Why there is no List.skip and List.take? - list

Why there is no List.skip and List.take? There is of course Seq.take and Seq.skip, but they does not create lists as a result.
One possible solution is: mylist |> Seq.skip N |> Seq.toList
But this creates first enumerator then a new list from that enumerator. I think there could be more direct way to create a immutable list from immutable list. Since there is no copying of elements internally there are just references from the new list to the original one.
Other possible solution (without throwing exceptions) is:
let rec listSkip n xs =
match (n, xs) with
| 0, _ -> xs
| _, [] -> []
| n, _::xs -> listSkip (n-1) xs
But this still not answer the question...

BTW, you can add your functions to List module:
module List =
let rec skip n xs =
match (n, xs) with
| 0, _ -> xs
| _, [] -> []
| n, _::xs -> skip (n-1) xs

The would-be List.skip 1 is called List.tail, you can just tail into the list n times.
List.take would have to create a new list anyway, since only common suffixes of an immutable list can be shared.

Related

How to get the Index of an element in a list, by not using "list comprehensions"?

I'm new in haskell programming and I try to solve a problem by/not using list comprehensions.
The Problem is to find the index of an element in a list and return a list of the indexes (where the elements in the list was found.)
I already solved the problem by using list comprehensions but now i have some problems to solve the problem without using list comprehensions.
On my recursive way:
I tried to zip a list of [0..(length list)] and the list as it self.
then if the element a equals an element in the list -> make a new list with the first element of the Tupel of the zipped list(my index) and after that search the function on a recursive way until the list is [].
That's my list comprehension (works):
positions :: Eq a => a -> [a] -> [Int]
positions a list = [x | (x,y) <- zip [0..(length list)] list, a == y]
That's my recursive way (not working):
positions' :: Eq a => a -> [a] -> [Int]
positions' _ [] = []
positions' a (x:xs) =
let ((n,m):ns) = zip [0..(length (x:xs))] (x:xs)
in if (a == m) then n:(positions' a xs)
else (positions' a xs)
*sorry I don't know how to highlight words
but ghci says:
*Main> positions' 2 [1,2,3,4,5,6,7,8,8,9,2]
[0,0]
and it should be like that (my list comprehension):
*Main> positions 2 [1,2,3,4,5,6,7,8,8,9,2]
[1,10]
Where is my mistake ?
The problem with your attempt is simply that when you say:
let ((n,m):ns) = zip [0..(length (x:xs))] (x:xs)
then n will always be 0. That's because you are matching (n,m) against the first element of zip [0..(length (x:xs))] (x:xs), which will necessarily always be (0,x).
That's not a problem in itself - but it does mean you have to handle the recursive step properly. The way you have it now, positions _ _, if non-empty, will always have 0 as its first element, because the only way you allow it to find a match is if it's at the head of the list, resulting in an index of 0. That means that your result will always be a list of the correct length, but with all elements 0 - as you're seeing.
The problem isn't with your recursion scheme though, it's to do with the fact that you're not modifying the result to account for the fact that you don't always want 0 added to the front of the result list. Since each recursive call just adds 1 to the index you want to find, all you need to do is map the increment function (+1) over the recursive result:
positions' :: Eq a => a -> [a] -> [Int]
positions' _ [] = []
positions' a (x:xs) =
let ((0,m):ns) = zip [0..(length (x:xs))] (x:xs)
in if (a == m) then 0:(map (+1) (positions' a xs))
else (map (+1) (positions' a xs))
(Note that I've changed your let to be explicit that n will always be 0 - I prefer to be explicit this way but this in itself doesn't change the output.) Since m is always bound to x and ns isn't used at all, we can elide the let, inlining the definition of m:
positions' :: Eq a => a -> [a] -> [Int]
positions' _ [] = []
positions' a (x:xs) =
if a == x
then 0 : map (+1) (positions' a xs)
else map (+1) (positions' a xs)
You could go on to factor out the repeated map (+1) (positions' a xs) if you wanted to.
Incidentally, you didn't need explicit recursion to avoid a list comprehension here. For one, list comprehensions are basically a replacement for uses of map and filter. I was going to write this out explicitly, but I see #WillemVanOnsem has given this as an answer so I will simply refer you to his answer.
Another way, although perhaps not acceptable if you were asked to implement this yourself, would be to just use the built-in elemIndices function, which does exactly what you are trying to implement here.
We can make use of a filter :: (a -> Bool) -> [a] -> [a] and map :: (a -> b) -> [a] -> [b] approach, like:
positions :: Eq a => a -> [a] -> [Int]
positions x = map fst . filter ((x ==) . snd) . zip [0..]
We thus first construct tuples of the form (i, yi), next we filter such that we only retain these tuples for which x == yi, and finally we fetch the first item of these tuples.
For example:
Prelude> positions 'o' "foobaraboof"
[1,2,8,9]
Your
let ((n,m):ns) = zip [0..(length (x:xs))] (x:xs)
is equivalent to
== {- by laziness -}
let ((n,m):ns) = zip [0..] (x:xs)
== {- by definition of zip -}
let ((n,m):ns) = (0,x) : zip [1..] xs
== {- by pattern matching -}
let {(n,m) = (0,x)
; ns = zip [1..] xs }
== {- by pattern matching -}
let { n = 0
; m = x
; ns = zip [1..] xs }
but you never reference ns! So we don't need its binding at all:
positions' a (x:xs) =
let { n = 0 ; m = x } in
if (a == m) then n : (positions' a xs)
else (positions' a xs)
and so, by substitution, you actually have
positions' :: Eq a => a -> [a] -> [Int]
positions' _ [] = []
positions' a (x:xs) =
if (a == x) then 0 : (positions' a xs) -- NB: 0
else (positions' a xs)
And this is why all you ever produce are 0s. But you want to produce the correct index: 0, 1, 2, 3, ....
First, let's tweak your code a little bit further into
positions' :: Eq a => a -> [a] -> [Int]
positions' a = go xs
where
go [] = []
go (x:xs) | a == x = 0 : go xs -- NB: 0
| otherwise = go xs
This is known as a worker/wrapper transform. go is a worker, positions' is a wrapper. There's no need to pass a around from call to call, it doesn't change, and we have access to it anyway. It is in the enclosing scope with respect to the inner function, go. We've also used guards instead of the more verbose and less visually apparent if ... then ... else.
Now we just need to use something -- the correct index value -- instead of 0.
To use it, we must have it first. What is it? It starts as 0, then it is incremented on each step along the input list.
When do we make a step along the input list? At the recursive call:
positions' :: Eq a => a -> [a] -> [Int]
positions' a = go xs 0
where
go [] _ = []
go (x:xs) i | a == x = 0 : go xs (i+1) -- NB: 0
| otherwise = go xs (i+1)
_ as a pattern means we don't care about the argument's value -- it's there but we're not going to use it.
Now all that's left for us to do is to use that i in place of that 0.

F# Returning the 3 element tuple with the largest middle value from the list of tuples

I have a homework practice problem and I am new to F# and the syntax is so confusing, I do not know where to start
For example, If I have a list of tuples of increasing values :
let tupleList = [(1,2,3);(10,12,15);(9,10,20)]
I should write a function that returns a tuple that has the largest middle value.
So the function should return :
(10,12,15)
Any hints on what should I consider, read on the Internet, or research, or any other tips to help me learn how to do this is appreciated!
Thank you!
You should probably read a book on F# or work through https://fsharpforfunandprofit.com/
You can use List.max or List.maxBy to get the maximum in a list. Because you have a three element tuple, you will need to deconstruct it (as there is no function to access the nth element of a tuple, only the first or the second one). Once you exposed the middle value you can run maxby on it, and get rid of the unnecessary parts.
let tupleList = [(1,2,3);(10,12,15);(9,10,20)]
tupleList
|> List.map (fun (a,b,c) -> (b, (a,b,c)))
|> List.maxBy fst
|> snd
val it : int * int * int = (10, 12, 15)
If none of built-in function can be used, then you can use either (1) mutable variables and while loop or (2) recursion.
Since you are learning functional programming, it is very likely that your professor will prefer recursion. Here is the solution:
let max2 (a,b,c) (x,y,z) = if b > y then (a,b,c) else (x,y,z)
let maxMany tuples =
let rec loop currentMaxTuple remainTuples =
match remainTuples with
| [] -> currentMaxTuple
| tuple :: rest ->
let newMaxTuple = max2 currentMaxTuple tuple
loop newMaxTuple rest
match tuples with
| [] -> None
| head :: rest -> Some (loop head rest)
let tupleList = [(1,2,3);(10,12,15);(9,10,20)]
maxMany tupleList |> printfn "%A"
Slightly different from #Nghia Bui's solution, you can use pattern matching to compare tuples items.
let maxSnd tuples =
let rec loop list tuple =
match list, tuple with
| [], _ -> tuple
| (x, y, z) :: xs, (a, b, c) ->
if y < b then (a, b, c) else (x, y, z)
|> loop xs
match tuples with
| [] -> invalidArg "tuples" "Empty list"; 0, 0, 0
| x :: xs -> loop xs x
A little late but anyway:
let maxByMiddle data =
let rec find lst =
match lst with
| [] -> Error("No entries in list")
| [a, b, c] -> Ok(a, b, c)
| (_, bmax, _)::(a, b, c)::tail when b > bmax -> find ((a, b, c)::tail)
| maxima::_::tail -> find (maxima::tail)
find data

Appending two lists

So this is one way to append two lists:
let rec append l1 l2 =
match l1 with
| h :: t -> h :: append t l2
| [] -> l2
But I am trying to write a tail-recursive version of append. (solve the problem before calling the recursive function).
This is my code so far, but when I try to add append in the first if statement the code becomes faulty for weird reasons.
let list1 = [1;2;3;4]
let list2 = [5;6;7;8]
let rec append lista listb =
match listb with
| h :: taillist -> if taillist != [] then
begin
lista # [h];
(* I cant put an append recursive call here because it causes error*)
end else
append lista taillist;
| [] -> lista;;
append list1 list2;;
The easiest way to transform a non tail-recursive list algorithm into a tail-recursive one, is to use an accumulator. Consider rewriting your code using a third list, that will accumulate the result. Use cons (i.e., ::) to prepend new elements to the third list, finally you will have a result of concatenation. Next, you need just to reverse it with List.rev et voila.
For the sake of completeness, there is a tail-recursive append:
let append l1 l2 =
let rec loop acc l1 l2 =
match l1, l2 with
| [], [] -> List.rev acc
| [], h :: t -> loop (h :: acc) [] t
| h :: t, l -> loop (h :: acc) t l
in
loop [] l1 l2
I would recommend to solve 99 problems to learn this idiom.
A couple of comments on your code:
It seems like cheating to define a list append function using #, since this is already a function that appends two lists :-)
Your code is written as if OCaml were an imperative language; i.e., you seem to expect the expression lista # [h] to modify the value of lista. But OCaml doesn't work that way. Lists in OCaml are immutable, and lista # [h] just calculates a new value without changing any previous values. You would need to pass this new value in your recursive call.
As #ivg says, the most straightforward way to solve your problem is using an accumulator, with a list reversal at the end. This is a common idiom in a language with immutable lists.
A version using constant stack space, implemented with a couple of standard functions (you'll get a tail-recursive solution after unfolding the definitions):
let append xs ys = List.rev_append (List.rev xs) ys
Incidentally, some OCaml libraries implement the append function in a pretty sophisticated way:
(1) see core_list0.ml in the Core_kernel library: search for "slow_append" and "count_append"
(2) or batList.mlv in the Batteries library.
An alternative tail-recursive solution (F#) leveraging continuations :
let concat x =
let rec concat f = function
| ([], x) -> f x
| (x1::x2, x3) -> concat (fun x4 -> f (x1::x4)) (x2, x3)
concat id x
I think the best way to go about it, like some have said would be to reverse the first list, then recursively add the head to the front of list2, but the top comment with code uses an accumulator, when you can get the same result without it by :: to the second list instead of an accumulator
let reverse list =
let rec reverse_helper acc list =
match list with
| [] -> acc
| h::t -> reverse_helper (h::acc) t in
reverse_helper [] lst;;
let append list1 list2 =
let rec append_helper list1_rev list2 =
match list1_rev with
| [] -> list2
| h :: t -> append_helper t (h::lst2) in
append_helper (reverse lst1) lst2;;
A possible answer to your question could be the following code :
let append list1 list2 =
let rec aux acc list1 list2 = match list1, list2 with
| [], [] -> List.rev(acc)
| head :: tail, [] -> aux (head :: acc) tail []
| [], head :: tail -> aux (head :: acc) [] tail
| head :: tail, head' :: tail' -> aux (head :: acc) tail (head' :: tail')
in aux [] list1 list2;
It's pretty similar to the code given by another one of the commenters on your post, but this one is more exhaustive, as I added a case for if list2 is empty from the beginning and list1 isn't
Here is a simpler solution:
let rec apptr l k =
let ln = List.rev l in
let rec app ln k acc = match ln with
| [] -> acc
| h::t -> app t k (h::acc) in
app ln k k
;;
let rec append (mylist: 'a list) (myotherlist : 'a list ): 'a list =
match mylist with
| [] -> myotherlist
| a :: rest -> a :: append rest myotherlist

OCaml Style for a function that merges two sorted lists into one sorted list

I am new to OCaml and I am auditing a class. I have a homework prompt that reads:
"merge xs ys takes two integer lists, each sorted in increasing order,
and returns a single merged list in sorted order."
I have successfully written a function that works:
let rec merge xs ys = match xs with
| [] -> ys
| hxs::txs -> if hxs <= (match ys with
| [] -> hxs
| hys::tys -> hys)
then hxs :: merge txs ys
else match ys with
| [] -> xs
| hys::tys -> hys :: merge xs tys in
merge [-1;2;3;100] [-1;5;1001]
;;
I would like to know if my code is considered to be in acceptable OCaml style? I want to avoid forming any bad habits. It feels compositionaly dense, but maybe that's because I'm still not used to OCaml.
Thanks.
I personally find it hard to follow if hxs <= (match ...), and it's difficult to format it nicely. So I would probably write
...
let hys =
match ys with
| [] -> hxs
| hys :: _ -> hys
in
if hxs < hys then
hxs :: merge txs ys
...
However, I think it might be even better to match both xs and ys at the same time:
let rec merge xs ys =
match xs, ys with
| [], _ -> ys
| _, [] -> xs
| hx :: txs, hy :: tys ->
if hx < hy then hx :: merge txs ys else hy :: merge xs tys
I think this captures the symmetry of the problem better.
I think it's good when the length of the code matches well with the simplicity of the problem it solves. Merging is simple to state, and so the code shouldn't need to be long (it seems to me).

Ocaml list of ints to list of int lists (Opposite of flattening)

With a list of integers such as:
[1;2;3;4;5;6;7;8;9]
How can I create a list of list of ints from the above, with all new lists the same specified length?
For example, I need to go from:
[1;2;3;4;5;6;7;8;9] to [[1;2;3];[4;5;6];[7;8;9]]
with the number to split being 3?
Thanks for your time.
So what you actually want is a function of type
val split : int list -> int -> int list list
that takes a list of integers and a sub-list-size. How about one that is even more general?
val split : 'a list -> int -> 'a list list
Here comes the implementation:
let split xs size =
let (_, r, rs) =
(* fold over the list, keeping track of how many elements are still
missing in the current list (csize), the current list (ys) and
the result list (zss) *)
List.fold_left (fun (csize, ys, zss) elt ->
(* if target size is 0, add the current list to the target list and
start a new empty current list of target-size size *)
if csize = 0 then (size - 1, [elt], zss # [ys])
(* otherwise decrement the target size and append the current element
elt to the current list ys *)
else (csize - 1, ys # [elt], zss))
(* start the accumulator with target-size=size, an empty current list and
an empty target-list *)
(size, [], []) xs
in
(* add the "left-overs" to the back of the target-list *)
rs # [r]
Please let me know if you get extra points for this! ;)
The code you give is a way to remove a given number of elements from the front of a list. One way to proceed might be to leave this function as it is (maybe clean it up a little) and use an outer function to process the whole list. For this to work easily, your function might also want to return the remainder of the list (so the outer function can easily tell what still needs to be segmented).
It seems, though, that you want to solve the problem with a single function. If so, the main thing I see that's missing is an accumulator for the pieces you've already snipped off. And you also can't quit when you reach your count, you have to remember the piece you just snipped off, and then process the rest of the list the same way.
If I were solving this myself, I'd try to generalize the problem so that the recursive call could help out in all cases. Something that might work is to allow the first piece to be shorter than the rest. That way you can write it as a single function, with no accumulators
(just recursive calls).
I would probably do it this way:
let split lst n =
let rec parti n acc xs =
match xs with
| [] -> (List.rev acc, [])
| _::_ when n = 0 -> (List.rev acc, xs)
| x::xs -> parti (pred n) (x::acc) xs
in let rec concat acc = function
| [] -> List.rev acc
| xs -> let (part, rest) = parti n [] xs in concat (part::acc) rest
in concat [] lst
Note that we are being lenient if n doesn't divide List.length lst evenly.
Example:
split [1;2;3;4;5] 2 gives [[1;2];[3;4];[5]]
Final note: the code is very verbose because the OCaml standard lib is very bare bones :/ With a different lib I'm sure this could be made much more concise.
let rec split n xs =
let rec take k xs ys = match k, xs with
| 0, _ -> List.rev ys :: split n xs
| _, [] -> if ys = [] then [] else [ys]
| _, x::xs' -> take (k - 1) xs' (x::ys)
in take n xs []