I am implementing a variation of the observer pattern in C++. However, because of the nature of the nature of my project, it CANNOT USE ANY VIRTUAL MEMBER FUNCTIONS, as the aggregate overhead from vtable lookups and cache misses is unacceptable.
Were I to create interfaces via virtual member functions, I would trivially write the following:
template <class MessageType>
class MessageSubscriber {
public:
virtual void OnMessage(MessageType *message) = 0;
};
template <class MessageType>
class MessagePublisher {
public:
void AddSubscriber(MessageSubscriber<MessageType> *subscriber) {
subscribers.push_back(subscriber);
}
protected:
void Publish(MessageType *message) {
for (auto subscriber : subscribers)
subscriber.OnMessage(message);
}
private:
std::vector<MessageSubscriber<MessageType>*> subscribers;
};
Then, for example, I could have classes that implement MessageSubscriber for some MessageType, SafetyMessage, like so:
class SafetyMessageSubscriberA : public MessageSubscriber<SafetyMessage> {
public:
virtual void OnMessage(SafetyMessage *message) override {
/* process message */
}
};
class SafetyMessageSubscriberB : public MessageSubscriber<SafetyMessage> {
public:
virtual void OnMessage(SafetyMessage *message) override {
/* process message */
}
};
class SafetyMessagePublisher : public MessagePublisher<SafetyMessage> {
public:
void Run {
/* manipulate message data */
this->Publish(&message);
}
private:
SafetyMessage message;
};
This would get the job done, but, as emphasized earlier, the vtable lookup overhead is unacceptable in the context of the application despite the polymorphic convenience that it provides and is also needed for the application. Naturally, then, I tried several approaches centering around the static polymorphism that can be leveraged through templates.
I first tried to utilize CTRP, but it fails in this case because the pointers contained in MessagePublisher::subscribers must point to the same base class when MessagePublisher::Publish(MessageType *message) is called. Ergo, you could not have some CTRP pattern along the lines of MessageSubscriber<SafetyMessageSubscriberA>, MessageSubscriber<SafetyMessageSubscriberB>, as the template arguments would need to be the same for both objects to legally be allowed in MessagePublisher::subscribers.
My most recent attempt at the problem has lead me to try some variations of member function template specialization, albeit unsuccessfully. I have tried the following variation on the pattern interface:
class MessageSubscriber {
public:
template <class MessageType>
void OnMessage(MessageType *message);
};
class MessagePublisher {
public:
template <class MessageType>
void Publish(MessageType *message) {
for (auto subscriber: subscribers)
subscriber->OnMessage<MessageType>(message);
}
private:
std::vector<MessageSubscriber*> subscribers;
};
template<class MessageType>
void MessageSubscriber::OnMessageOnMessage(MessageType *message) {
/* "interface" call; do nothing */
}
With implementations such as:
class SafetyMessageSubscriberA : public MessageSubscriber {
public:
// declare for legal overload
template <class MessageType>
void OnMessage(MessageType *message);
};
class SafetyMessageSubscriberB : public MessageSubscriber {
public:
// declare for legal overload
template <class MessageType>
void OnMessage(MessageType *message);
};
template<>
void SafetyMessageSubscriberA::OnMessage<SafetyMessage*>OnMessage(SafetyMessage *message) {
/* process message */
}
template<>
void SafetyMessageSubscriberB::OnMessage<SafetyMessage*>OnMessage(SafetyMessage *message) {
/* process message */
}
When I tried this, however, MessagePublisher::Publish(SafetyMessage *message) would always call the generic MessageSubscriber::OnMessage(MessageType *m)implementation for the base class, not the ones that were implemented for the derived classes specific to SafetyMessage*.
Am I incorrectly specializing the function templates as intended, or is there another more efficient solution? I apologize in advance for any imprecise wording as it relates to the concepts of overloading and member template specialization.
You can cut out one level of indirection by using C-style function pointers in place of virtual functions. Thus, in the declaration of your base class you might have something like:
void (*) OnMessage (BaseClass *self, MessageType *message);
You then initialise this instance variable in each of your derived classes' constructors to point to the appropriate static member function, which in turn allows you to call it via a single indirect call (as opposed to two if you went via the vtable).
Finally, sadly, you will need to cast self in each of the target functions in the derived classes, which is the price you pay for all this trickery. Either that or cast the function signature when assigning the function pointer. I will post a fuller example if interested - let me know.
Suppose we have an abstract Base class that is inherited:
class Base
{
protected:
Base() {}
virtual ~Base() {}
virtual void on_event_foo(int) {}
virtual void on_event_bar(int) {}
};
struct Concrete : public Base
{
virtual void on_event_foo(int value) {/*do some stuff with #value*/}
};
Is it a way to know (at compile time would be the best) the virtual functions from Base that was overridden (with some code in constructor, or with a special pattern)?
My purpose is to implement a wrapper for a library that use some callbacks ; and if I can do check the overriden functions, I will create only the callbacks the user wants.
I want the user can choose the function he wants to override. Then in my code, I will create callbacks only for the overridden functions. The pure virtual functions are not a solution, because they cannot permit to create a concrete class without overriding all of them.
In the constructor of Base, for now, I connect a lot of static callback functions of Base within a C API. In those functions, I call the corresponding member function. For example, the callback function is static Base::EventFoo(/* ... */) that calls inside object->on_event_foo(/* .. */). This is because I cannot give a member function as a callback to a C library.
But creating too much callbacks make my wrapper slower. So, I want to connect only the callback that the user wants, ie knowing the functions there are overriden by him.
Disclaimer: I've been notified that this behavior is unspecified since it relies on comparing virtual member function pointers:
[expr.eq] ... if either is a pointer to a virtual member function, the result is unspecified.
Wording is present in all C++ standards (that I could check). Your results may vary.
If you are willing to change a few things, you can use the curiously recurring template pattern to determine if the function is overridden
#include <iostream>
template <class Derived>
struct Base
{
virtual void on_event() {}
void raise_event()
{
if (&Derived::on_event == &Base::on_event)
std::cout << "not overridden" << std::endl;
else
std::cout << "overridden" << std::endl;
}
};
struct Concrete1 : Base<Concrete1>
{
virtual void on_event() override {}
};
struct Concrete2 : Base<Concrete2>
{
// no override
};
int main()
{
Concrete1 c1;
Concrete2 c2;
c1.raise_event(); // prints overridden
c2.raise_event(); // prints not overridden
return 0;
}
The statement &Derived::on_event == &Base::on_event should be resolved at compile-time (if that's what you're worried about) and the if can be optimized away.
Though I agree with others' opinions that this seems like a poor pattern. It would be much simpler to have the base class have empty event handlers like you already have.
Don't use virtual methods at all. If all you want is given some concrete type, Concrete, to hook it up to a bunch of callbacks based on the presence of member functions then we can use templates.
For a given type and function name, we can determine if &T::func exists at compile time. If it does, we add that callback. So we end up with a whole bunch of things like:
template <class T>
void setup_cbs(T& object) {
T* ptr_to_object = ...; // store somewhere
static_if<has_on_event_foo<T>>(
[](auto ptr){
add_event_foo_callback(ptr, [](void* p, int i) {
using U = decltype(ptr);
static_cast<U>(p)->on_event_foo(i);
})
}),
[](auto ){}
)(ptr_to_object);
I'm assuming the callback adder takes a pointer and a callback. You will separately have to figure out how to store the pointers, but that seems easier.
With modern c++ you can do this:
if constexpr (!std::is_same_v<decltype(&Derived::foo), decltype(&Base::foo)>) {
std::cout << "overrided" << std::endl;
}
You may want to define a macro like this:
#define OVERRIDED(B, D, name) !std::is_same_v<decltype(&B::name), decltype(&D::name)>
In the following exceedingly abbreviated classes I would like to define in the base a method (ProcessLines) that would iterate over a set of database records, passing each record as a parameter to a function that is only defined in the child class. Obviously the Base is a virtual class that will never be instantiated on its own.
Class Base {
public:
typedef ProcLineFunc( Long *Line );
void ProcessLines( ProcLineFunc pf);
}
Class Child{
void DoWork( Long *Line) { //do something}
}
I'm not sure how to implement this. If I redeclare ProcessLines in the child and just call the parent method, I get the same error message as if I call ProcessLines in the code that creates the child.
Child c(//something);
c.ProcessLines(c.DoWork);
Gives me a compiler message:
[BCC32 Error] main.cpp(67): E2034 Cannot convert 'bool (* (_closure )(long *))(long )' >to 'int ()(long *)'
Full parser context
main.cpp(56): class Add2Chan
main.cpp(78): decision to instantiate: bool Add2Chan::ProcessByLines()
--- Resetting parser context for instantiation...
main.cpp(67): parsing: bool Add2Chan::ProcessByLines()
I'm fairly new to c++ and the E2034 error message scares the daylights out of me.
Please help. I used a typedef so that I can, in my child classes call ProcessLines multiple times, passing in different functions as I go.
Normally you would do this sort of thing with a protected, pure virtual function:
class Base {
public:
ProcessLines() {
//Logic to process lines here, obviously psuedo-code
while(moreLines) {
ProcessLine(line);
}
}
protected:
virtual void ProcessLine(const Line& line) = 0;
}
class Child : public Base {
protected:
void ProcessLine(const Line& line) { //Logic to process the line for this type }
};
class DifferentChild : public Base {
protected:
void ProcessLine(const Line& line) { //Logic to process the line for DifferentChild }
};
I think this is the kind of thing you're looking for. It appears to me like you're trying to implement polymorphism in an odd way, but this is the normal way to do it in C++.
Instead of using pointers to functions, use pointers to objects. Accept the limitation that your function is going to be called DoWork and nothing else, and there can only be one such function in each class. This is not a bad limitation. Declare the (pure virtual) function in a class (which is called an interface), and derive classes from it (they are said to implement an interface).
struct DoingWork
{
virtual void DoWork(long *Line) = 0; // does some work on a list
};
struct DoingGreatWork: DoingWork
{
virtual void DoWork(long *Line) {printf("Great work\n");}
};
struct DoingSlightWork: DoingWork
{
virtual void DoWork(long *Line) {printf("Slight work\n");}
};
Using this example:
class Base {
public:
void ProcessLines(DoingWork& object) {
//Logic to process lines here
while(moreLines) {
object.DoWork(line);
}
}
};
class Whatever // no need to derive from Base
{
void DoStuff()
{
Base object;
object.ProcessLines(DoingGreatWork());
object.ProcessLines(DoingSlightWork());
}
}
If the working objects have to have access to the calling object, initialize them like this:
class Whatever // no need to derive from Base
{
struct DoingElaborateWork: DoingWork
{
Whatever& caller;
DoingElaborateWork(Whatever& caller): caller(caller) {}
virtual void DoWork(long *Line)
{
printf("Doing work requested by %s\n", caller.name());
}
};
void DoStuff()
{
Base object;
object.ProcessLines(DoingElaborateWork(*this));
}
const char* name() {return "Whatever";}
}
P.S. They say that "in C++03 functions are second-class citizens" because you cannot do with functions what you can do with objects (like this solution i provide). I heard that in C++11 functions are much improved, but i am not sure about the details.
Since you are doing this in C++Builder, you can utilize its __closure extension to do exactly what you asked for (some portions of the VCL do exactly this for their own callbacks):
class Base
{
public:
virtual ~Base() {}
typedef void (__closure *ProcLineFunc)( Long *Line );
void ProcessLines( ProcLineFunc pf);
};
class Child : public Base
{
public:
void DoWork( Long *Line) { //do something}
};
Child c(...);
c.ProcessLines(c.DoWork);
I've built a small, limited-scope, cross-platform UI library in C++. It uses the following classes to handle UI callbacks:
// Base class for templated __Callback class to allow for passing __Callback
// objects as parameters, storing in containers, etc. (as Callback*)
class Callback
{
public:
virtual void execute() = 0;
virtual ~Callback() { }
protected:
Callback() { }
};
As the comment describes, this is the base class for callbacks - which allows for passing them as arguments and storing them inside UI widgets such that the proper callback can be executed (when, for example, a user clicks a button).
// C++ has no callbacks (in the sense of an action [method] of a
// target [object]), so we had to roll our own. This class can be used
// directly, but the NEW_CALLBACK macro is easier.
template <class __TargetType>
class __Callback : public Callback
{
public:
typedef __TargetType TargetType;
typedef void (TargetType::*ActionType)(void);
virtual void execute()
{
(this->__target->*this->__action)();
}
__Callback(TargetType* target_, ActionType action_) :
Callback(), __target(target_), __action(action_) { }
virtual ~__Callback() { }
private:
// target object for the callback
TargetType* __target;
// action (method) of the target that will be called
ActionType __action;
};
This templated class is the meat of the callback paradigm. It stores a pointer to an object and a pointer to a member function, such that the member function can be called on the target object at a later time.
#define NEW_CALLBACK(class_, obj_, act_) \
new __Callback<class_>(obj_, &class_::act_)
This macro just makes it a little easier to create a templated __Callback object.
This has been working great for a long while! A button with a callback might be instantiated like:
MyClass* obj = new MyClass();
Button* btn = new Button("Title", NEW_CALLBACK(MyClass, obj, btnClicked));
This would create a button, to be placed in a window or other container at a later time, and when clicked it will call obj->btnClicked().
Now, my question (sorry for the lengthy setup, I don't think I could pare it down any more than this). A case has arisen where I need to copy a Callback* object. Of course, since it's just a pointer to the base class, I can't determine the type of the templated derived class.
How would one go about copying an arbitrary Callback object, with the copy pointing to the same target and action as the original? Or, is there an entirely different approach to this callback problem that I should be taking (though I would prefer not to change it too much)?
Thanks all!
I don't know if there's a better approach that you should take, but this seems like an ideal use for a clone method.
You simply need to define a copy constructor in your __Callback template, define a pure virtual Clone method in your base class, and then implement that virtual method in your template (making use of the copy constructor that you've created)
For example:
class Callback
{
public:
...
virtual Callback* Clone()=0;
};
template <class __TargetType>
class __Callback : public Callback
{
public:
...
__Callback(const __Callback& other) :
__target(other.target_), __action(other.action_) { }
virtual Callback* Clone()
{
return new __Callback(this);
}
}
Use clone as a replacement for virtual constructors. Notice the
co-variant return types that make this really work. e.g.
struct Callback {
virtual Callback* clone() const;
};
template<...>
struct Callback_impl {
virtual Callback_impl* clone() const;
};
You should also think about shared_ptr for lifetime management. All
this seems a little fragile.
To me it looks like you want std::function . It is polymorphic, type-safe and works with pointers to member functions through std::mem_fn.
Is it possible in C++ to have a member function that is both static and virtual? Apparently, there isn't a straightforward way to do it (static virtual member(); is a compile error), but is there at least a way to achieve the same effect?
I.E:
struct Object
{
struct TypeInformation;
static virtual const TypeInformation &GetTypeInformation() const;
};
struct SomeObject : public Object
{
static virtual const TypeInformation &GetTypeInformation() const;
};
It makes sense to use GetTypeInformation() both on an instance (object->GetTypeInformation()) and on a class (SomeObject::GetTypeInformation()), which can be useful for comparisons and vital for templates.
The only ways I can think of involves writing two functions / a function and a constant, per class, or use macros.
Any other solutions?
No, there's no way to do it, since what would happen when you called Object::GetTypeInformation()? It can't know which derived class version to call since there's no object associated with it.
You'll have to make it a non-static virtual function to work properly; if you also want to be able to call a specific derived class's version non-virtually without an object instance, you'll have to provide a second redunduant static non-virtual version as well.
Many say it is not possible, I would go one step further and say it is not meaningfull.
A static member is something that does not relate to any instance, only to the class.
A virtual member is something that does not relate directly to any class, only to an instance.
So a static virtual member would be something that does not relate to any instance or any class.
I ran into this problem the other day: I had some classes full of static methods but I wanted to use inheritance and virtual methods and reduce code repetition. My solution was:
Instead of using static methods, use a singleton with virtual methods.
In other words, each class should contain a static method that you call to get a pointer to a single, shared instance of the class. You can make the true constructors private or protected so that outside code can't misuse it by creating additional instances.
In practice, using a singleton is a lot like using static methods except that you can take advantage of inheritance and virtual methods.
While Alsk has already given a pretty detailed answer, I'd like to add an alternative, since I think his enhanced implementation is overcomplicated.
We start with an abstract base class, that provides the interface for all the object types:
class Object
{
public:
virtual char* GetClassName() = 0;
};
Now we need an actual implementation. But to avoid having to write both the static and the virtual methods, we will have our actual object classes inherit the virtual methods. This does obviously only work, if the base class knows how to access the static member function. So we need to use a template and pass the actual objects class name to it:
template<class ObjectType>
class ObjectImpl : public Object
{
public:
virtual char* GetClassName()
{
return ObjectType::GetClassNameStatic();
}
};
Finally we need to implement our real object(s). Here we only need to implement the static member function, the virtual member functions will be inherited from the ObjectImpl template class, instantiated with the name of the derived class, so it will access it's static members.
class MyObject : public ObjectImpl<MyObject>
{
public:
static char* GetClassNameStatic()
{
return "MyObject";
}
};
class YourObject : public ObjectImpl<YourObject>
{
public:
static char* GetClassNameStatic()
{
return "YourObject";
}
};
Let's add some code to test:
char* GetObjectClassName(Object* object)
{
return object->GetClassName();
}
int main()
{
MyObject myObject;
YourObject yourObject;
printf("%s\n", MyObject::GetClassNameStatic());
printf("%s\n", myObject.GetClassName());
printf("%s\n", GetObjectClassName(&myObject));
printf("%s\n", YourObject::GetClassNameStatic());
printf("%s\n", yourObject.GetClassName());
printf("%s\n", GetObjectClassName(&yourObject));
return 0;
}
Addendum (Jan 12th 2019):
Instead of using the GetClassNameStatic() function, you can also define the the class name as a static member, even "inline", which IIRC works since C++11 (don't get scared by all the modifiers :)):
class MyObject : public ObjectImpl<MyObject>
{
public:
// Access this from the template class as `ObjectType::s_ClassName`
static inline const char* const s_ClassName = "MyObject";
// ...
};
It is possible!
But what exactly is possible, let's narrow down. People often want some kind of "static virtual function" because of duplication of code needed for being able to call the same function through static call "SomeDerivedClass::myfunction()" and polymorphic call "base_class_pointer->myfunction()". "Legal" method for allowing such functionality is duplication of function definitions:
class Object
{
public:
static string getTypeInformationStatic() { return "base class";}
virtual string getTypeInformation() { return getTypeInformationStatic(); }
};
class Foo: public Object
{
public:
static string getTypeInformationStatic() { return "derived class";}
virtual string getTypeInformation() { return getTypeInformationStatic(); }
};
What if base class has a great number of static functions and derived class has to override every of them and one forgot to provide a duplicating definition for virtual function. Right, we'll get some strange error during runtime which is hard to track down. Cause duplication of code is a bad thing. The following tries to resolve this problem (and I want to tell beforehand that it is completely type-safe and doesn't contain any black magic like typeid's or dynamic_cast's :)
So, we want to provide only one definition of getTypeInformation() per derived class and it is obvious that it has to be a definition of static function because it is not possible to call "SomeDerivedClass::getTypeInformation()" if getTypeInformation() is virtual. How can we call static function of derived class through pointer to base class? It is not possible with vtable because vtable stores pointers only to virtual functions and since we decided not to use virtual functions, we cannot modify vtable for our benefit. Then, to be able to access static function for derived class through pointer to base class we have to store somehow the type of an object within its base class. One approach is to make base class templatized using "curiously recurring template pattern" but it is not appropriate here and we'll use a technique called "type erasure":
class TypeKeeper
{
public:
virtual string getTypeInformation() = 0;
};
template<class T>
class TypeKeeperImpl: public TypeKeeper
{
public:
virtual string getTypeInformation() { return T::getTypeInformationStatic(); }
};
Now we can store the type of an object within base class "Object" with a variable "keeper":
class Object
{
public:
Object(){}
boost::scoped_ptr<TypeKeeper> keeper;
//not virtual
string getTypeInformation() const
{ return keeper? keeper->getTypeInformation(): string("base class"); }
};
In a derived class keeper must be initialized during construction:
class Foo: public Object
{
public:
Foo() { keeper.reset(new TypeKeeperImpl<Foo>()); }
//note the name of the function
static string getTypeInformationStatic()
{ return "class for proving static virtual functions concept"; }
};
Let's add syntactic sugar:
template<class T>
void override_static_functions(T* t)
{ t->keeper.reset(new TypeKeeperImpl<T>()); }
#define OVERRIDE_STATIC_FUNCTIONS override_static_functions(this)
Now declarations of descendants look like:
class Foo: public Object
{
public:
Foo() { OVERRIDE_STATIC_FUNCTIONS; }
static string getTypeInformationStatic()
{ return "class for proving static virtual functions concept"; }
};
class Bar: public Foo
{
public:
Bar() { OVERRIDE_STATIC_FUNCTIONS; }
static string getTypeInformationStatic()
{ return "another class for the same reason"; }
};
usage:
Object* obj = new Foo();
cout << obj->getTypeInformation() << endl; //calls Foo::getTypeInformationStatic()
obj = new Bar();
cout << obj->getTypeInformation() << endl; //calls Bar::getTypeInformationStatic()
Foo* foo = new Bar();
cout << foo->getTypeInformation() << endl; //calls Bar::getTypeInformationStatic()
Foo::getTypeInformation(); //compile-time error
Foo::getTypeInformationStatic(); //calls Foo::getTypeInformationStatic()
Bar::getTypeInformationStatic(); //calls Bar::getTypeInformationStatic()
Advantages:
less duplication of code (but we
have to call
OVERRIDE_STATIC_FUNCTIONS in every
constructor)
Disadvantages:
OVERRIDE_STATIC_FUNCTIONS in every
constructor
memory and performance
overhead
increased complexity
Open issues:
1) there are different names for static and virtual functions
how to solve ambiguity here?
class Foo
{
public:
static void f(bool f=true) { cout << "static";}
virtual void f() { cout << "virtual";}
};
//somewhere
Foo::f(); //calls static f(), no ambiguity
ptr_to_foo->f(); //ambiguity
2) how to implicitly call OVERRIDE_STATIC_FUNCTIONS inside every constructor?
It is possible. Make two functions: static and virtual
struct Object{
struct TypeInformation;
static const TypeInformation &GetTypeInformationStatic() const
{
return GetTypeInformationMain1();
}
virtual const TypeInformation &GetTypeInformation() const
{
return GetTypeInformationMain1();
}
protected:
static const TypeInformation &GetTypeInformationMain1(); // Main function
};
struct SomeObject : public Object {
static const TypeInformation &GetTypeInformationStatic() const
{
return GetTypeInformationMain2();
}
virtual const TypeInformation &GetTypeInformation() const
{
return GetTypeInformationMain2();
}
protected:
static const TypeInformation &GetTypeInformationMain2(); // Main function
};
No, this is not possible, because static member functions lack a this pointer. And static members (both functions and variables) are not really class members per-se. They just happen to be invoked by ClassName::member, and adhere to the class access specifiers. Their storage is defined somewhere outside the class; storage is not created each time you instantiated an object of the class. Pointers to class members are special in semantics and syntax. A pointer to a static member is a normal pointer in all regards.
virtual functions in a class needs the this pointer, and is very coupled to the class, hence they can't be static.
It's not possible, but that's just because an omission. It isn't something that "doesn't make sense" as a lot of people seem to claim. To be clear, I'm talking about something like this:
struct Base {
static virtual void sayMyName() {
cout << "Base\n";
}
};
struct Derived : public Base {
static void sayMyName() override {
cout << "Derived\n";
}
};
void foo(Base *b) {
b->sayMyName();
Derived::sayMyName(); // Also would work.
}
This is 100% something that could be implemented (it just hasn't), and I'd argue something that is useful.
Consider how normal virtual functions work. Remove the statics and add in some other stuff and we have:
struct Base {
virtual void sayMyName() {
cout << "Base\n";
}
virtual void foo() {
}
int somedata;
};
struct Derived : public Base {
void sayMyName() override {
cout << "Derived\n";
}
};
void foo(Base *b) {
b->sayMyName();
}
This works fine and basically what happens is the compiler makes two tables, called VTables, and assigns indices to the virtual functions like this
enum Base_Virtual_Functions {
sayMyName = 0;
foo = 1;
};
using VTable = void*[];
const VTable Base_VTable = {
&Base::sayMyName,
&Base::foo
};
const VTable Derived_VTable = {
&Derived::sayMyName,
&Base::foo
};
Next each class with virtual functions is augmented with another field that points to its VTable, so the compiler basically changes them to be like this:
struct Base {
VTable* vtable;
virtual void sayMyName() {
cout << "Base\n";
}
virtual void foo() {
}
int somedata;
};
struct Derived : public Base {
VTable* vtable;
void sayMyName() override {
cout << "Derived\n";
}
};
Then what actually happens when you call b->sayMyName()? Basically this:
b->vtable[Base_Virtual_Functions::sayMyName](b);
(The first parameter becomes this.)
Ok fine, so how would it work with static virtual functions? Well what's the difference between static and non-static member functions? The only difference is that the latter get a this pointer.
We can do exactly the same with static virtual functions - just remove the this pointer.
b->vtable[Base_Virtual_Functions::sayMyName]();
This could then support both syntaxes:
b->sayMyName(); // Prints "Base" or "Derived"...
Base::sayMyName(); // Always prints "Base".
So ignore all the naysayers. It does make sense. Why isn't it supported then? I think it's because it has very little benefit and could even be a little confusing.
The only technical advantage over a normal virtual function is that you don't need to pass this to the function but I don't think that would make any measurable difference to performance.
It does mean you don't have a separate static and non-static function for cases when you have an instance, and when you don't have an instance, but also it might be confusing that it's only really "virtual" when you use the instance call.
Well , quite a late answer but it is possible using the curiously recurring template pattern. This wikipedia article has the info you need and also the example under static polymorphism is what you are asked for.
This question is over a decade old, but it looks like it gets a good amount of traffic, so I wanted to post an alternative using modern C++ features that I haven't seen anywhere else.
This solution uses CRTP and SFINAE to perform static dispatching. That, in itself, is nothing new, but all such implementations I've found lack strict signature checking for "overrides." This implementation requires that the "overriding" method signature exactly matches that of the "overridden" method. This behavior more closely resembles that of virtual functions, while also allowing us to effectively overload and "override" a static method.
Note that I put override in quotes because, strictly speaking, we're not technically overriding anything. Instead, we're calling a dispatch method X with signature Y that forwards all of its arguments to T::X, where T is to the first type among a list of types such that T::X exists with signature Y. This list of types considered for dispatching can be anything, but generally would include a default implementation class and the derived class.
Implementation
#include <experimental/type_traits>
template <template <class...> class Op, class... Types>
struct dispatcher;
template <template <class...> class Op, class T>
struct dispatcher<Op, T> : std::experimental::detected_t<Op, T> {};
template <template <class...> class Op, class T, class... Types>
struct dispatcher<Op, T, Types...>
: std::experimental::detected_or_t<
typename dispatcher<Op, Types...>::type, Op, T> {};
// Helper to convert a signature to a function pointer
template <class Signature> struct function_ptr;
template <class R, class... Args> struct function_ptr<R(Args...)> {
using type = R (*)(Args...);
};
// Macro to simplify creation of the dispatcher
// NOTE: This macro isn't smart enough to handle creating an overloaded
// dispatcher because both dispatchers will try to use the same
// integral_constant type alias name. If you want to overload, do it
// manually or make a smarter macro that can somehow put the signature in
// the integral_constant type alias name.
#define virtual_static_method(name, signature, ...) \
template <class VSM_T> \
using vsm_##name##_type = std::integral_constant< \
function_ptr<signature>::type, &VSM_T::name>; \
\
template <class... VSM_Args> \
static auto name(VSM_Args&&... args) \
{ \
return dispatcher<vsm_##name##_type, __VA_ARGS__>::value( \
std::forward<VSM_Args>(args)...); \
}
Example Usage
#include <iostream>
template <class T>
struct Base {
// Define the default implementations
struct defaults {
static std::string alpha() { return "Base::alpha"; };
static std::string bravo(int) { return "Base::bravo"; }
};
// Create the dispatchers
virtual_static_method(alpha, std::string(void), T, defaults);
virtual_static_method(bravo, std::string(int), T, defaults);
static void where_are_the_turtles() {
std::cout << alpha() << std::endl; // Derived::alpha
std::cout << bravo(1) << std::endl; // Base::bravo
}
};
struct Derived : Base<Derived> {
// Overrides Base::alpha
static std::string alpha(){ return "Derived::alpha"; }
// Does not override Base::bravo because signatures differ (even though
// int is implicitly convertible to bool)
static std::string bravo(bool){ return "Derived::bravo"; }
};
int main() {
Derived::where_are_the_turtles();
}
I think what you're trying to do can be done through templates. I'm trying to read between the lines here. What you're trying to do is to call a method from some code, where it calls a derived version but the caller doesn't specify which class. Example:
class Foo {
public:
void M() {...}
};
class Bar : public Foo {
public:
void M() {...}
};
void Try()
{
xxx::M();
}
int main()
{
Try();
}
You want Try() to call the Bar version of M without specifying Bar. The way you do that for statics is to use a template. So change it like so:
class Foo {
public:
void M() {...}
};
class Bar : public Foo {
public:
void M() {...}
};
template <class T>
void Try()
{
T::M();
}
int main()
{
Try<Bar>();
}
No, Static member function can't be virtual .since virtual concept is resolved at run time with the help of vptr, and vptr is non static member of a class.due to that static member function can't acess vptr so static member can't be virtual.
No, its not possible, since static members are bound at compile time, while virtual members are bound at runtime.
If your desired use for a virtual static is to be able to define an interface over the static section of a class then there is a solution to your problem using C++20 concept's.
class ExBase { //object properties
public: virtual int do(int) = 0;
};
template <typename T> //type properties
concept ExReq = std::derived_from<T, ExBase> && requires(int i) { //~constexpr bool
{
T::do_static(i) //checks that this compiles
} -> std::same_as<int> //checks the expression type is int
};
class ExImpl : virtual public ExBase { //satisfies ExReq
public: int do(int i) override {return i;} //overrides do in ExBase
public: static int do_static(int i) {return i;} //satisfies ExReq
};
//...
void some_func(ExReq auto o) {o.do(0); decltype(o)::do_static(0);}
(this works the same way on members aswell!)
For more on how concepts work: https://en.cppreference.com/w/cpp/language/constraints
For the standard concepts added in C++20: https://en.cppreference.com/w/cpp/concepts
First, the replies are correct that what the OP is requesting is a contradiction in terms: virtual methods depend on the run-time type of an instance; static functions specifically don't depend on an instance -- just on a type. That said, it makes sense to have static functions return something specific to a type. For example, I had a family of MouseTool classes for the State pattern and I started having each one have a static function returning the keyboard modifier that went with it; I used those static functions in the factory function that made the correct MouseTool instance. That function checked the mouse state against MouseToolA::keyboardModifier(), MouseToolB::keyboardModifier(), etc. and then instantiated the appropriate one. Of course later I wanted to check if the state was right so I wanted write something like "if (keyboardModifier == dynamic_type(*state)::keyboardModifier())" (not real C++ syntax), which is what this question is asking.
So, if you find yourself wanting this, you may want to rething your solution. Still, I understand the desire to have static methods and then call them dynamically based on the dynamic type of an instance. I think the Visitor Pattern can give you what you want. It gives you what you want. It's a bit of extra code, but it could be useful for other visitors.
See: http://en.wikipedia.org/wiki/Visitor_pattern for background.
struct ObjectVisitor;
struct Object
{
struct TypeInformation;
static TypeInformation GetTypeInformation();
virtual void accept(ObjectVisitor& v);
};
struct SomeObject : public Object
{
static TypeInformation GetTypeInformation();
virtual void accept(ObjectVisitor& v) const;
};
struct AnotherObject : public Object
{
static TypeInformation GetTypeInformation();
virtual void accept(ObjectVisitor& v) const;
};
Then for each concrete Object:
void SomeObject::accept(ObjectVisitor& v) const {
v.visit(*this); // The compiler statically picks the visit method based on *this being a const SomeObject&.
}
void AnotherObject::accept(ObjectVisitor& v) const {
v.visit(*this); // Here *this is a const AnotherObject& at compile time.
}
and then define the base visitor:
struct ObjectVisitor {
virtual ~ObjectVisitor() {}
virtual void visit(const SomeObject& o) {} // Or = 0, depending what you feel like.
virtual void visit(const AnotherObject& o) {} // Or = 0, depending what you feel like.
// More virtual void visit() methods for each Object class.
};
Then the concrete visitor that selects the appropriate static function:
struct ObjectVisitorGetTypeInfo {
Object::TypeInformation result;
virtual void visit(const SomeObject& o) {
result = SomeObject::GetTypeInformation();
}
virtual void visit(const AnotherObject& o) {
result = AnotherObject::GetTypeInformation();
}
// Again, an implementation for each concrete Object.
};
finally, use it:
void printInfo(Object& o) {
ObjectVisitorGetTypeInfo getTypeInfo;
Object::TypeInformation info = o.accept(getTypeInfo).result;
std::cout << info << std::endl;
}
Notes:
Constness left as an exercise.
You returned a reference from a static. Unless you have a singleton, that's questionable.
If you want to avoid copy-paste errors where one of your visit methods calls the wrong static function, you could use a templated helper function (which can't itself be virtual) t your visitor with a template like this:
struct ObjectVisitorGetTypeInfo {
Object::TypeInformation result;
virtual void visit(const SomeObject& o) { doVisit(o); }
virtual void visit(const AnotherObject& o) { doVisit(o); }
// Again, an implementation for each concrete Object.
private:
template <typename T>
void doVisit(const T& o) {
result = T::GetTypeInformation();
}
};
With c++ you can use static inheritance with the crt method. For the example, it is used widely on window template atl & wtl.
See https://en.wikipedia.org/wiki/Curiously_recurring_template_pattern
To be simple, you have a class that is templated from itself like class myclass : public myancestor. From this point the myancestor class can now call your static T::YourImpl function.
I had a browse through the other answers and none of them seem to mention virtual function tables (vtable), which explains why this is not possible.
A static function inside a C++ class compiles to something which is effectively the same as any other function in a regular namespace.
In other words, when you declare a function static you are using the class name as a namespace rather than an object (which has an instance, with some associated data).
Let's quickly look at this...
// This example is the same as the example below
class ExampleClass
{
static void exampleFunction();
int someData;
};
// This example is the same as the example above
namespace ExampleClass
{
void exampleFunction();
// Doesn't work quite the same. Each instance of a class
// has independent data. Here the data is global.
int someData;
}
With that out of the way, and an understanding of what a static member function really is, we can now consider vtables.
If you declare any virtual function in a class, then the compiler creates a block of data which (usually) precedes other data members. This block of data contains runtime information which tells the program at runtime where in memory it needs to jump to in order to execute the correct (virtual) function for each instance of a class which might be created during runtime.
The important point here is "block of data". In order for that block of data to exist, it has to be stored as part of an instance of an object (class). If your function is static, then we already said it uses the name of the class as a namespace. There is no object associated with that function call.
To add slightly more detail: A static function does not have an implicit this pointer, which points to the memory where the object lives. Because it doesn't have that, you can't jump to a place in memory and find the vtable for that object. So you can't do virtual function dispatch.
I'm not an expert in compiler engineering by any means, but understanding things at least to this level of detail is helpful, and (hopefully?) makes it easy to understand why (at least in C++) static virtual does not make sense, and cannot be translated into something sensible by the compiler.
Maybe you can try my solution below:
class Base {
public:
Base(void);
virtual ~Base(void);
public:
virtual void MyVirtualFun(void) = 0;
static void MyStaticFun(void) { assert( mSelf != NULL); mSelf->MyVirtualFun(); }
private:
static Base* mSelf;
};
Base::mSelf = NULL;
Base::Base(void) {
mSelf = this;
}
Base::~Base(void) {
// please never delete mSelf or reset the Value of mSelf in any deconstructors
}
class DerivedClass : public Base {
public:
DerivedClass(void) : Base() {}
~DerivedClass(void){}
public:
virtual void MyVirtualFun(void) { cout<<"Hello, it is DerivedClass!"<<endl; }
};
int main() {
DerivedClass testCls;
testCls.MyStaticFun(); //correct way to invoke this kind of static fun
DerivedClass::MyStaticFun(); //wrong way
return 0;
}
Like others have said, there are 2 important pieces of information:
there is no this pointer when making a static function call and
the this pointer points to the structure where the virtual table, or thunk, are used to look up which runtime method to call.
A static function is determined at compile time.
I showed this code example in C++ static members in class; it shows that you can call a static method given a null pointer:
struct Foo
{
static int boo() { return 2; }
};
int _tmain(int argc, _TCHAR* argv[])
{
Foo* pFoo = NULL;
int b = pFoo->boo(); // b will now have the value 2
return 0;
}