This is merely for curiosity sake because I have not used new and delete in c++ except for the most basic uses.
I know that delete releases memory. The thing I'm wondering is how does it handle more complex cases?
For instance, if I have a user-defined class like this:
class MyClass
{
public:
MyClass();
~MyClass()
{
delete [] intArray;
}
//public members here
private:
int* intArray;
};
Assuming the class allocates memory somehow for intArray, and then release it in the destructor, What if I used the class like this: MyClass* myClass = new MyClass(); and released it later with delete myclass;
How does delete handle the releasing of all the memory? Does the class destructor get called first to release all of the memory allocated by the class (ie int* intArray) and then release the memory allocated to hold the class?
What if I had a class like this:
class MyClass
{
public:
MyClass();
~MyClass()
{
delete anotherMyClass;
}
//public members here
private:
MyClass* anotherMyClass;
};
Assuming anotherMyClass is not allocated with the constructor, which would use up memory very quickly, what if there was a chain of MyClasses attached to each other like a linked-list? Would the delete statement in the destructor work in this case? Would each anotherMyClass be recursively released when the destructor gets called?
Are there any specific weird tricks or caveats with the new and delete statements that you know about?
Given a pointer (p) to a dynamically allocated object, delete does two things:
It calls the destructor of the dynamically allocated object. Note that when ~MyClass() completes, the destructors for any member variables of class type are called.
It frees the memory occupied by the dynamically allocated object.
It doesn't search the member variables of the object for other pointers to free; it doesn't free any other memory and doesn't do anything else.
If you need to free the memory pointed to by intArray, you need to delete it in the destructor of MyClass.
However, in almost all C++ code, you don't need to worry about this. You should be using smart pointers like shared_ptr, unique_ptr, auto_ptr, and scoped_ptr to automatically manage dynamically allocated objects. Manual resource management is difficult at best and should be avoided wherever possible.
This is part of a broader idiom, Scope-Bound Resource Management (SBRM, also called Resource Acquisition is Initialization, or RAII). This is by far the most important design pattern to understand and to use everywhere in your C++ code.
If in your class you had declared this instead:
boost::scoped_ptr<int> intArray;
then when the scoped_ptr<int> object is destroyed, it will free the pointer that it holds. You then do not have to do any work to manually destroy the object.
In well-written, modern C++ code, you should rarely need to manually use delete. Smart pointers and other SBRM containers should be used to manage any type of resource that needs cleanup, including dynamically allocated objects.
In your second example, given a linked list that looks like:
x -> y -> z -> 0
you would have an order of operations that looks like this:
delete x;
x.~MyClass();
delete y;
y.~MyClass();
delete z;
z.~MyClass();
delete 0;
[free memory occupied by z]
[free memory occupied by y]
[free memory occupied by x]
The objects in the linked list would be destroyed in reverse order.
delete intArray;
I assume intArray points to the first element of an int array? In that case, delete intArray yields undefined behavior. If you allocate via new[], you must release via delete[].
delete[] intArray;
Yes I know, delete intArray might appear to work just fine on certain systems with certain compiler versions under certain compiler options -- or it might not. That's undefined behavior for ya.
Also, you should follow the Rule of Three. Defining your own destructor but relying on the implicitly-defined copy constructor and copy assignment operator is a recipe for disaster.
Related
i new on c++ object oriented program. i look in c++, when i want to create new object i can make as a pointer
MyClass* myobject1 = new MyaClass();
and i must to delete explicit when i want to garbage the object from memory, like delete object.
My question, Assume inside myobject1 i created a new object pointer (ex. MyClass2 myobject2 = new MyCalss2()). When i delete myobject1, should i do explicity delete too myobject2 on deconstructor myobject1, or myobject2 automatic will garbage?
If you have allocated Dynamic memory,Open database connection or open a file,In C++ ,It is your duty to free the allocated memory,close database connections & close files.
If you use smart pointers for Dynamic memory allocation, you don't need to worry about freeing allocated memory .Smart pointers will free the allocated memory when they goes out of the scope.
In your Question,In MyClass object you have dynamically allocated memory for MyClass2 object.You have to write your own destructor for MyClass2 & it must be called MyClass destructor. If you haven't write proper destructor for MyClass2, when you call delete on myobject1, It will call MyClass destructor & inside default destructor of MyClass2 will be called & it will not free dynamically allocated memory.
https://www.linkedin.com/pulse/write-bu-gamindu-udayanga/?lipi=urn%3Ali%3Apage%3Ad_flagship3_profile_view_base_post_details%3BtIg1TW%2BKT7ugkY8Vs3s6Ng%3D%3D
You answered your question.
"i must to delete explicit when i want to garbage the object from memory, like delete object."
There is no garbage collection in C++. If you create a new pointer you have to delete it to avoid memory leaks. You can also use helper classes such as auto_ptr, unique_ptr, shared_ptr etc according to the usage.
I have the following code and I get stack overflow error can anyone please explain me What's wrong here. from my understanding this pointer points to current object so why I cant delete it in a destructor;
class Object
{
private:
static int objCount;
public:
int getCount()
{
int i =10;
return i++;
}
Object()
{
cout<< "Obj Created = "<<++objCount<<endl;
cout <<endl<<this->getCount()<<endl;
}
~Object()
{
cout<<"Destructor Called\n"<<"Deleted Obj="<<objCount--<<endl;
delete this;
}
};
int Object::objCount = 0;
int _tmain(int argc, _TCHAR* argv[])
{
{
Object obj1;
}
{
Object *obj2 = new Object();
}
getchar();
return 0;
}
You're doing delete this; in your class's destructor.
Well, delete calls the class's destructor.
You're doing delete this; in your class's destructor.
...
<!<!<!Stack Overflow!>!>!>
(Sorry guys I feel obliged to include this... this might probably spoil it sorrrryyyy!
Moral of the boring story, don't do delete this; on your destructor (or don't do it at all!)
Do [1]
Object *obj = new Object();
delete obj;
or much better, just
Object obj;
[1]#kfsone's answer more accurately points out that the stack overflow was actually triggered by obj1's destructor.
'delete this' never makes sense. Either you're causing an infinite recursion, as here, or you're deleting an object while it is still in use by somebody else. Just remove it. The object is already being deleted: that's why you're in the destructor.
The crash you are having is because of the following statement:
{
Object obj1;
}
This allocates an instance of "Object" on the stack. The scope you created it in ends, so the object goes out of scope, so the destructor (Object::~Object) is invoked.
{
Object obj1;
// automatic
obj1.~Object();
}
This means that the next instruction the application will encounter is
delete this;
There are two problems right here:
delete calls the object's destructor, so your destructor indirectly calls your destructor which indirectly calls your destructor which ...
After the destructor call, delete attempts to return the object's memory to the place where new obtains it from.
By contrast
{
Object *obj2 = new Object();
}
This creates a stack variable, obj2 which is a pointer. It allocates memory on the heap to store an instance of Object, calls it's default constructor, and stores the address of the new instance in obj2.
Then obj2 goes out of scope and nothing happens. The Object is not released, nor is it's destructor called: C++ does not have automatic garbage collection and does not do anything special when a pointer goes out of scope - it certainly doesn't release the memory.
This is a memory leak.
Rule of thumb: delete calls should be matched with new calls, delete [] with new []. In particular, try to keep new and delete in matching zones of authority. The following is an example of mismatched ownership/authority/responsibility:
auto* x = xFactory();
delete x;
Likewise
auto* y = new Object;
y->makeItStop();
Instead you should prefer
// If you require a function call to allocate it, match a function to release it.
auto* x = xFactory();
xTerminate(x); // ok, I just chose the name for humor value, Dr Who fan.
// If you have to allocate it yourself, you should be responsible for releasing it.
auto* y = new Object;
delete y;
C++ has container classes that will manage object lifetime of pointers for you, see std::shared_ptr, std::unique_ptr.
There are two issues here:
You are using delete, which is generally a code smell
You are using delete this, which has several issues
Guideline: You should not use new and delete.
Rationale:
using delete explicitly instead of relying on smart pointers (and automatic cleanup in general) is brittle, not only is the ownership of a raw pointer unclear (are you sure you should be deleting it ?) but it is also unclear whether you actually call delete on every single codepath that needs it, especially in the presence of exceptions => do your sanity (and that of your fellows) a favor, don't use it.
using new is also error-prone. First of all, are you sure you need to allocate memory on the heap ? C++ allows to allocate on the stack and the C++ Standard Library has containers (vector, map, ...) so the actual instances where dynamic allocation is necessary are few and far between. Furthermore, as mentioned, if you ever reach for dynamic allocation you should be using smart pointers; in order to avoid subtle order of execution issues it is recommend you use factory functions: make_shared and make_unique (1) to build said smart pointers.
(1) make_unique is not available in C++11, only in C++14, it can trivially be implemented though (using new, of course :p)
Guideline: You shall not use delete this.
Rationale:
Using delete this means, quite literally, sawing off the branch you are sitting on.
The argument to delete should always be a dynamically allocated pointer; therefore should you inadvertently allocate an instance of the object on the stack you are most likely to crash the program.
The execution of the method continues past this statement, for example destructors of local objects will be executed. This is like walking on the ghost of the object, don't look down!
Should a method containing this statement throw an exception or report an error, it is difficult to appraise whether the object was successfully destroyed or not; and trying again is not an option.
I have seen several example of usage, but none that could not have used a traditional alternative instead.
It is the first time I am using STL and I am confused about how should I deallocate the the memory used by these containers. For example:
class X {
private:
map<int, int> a;
public:
X();
//some functions
}
Now let us say I define the constructor as:
X::X() {
for(int i=0; i<10; ++i) {
map[i]=i;
}
}
Now my question is should I write the destructor for this class or the default C++ destructor will take care of deallocating the memory(completely)?
Now consider the modification to above class
class X {
private:
map<int, int*> a;
public:
X();
~X();
//some functions
}
Now let us say I define the constructor as:
X::X() {
for(int i=0; i<10; ++i) {
int *k= new int;
map[i]=k;
}
}
Now I understand that for such a class I need to write a destructor as the the memory allocated by new cannot be destructed by the default destructor of map container(as it calls destructor of objects which in this case is a pointer). So I attempt to write the following destructor:
X::~X {
for(int i=0; i<10; ++i) {
delete(map[i]);
}
//to delete the memory occupied by the map.
}
I do not know how to delete the memory occupied by the map. Although clear function is there but it claims to bring down the size of the container to 0 but not necessarily deallocate the memory underneath. Same is the case with vectors too(and I guess other containers in STL but I have not checked them).
Any help appreciated.
should I write the destructor for this class or the default C++ destructor will take care of deallocating the memory(completely)?
Yes it will. All the standard containers follow the principle of RAII, and manage their own dynamic resources. They will automatically free any memory they allocated when they are destroyed.
I do not know how to delete the memory occupied by the map.
You don't. You must delete something if and only if you created it with new. Most objects have their memory allocated and freed automatically.
The map itself is embedded in the X object being destroyed, so it will be destroyed automatically, and its memory will be freed along with the object's, once the destructor has finished.
Any memory allocated by the map is the responsibility of the map; it will deallocate it in its destructor, which is called automatically.
You are only responsible for deleting the dynamically allocated int objects. Since it is difficult to ensure you delete these correctly, you should always use RAII types (such as smart pointers, or the map itself) to manage memory for you. (For example, you have a memory leak in your constructor if a use of new throws an exception; that's easily fixed by storing objects or smart pointers rather than raw pointers.)
When a STL collection is destroyed, the corresponding destructor of the contained object is called.
This means that if you have
class YourObject {
YourObject() { }
~YourObject() { }
}
map<int, YourObject> data;
Then the destructor of YourObject is called.
On the other hand, if you are storing pointers to object like in
map<int, YourObject*> data
Then the destruct of the pointer is called, which releases the pointer itself but without calling the pointed constructor.
The solution is to use something that can hold your object, like a shared_ptr, that is a special object that will care about calling the holded item object when there are no more references to it.
Example:
map<int, shared_ptr<YourObject>>
If you ignore the type of container you're dealing with an just think of it as a container, you'll notice that anything you put in the container is owned by whomever owns the container. This also means that it's up to the owner to delete that memory. Your approach is sufficient to deallocate the memory that you allocated. Because the map object itself is a stack-allocated object, it's destructor will be called automatically.
Alternatively, a best practice for this type of situation is to use shared_ptr or unique_ptr, rather than a raw pointer. These wrapper classes will deallocate the memory for you, automatically.
map<int shared_ptr<int>> a;
See http://en.cppreference.com/w/cpp/memory
The short answer is that the container will normally take care of deleting its contents when the container itself is destroyed.
It does that by destroying the objects in the container. As such, if you wanted to badly enough, you could create a type that mismanaged its memory by allocating memory (e.g., in its ctor) but doesn't release it properly. That should obviously be fixed by correcting the design of those objects though (e.g., adding a dtor that releases the memory they own). Alternatively, you could get the same effect by just storing a raw pointer.
Likewise, you could create an Allocator that didn't work correctly -- that allocated memory but did nothing when asked to release memory.
In every one of these cases, the real answer is "just don't do that".
If you have to write a destructor (or cctor or op=) it indicates you likely do something wrong. If you do it to deallocate a resource more likely so.
The exception is the RAII handler for resources, that does nothing else.
In regular classes you use proper members and base classes, so your dtor has no work of its own.
STL classes all handle themselves, so having a map you have no obligations. Unless you filled it with dumb pointers to allocated memory or something like that -- where the first observation kicks in.
You second X::X() sample is broken in many ways, if exception is thrown on the 5th new you leak the first 4. And if you want to handle that situatuion by hand you end up with mess of a code.
That is all avoided if you use a proper smart thing, like unique_ptr or shared_ptr instead of int*.
Im new to this and just wanted to ask a quick question about deleting objects.
I have an object called MyClass1 and from it I have a number of other classes, MyClassA, MyClassB etc.
Now should I do this in MyClass1:
MyClass1::~MyClass1()
{
delete MyClassA;
delete MyClassB;
}
Or will everything created in MyClass1 automatically be deleted when I delete MyClass1?
Also, if I have more objects created in MyClassA and MyClassB, will these also have to be deleted manually in their respective class?
Thanks
If you're asking this, you're just learning C++, so the best advice is - neither. You should know about this stuff (dynamic allocation & memory management - see Guillaume's answer for this), but what you really should do is use RAII (google this). The proper C++ way of doing it would be:
struct MyClass1
{
MyClassA mA;
std::shared_ptr<MyClassB> mB;
MyClass1() : mB(new MyClassB)
{
}
};
See? No more destructor, which means you also don't need a copy constructor or copy assignment operator (which is where Guillaume's answer is flawed - it's missing the last two).
call delete operator only if you have created your objects with new operator
struct MyClass1
{
MyClassA mA;
MyClassB * mB;
MyClass1()
{
mB = new MyClassB;
}
~MyClass1()
{
delete mB;
}
};
You can't delete objects that aren't pointers because that's not the purpose of delete. It's meant to free dynamic memory associated with an object. That is, whatever is created with new must be deleted. You can have pointers to a class, and they can be deleted. But since nothing was allocated with new, there's no need to use delete. The class will in fact be destructed from memory at the end of the scope in which it is created. Those objects are allocated on the stack while dynamic memory is on the heap. Objects on the stack have automatic storage duration (deleted at the end of its scope, unless its declared static in which case it has "static" storage duration); moreover, objects on the heap have dynamic storage duration. Dynamic memory in C++ is controlled by you, that's why we are given new and delete (because C++ expects us to handle the memory ourselves). And otherwise deleting an object not constructed with new is undefined behavior and may lead to a crash.
If Qt, use QPointer! It is a smart pointer: nothing needed in destructor.
#include <QPointer>
class MyClass1
{
QPointer<MyClassA> pA;
QPointer<MyClassB> pB;
};
delete is applied to objects, not to classes. As a rule, calling delete (or arranging to have it called automatically, via a shared pointer, or with the RAII idiom in general) is necessary only if you called new to create the object. The exception is the return value of some (library?) call being an object that the (library's?) documentation states explicitly that the caller has to dispose of with delete (in which case, think of the call as a wrapper around a new that you have become responsible for.) Of course, APIs like that should be avoided if at all possible.
Lets say, for example, that I have a class that requires the use of some old C stuff (like pthreads or something), so for one reason or another, I've ended up with a malloc() call in my constructor, like so:
class Foo
{
public:
Foo()
{
someMutex = malloc(sizeof(pthread_mutex_t));
pthread_mutex_init(someMutex);
someString = new string("yay string!");
}
private:
pthread_mutex_t * someMutex;
string * someString;
}
It seems like there is a lot of misinformation about destructors out there. I keep seeing examples of explicitly defined destructors calling delete on pointer based members, but I also keep reading that I don't need to explicitly define a destructor for a class to manage memory; all I need a destructor for are things like file handle cleanups and the like.
Thus leads to my question then: Even though someMutex was allocated with malloc and not the C++ new command, will the implicitly defined destructor still take care of it, or do I have to do it?
Also, lets just settle another question of mine, since its so closely related. In the class above, do I need to explicitly define a destructor in order to call delete on someString, or is that taken care of for me?
Not only do you need to define a destructor to do the cleanup, you also need to declare (and optionally define) a copy constructor and copy assignment operator for your class, to ensure that copies are made correctly.
The implicitly-defined destructor destroys member variables. So, for example, if you had a member variable of type string, the destructor will destroy that variable all on its own. However, the destructor for a pointer (like string*) is a no-op: you are responsible for destroying the pointed-to object.
You also need to define the copy operations for this class, or at least suppress generation of the default copy operations that the compiler provides for you. Why? Because by default, the copy operations just copy each member variable. So, if for example you were to write:
{
Foo x;
Foo y(x);
} // Uh oh
Both x and y are destroyed at the end of the block. At this point, both x and y point to the same dynamically allocated mutex and string, so the mutex and string would be destroyed twice (once for x and once for y).
The better option is not to use manual memory allocation at all. Rather, you should make someString a direct member of the class (i.e., declare it string someString;) or you should use a smart pointer of some kind to manage its lifetime (like unique_ptr or shared_ptr). Similarly, you should use a smart pointer with a custom deleter to manage the lifetime of the mutex, unless your class is noncopyable, in which case you can make the mutex a direct member of the class.
Yes, you have to define a destructor and destroy your objects (someMutex and someString).
But, as you have allocated someMutex with malloc, you must free it with free.
Take care for not to mix them.
Remember:
allocated with malloc, freed with free
allocated with new, freed with delete
allocated with new[], freed with delete[]
Instead of storing a pointer to a string in your class, I'd just store an instance of string as a data member (using "stack semantics").
Moreover, instead of storing a pointer to a "raw" pthread_mutex_t, I'd define a C++ class to wrap this pthread_mutex_t resource using RAII (creating the pthread_mutex_t in its constructor, and destroying it in its destructor), and then I'd store an instance of this C++ class as a data member of Foo.
//
// C++ RAII wrapper on raw C pthread_mutex_t resource.
//
class PThreadMutex
{
public:
// Creates a pthread_mutex_t.
PThreadMutex()
{
pthread_mutex_init(&m_mutex, ...);
// Check for errors, and throw exceptions on errors
}
// Destroys a pthread_mutex_t
~PThreadMutex()
{
pthread_mutex_destroy(&m_mutex);
}
// Other member functions
// ...
// May define move constructor and move assignment operator for C++11
// ...
private:
pthread_mutex_t m_mutex;
};
class Foo
{
public:
Foo()
: m_someString("yay string!")
// m_someMutex initialized by its default constructor
{
}
~Foo()
{
// Nothing to do: C++ compiler will call the destructors
// of class data members, releasing their associated resources.
}
private:
//
// Class "building blocks":
//
PThreadMutex m_someMutex;
string m_someString;
};
In this way, the compiler-generated destructor for Foo will automatically call each data members destructors, releasing their resources.
In general, each "raw" C resource (pthread_mutex_t, FILE *, etc.) should be wrapped in a C++ class using RAII, and instances of these classes (like they were kind of "building blocks") should be used as data members of other classes.
This helps simplify your code (and writing exception-safe code as well); if you use this pattern you can achieve a good level of code safety and composability.
No, destructor shouldn't delete those data (it may be pointer to memory allocated somewhere else in your application). So you have to write your own destructor.
And one more thing. Once you allocate memory with malloc you should free it with free().
Whether you need to define a destructor or not depends of if the current object OWNS the created objects or it just create them for some other object to manage, respectivelly.
When you allocate heap memory with malloc() you should free it with free().
When you create objects with new, then you must delete it with delete.
When you create an array with new[], then you must delete it with delete[].
Implicit destructors destroy member variables but in your case they are pointers so memory allocated for the pointers thenselves will be recovered, but not the allocated memory you just malloc'ed.
Another option is using a "smart pointer" (http://en.wikipedia.org/wiki/Smart_pointer), which will actually delete the pointed object when the current object is deleted (or get out of scope).