // Nothing here/below needs a re-balance check
}
else
{
// remove This replacing it with the leftmost descendent of child[1]
result = This;
There = This = remove( This->child[1], 0 );
This->child[0] = Result->child[0];
This->child[1] = Result->child[1];
This->weight = Result->weight;
}
}
rebalance( There, s );
return result;
}
// static
void tree::rebalance( node*& There, unsigned s)
{
node* This = There;
node* c = This->child[s];
if ( c && c->weight*4 >= This->weight*3 )
{
node* b = c->child[s];
node* d = c->child[1-s];
unsigned bweight = b ? b->weight : 0;
if ( d && bweight < d->weight )
{
// inner rotate: d becomes top of subtree
This->child[s] = d->child[1-s];
c->child[1-s] = d->child[s];
There = d;
d->child[s] = c;
d->child[1-s] = This;
d->weight = This->weight;
c->weight = bweight + c->cweight(1-s) + 1;
This->weight -= c->weight + 1;
}
else
{
// outer rotate: c becomes top of subtree
There = c;
c->child[1-s] = This;
c->weight = This->weight;
This->child[s] = d;
This->weight -= bweight+1;
}
}
}
You can use std::set which is implemented as binary tree. It's constructor allows construction from the iterator, thus you shouldn't have problem transforming list to the set.
I've been implementing selection sort problems for class and one of the assignments is to find the kth smallest element in the array using a minimum heap. I know the procedure is:
heapify the array
delete the minimum (root) k times
return kth smallest element in the group
I don't have any problems creating a minimum heap. I'm just not sure how to go about properly deleting the minimum k times and successfully return the kth smallest element in the group. Here's what I have so far:
bool Example::min_heap_select(long k, long & kth_smallest) const {
//duplicate test group (thanks, const!)
Example test = Example(*this);
//variable delcaration and initlization
int n = test._total ;
int i;
//Heapifying stage (THIS WORKS CORRECTLY)
for (i = n/2; i >= 0; i--) {
//allows for heap construction
test.percolate_down_protected(i, n);
}//for
//Delete min phase (THIS DOESN'T WORK)
for(i = n-1; i >= (n-k+1); i--) {
//deletes the min by swapping elements
int tmp = test._group[0];
test._group[0] = test._group[i];
test._group[i] = tmp;
//resumes perc down
test.percolate_down_protected(0, i);
}//for
//IDK WHAT TO RETURN
kth_smallest = test._group[0];
void Example::percolate_down_protected(long i, long n) {
//variable declaration and initlization:
int currPos, child, r_child, tmp;
currPos = i;
tmp = _group[i];
child = left_child(i);
//set a sentinel and begin loop (no recursion allowed)
while (child < n) {
//calculates the right child's position
r_child = child + 1;
//we'll set the child to index of greater than right and left children
if ((r_child > n ) && (_group[r_child] >= _group[child])) {
child = r_child;
}
//find the correct spot
if (tmp <= _group [child]) {
break;
}
//make sure the smaller child is beneath the parent
_group[currPos] = _group[child];
//shift the tree down
currPos = child;
child = left_child(currPos);
}
//put tmp where it belongs
_group[currPos] = tmp;
}
As I stated before, the minimum heap part works correctly. I understand what I what to do- it seems easy to delete the root k times but then after that what index in the array do I return... 0? This almost works- it doesn't worth with k = n or k = 1.Would the kth smallest element be in the Any help would be much appreciated!
The only array index which is meaningful to the user is zero, which is the minimum element. So, after removing k elements, the k'th smallest element will be at zero.
Probably you should destroy the heap and return the value rather than asking the user to concern themself with the heap itself… but I don't know the details of the assignment.
Note that the C++ Standard Library has algorithms to help with this: make_heap, pop_heap, and nth_element.
I am not providing a detailed answer, just explaining the key points in getting k smallest elements in a min-heap ordered tree. The approach uses skip lists.
First form a skip list of nodes of the tree with just one element the node corresponding to the root of the heap. the 1st minimum element is just the value stored at this node.
Now delete this node and insert its child nodes in the right position such that to maintain the order of values. This steps takes O(logk) time.
The second minimum value is just then the value at first node in this skip list.
Repeat the above steps until you get all the k minimum elements. The overall time complexity will be log(2)+log(3)+log(4)+... log(k) = O(k.logk). Forming a heap takes time n, so overall time complexity is O(n+klogk).
There is one more approach without making a heap that is Quickselect, which has an average time complexity of O(n) but worst case as O(n^2).
The striking difference between the two approaches is that the first approach gives all the k elements the minimum upto the kth minimum, while quickSelect gives only the kth minimum element.
Memory wise the former approach uses O(n) extra space which quickSelect uses O(1).
The code below will print me the highest frequency it can find in my hash table (of which is a bunch of linked lists) 10 times. I need my code to print the top 10 frequencies in my hash table. I do not know how to do this (code examples would be great, plain english logic/pseudocode is just as great).
I create a temporary hashing list called 'tmp' which is pointing to my hash table 'hashtable'
A while loop then goes through the list and looks for the highest frequency, which is an int 'tmp->freq'
The loop will continue this process of duplicating the highest frequency it finds with the variable 'topfreq' until it reaches the end of the linked lists on the the hash table.
My 'node' is a struct comprising of the variables 'freq' (int) and 'word' (128 char). When the loop has nothing else to search for it prints these two values on screen.
The problem is, I can't wrap my head around figuring out how to find the next lowest number from the number I've just found (and this can include another node with the same freq value, so I have to check that the word is not the same too).
void toptenwords()
{
int topfreq = 0;
int minfreq = 0;
char topword[SIZEOFWORD];
for(int p = 0; p < 10; p++) // We need the top 10 frequencies... so we do this 10 times
{
for(int m = 0; m < HASHTABLESIZE; m++) // Go through the entire hast table
{
node* tmp;
tmp = hashtable[m];
while(tmp != NULL) // Walk through the entire linked list
{
if(tmp->freq > topfreq) // If the freqency on hand is larger that the one found, store...
{
topfreq = tmp->freq;
strcpy(topword, tmp->word);
}
tmp = tmp->next;
}
}
cout << topfreq << "\t" << topword << endl;
}
}
Any and all help would be GREATLY appreciated :)
Keep an array of 10 node pointers, and insert each node into the array, maintaining the array in sorted order. The eleventh node in the array is overwritten on each iteration and contains junk.
void toptenwords()
{
int topfreq = 0;
int minfreq = 0;
node *topwords[11];
int current_topwords = 0;
for(int m = 0; m < HASHTABLESIZE; m++) // Go through the entire hast table
{
node* tmp;
tmp = hashtable[m];
while(tmp != NULL) // Walk through the entire linked list
{
topwords[current_topwords] = tmp;
current_topwords++;
for(int i = current_topwords - 1; i > 0; i--)
{
if(topwords[i]->freq > topwords[i - 1]->freq)
{
node *temp = topwords[i - 1];
topwords[i - 1] = topwords[i];
topwords[i] = temp;
}
else break;
}
if(current_topwords > 10) current_topwords = 10;
tmp = tmp->next;
}
}
}
I would maintain a set of words already used and change the inner-most if condition to test for frequency greater than previous top frequency AND tmp->word not in list of words already used.
When iterating over the hash table (and then over each linked list contained therein) keep a self balancing binary tree (std::set) as a "result" list. As you come across each frequency, insert it into the list, then truncate the list if it has more than 10 entries. When you finish, you'll have a set (sorted list) of the top ten frequencies, which you can manipulate as you desire.
There may be perform gains to be had by using sets instead of linked lists in the hash table itself, but you can work that out for yourself.
Step 1 (Inefficient):
Move the vector into a sorted container via insertion sort, but insert into a container (e.g. linkedlist or vector) of size 10, and drop any elements that fall off the bottom of the list.
Step 2 (Efficient):
Same as step 1, but keep track of the size of the item at the bottom of the list, and skip the insertion step entirely if the current item is too small.
Suppose there are n words in total, and we need the most-frequent k words (here, k = 10).
If n is much larger than k, the most efficient way I know of is to maintain a min-heap (i.e. the top element has the minimum frequency of all elements in the heap). On each iteration, you insert the next frequency into the heap, and if the heap now contains k+1 elements, you remove the smallest. This way, the heap is maintained at a size of k elements throughout, containing at any time the k highest-frequency elements seen so far. At the end of processing, read out the k highest-frequency elements in increasing order.
Time complexity: For each of n words, we do two things: insert into a heap of size at most k, and remove the minimum element. Each operation costs O(log k) time, so the entire loop takes O(nlog k) time. Finally, we read out the k elements from a heap of size at most k, taking O(klog k) time, for a total time of O((n+k)log k). Since we know that k < n, O(klog k) is at worst O(nlog k), so this can be simplified to just O(nlog k).
A hash table containing linked lists of words seems like a peculiar data structure to use if the goal is to accumulate are word frequencies.
Nonetheless, the efficient way to get the ten highest frequency nodes is to insert each into a priority queue/heap, such as the Fibonacci heap, which has O(1) insertion time and O(n) deletion time. Assuming that iteration over the hash table table is fast, this method has a runtime which is O(n×O(1) + 10×O(n)) ≡ O(n).
The absolute fastest way to do this would be to use a SoftHeap. Using a SoftHeap, you can find the top 10 items in O(n) time whereas every other solution posted here would take O(n lg n) time.
http://en.wikipedia.org/wiki/Soft_heap
This wikipedia article shows how to find the median in O(n) time using a softheap, and the top 10 is simply a subset of the median problem. You could then sort the items that were in the top 10 if you needed them in order, and since you're always at most sorting 10 items, it's still O(n) time.