C++ Sgn Function - c++

I saw the function below that should return sign of double d. But I couldn't understand how it works?
int sgn(double d){
return d<-eps?-1:d>eps;
}

return d<-eps?-1:d>eps;
That means:
If d is less than -eps, the result is "negative"
If d is more than eps, the result is "positive" (d>eps returns 1)
Otherwise we return 0 (meaning the number is "zero")
eps would normally be a small number, so we consider numbers between, say -1e-5 and 1e-5 as "practically zero". This approach is used to water down some deficiencies of the computer's floating-point numbers, like that sin(pi)!=0. However, it comes at the cost of introducing an arbitrary number eps in the calculation, and losing the property that eg. if a and b are positive numbers, a*b is positive provided underflow doesn't occur.

I suspect that eps is a very very small number, around 0.0000000001. If so, the function is using ternary notation to make an abbreviated form of:
int sgn(double d) {
if (d < -eps) {
return -1;
} else {
return d > eps;
}
}
That "return d > eps" part is probably there to make it return 0 if d == 0.0. Remember that expressions like "a > b" return boolean values, which become 1 if true or 0 if false.
So the function actually could return one of three values: -1 if the number is negative, 0 if it is zero, 1 if it is positive.

FLoating-point arithmetic has some peculiarities, like "machine epsilon" and -0 value. This solution uses machine epsilon to determine this '-0' case by using this machine epsilon, but is not completely correct: -0 = +0 = 0, always, you don't have to check for it. Also, this eps is not defined in your source: I guess It's defined elsewhere.
int sgn(double d){
return d<0? -1 : d>0; # -1, 0, +1. FIXED
}
much simpler, huh? :) in case d<0 it return -1. Otherwise, d>0 gives either 0 or 1, like d>0? 1: 0
P.S. Usually you don't check check the equality of floats: they're not precise and 20.6 can suddently (predictable, actually) become 20.000000000001. However, double precision is very high with values close to zero.

I suppose that eps is some very small value, really close to 0.
sgn function returns -1 is the value is lower than -eps, 0 if value is in [-eps,eps] and 1 if value is greater than eps.

eps is normally a very small value (greek letter epsilon is used in maths for a small increment)
So this says if the d is less than eps (eg. 0.00000001) return -1, else return 1 if it's greater than 0 and 0 if it's exactly 0

Related

How close to division by zero can I get?

I want to avoid dividing by zero so I have an if statement:
float number;
//........
if (number > 0.000000000000001)
number = 1/number;
How small of a value can I safely use in place of 0.000000000000001?
Just use:
if(number > 0)
number = 1/number;
Note the difference between > and >=. If number > 0, then it definitely is not 0.
If number can be negative you can also use:
if(number != 0)
number = 1/number;
Note that, as others have mentioned in the comments, checking that number is not 0 will not prevent your result from being Inf or -Inf.
The number in the if condition depends on what you want to do with the result. In IEEE 754, which is used by (almost?) all C implementations, dividing by 0 is OK: you get positive or negative infinity.
If your goal is to avoid +/- Infinity, then the number in the if condition will depend upon the numerator. When the numerator is 1, you can use DBL_MIN or FLT_MIN from math.h.
If your goal is to avoid huge numbers after the division, you can do the division and then check if fabs(number) is bigger than certain value after the division, and then take whatever action as needed.
There is no single correct answer to your question.
You can simply check:
if (number > 0)
I can't understand why you need the lower limit.
For numeric type T std::numeric_limits gives you anything you need. For example you could do this to make sure that anything above min_invertible has finite reciprocal:
float max_float = std::numeric_limits<float>::max();
float min_float = std::numeric_limits<float>::min(); // or denorm_min()
float min_invertible = (max_float*min_float > 1.0f )? min_float : 1.0f/max_float;
You can't decently check up front. DBL_MAX / 0.5 effectively is a division by zero; the result is the same infinity you'd get from any other division by (almost) zero.
There is a simple solution: just check the result. std::isinf(result) will tell you whether the result overflowed, and IEEE754 tells you that division cannot produce infinity in other cases. (Well, except for INF/x,. That's not really producing infinity but merely preserving it.)
Your risk of producing an unhelpful result through overflow or underflow depends on both numerator and denominator.
A safety check which takes that into consideration is:
if (den == 0.0 || log2(num) - log2(den) >= log2(FLT_MAX))
/* expect overflow */ ;
else
return num / den;
but you might want to shave a small amount off log2(FLT_MAX) to leave wiggle-room for subsequent arithmetic and round-off.
You can do something similar with frexp, which would work for negative values as well:
int max;
int n, d;
frexp(FLT_MAX, &max);
frexp(num, &n);
frexp(den, &d);
if (den == 0.0 || n - d > max)
/* might overflow */ ;
else
return num / den;
This avoids the work of computing the logarithm, which might be more efficient if the compiler can find a suitable way of doing it, but it's not as accurate.
With IEEE 32-bit floats, the smallest possible value greater than 0 is 2^-149.
If you're using IEEE 64-bit, the smallest possible value is 2^-1074.
That said, (x > 0) is probably the better test.

Pure Change of Base

I'm trying (without much success) to write a short c++ function:
double digit(double x, int b, int d)
that returns the d-th digit in base-b expansion of the number x, which can be positive or negative, and can be a fraction. when d is negative, it should return the after-the-decimal-dot digits (its underfined for d=0 so say it returns 0 in that case).
For example:
const double x = 25.73;
for (int n = -5; n <= 5; n++)
cout<<digit(x,10,n)<<' ';
should print:
0
0
0
3
7
0
5
2
0
0
0
The function must use only loops, if, exp, pow, log, floor and ceil. i.e., without sprintf tricks etc.
Thanks!!!
EDIT: For simplicity, assume 2<=b<=10
EDIT: Please also avoid using mod, only pow-exp-log-floor-ceil based solutions
This seems to be the most straightforward implementation, and it seems to work just fine.
int digit( double x, int base, int index ) {
// shift number (mult by power of base) so desired digit is in one's place
x = std::abs( x ) * std::pow( base, - index );
// fmod strips higher digits; floor strips lower digits, leaving result.
return std::floor( std::fmod( x, base ) );
}
I changed the return type from double to int since it doesn't make sense to have a fraction in a digit. And it doesn't return . for 0, because again that's not a digit. The 0'th place value is the one's place.
Also this ignores the minus sign; you didn't define the "base-b expansion" for negative numbers. You could adjust the function to return b's complement notation or whatever.
By substituting x you can make this into one line, so it will satisfy the requirements for constexpr on platforms where the math functions are constexpr as well.
Let's do this in two steps.
1.Convert a number to base b
2.Find the d-th digit and return it.
The reason for splitting the tasks is because if you are repeatedly calling for the same set of base and number and only for different d's, then we can cache the number in the new base.For example the following function converts a number a from base 10, to a base b.I am curious how to deal with fractions.
string changeBase(int a,int b)
{
string A="0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
string res="";
while(a>=b)
{
res=A[a%b]+res;
a=a/b;
}
return res;
}
We need to return as a string as the new base can have digits like 'A' or 'B' or the like, which represent remainders of 10, 11, and so on.
Then we can play around with the returned string as in:
string A=changeBase(24,2);
cout<<A[0];//for some d
For negative support you can use the string index appropriately based on how you define it for negative d.

Why does division(?) yield this number?

Rephrasing question :
The following code (Not C++ - written in an in-house scripting language)
if(A*B != 0.0)
{
D = (C/(A*B))*100.0;
}
else
{
D = 0.0;
}
yields a value of
90989373681853939930449659398190196007605312719045829137102976436641398782862768335320454041881784565022989668056715169480294533394160442876108458546952155914634268552157701346144299391656459840294022732906509880379702822420494744472135997630178480287638496793549447363202959411986592330337536848282003701760.000000
for D. We are 100% sure that A != 0.0. And we are almost 100% sure that B == 0.0. We never use such infinitesimally small values (close to 0.0 but not 0.0) such as the value of B that this value of C suggests. It is impossible that it acquired that value from our data. Can A*B yield anything that is not equal to 0.0 when B is 0?
The number you divided by was not in fact 0, just very, very close.
Assuming you are using IEEE floating point numbers it is not a good idea to use equal or not equal in this case with floating point numbers. Even if the same value like -0.0 and +0.0 they are not equal from a bitwise perspective which is what the equate does. Even if using other float formats, equal and not equal are discouraged.
Instead put some sort of range on it e=a*b; if ((e<0.0002)||(e>0.0002) then...
This looks like you are accruing error from previous calculations, so you divison is by a really small decimal, but not zero. You should add a margin of error if you want to catch something like this, psuedocode: if(num < margin_of_error) ret inf;, or use the epsilon method to be even safer

C++: how can I test if a number is power of ten?

I want to test if a number double x is an integer power of 10. I could perhaps use cmath's log10 and then test if x == (int) x?
edit: Actually, my solution does not work because doubles can be very big, much bigger than int, and also very small, like fractions.
A lookup table will be by far the fastest and most precise way to do this; only about 600 powers of 10 are representable as doubles. You can use a hash table, or if the table is ordered from smallest to largest, you can rapidly search it with binary chop.
This has the advantage that you will get a "hit" if and only if your number is exactly the closest possible IEEE double to some power of 10. If this isn't what you want, you need to be more precise about exactly how you would like your solution to handle the fact that many powers of 10 can't be exactly represented as doubles.
The best way to construct the table is probably to use string -> float conversion; that way hopefully your library authors will already have solved the problem of how to do the conversion in a way that gives the most precise answer possible.
Your solution sounds good but I would replace the exact comparison with a tolerance one.
double exponent = log10(value);
double rounded = floor(exponent + 0.5);
if (fabs(exponent - rounded) < some_tolerance) {
//Power of ten
}
I am afraid you're in for a world of hurt. There is no way to cast down a very large or very small floating point number to a BigInt class because you lost precision when using the small floating point number.
For example float only has 6 digits of precision. So if you represent 109 as a float chances are it will be converted back as 1 000 000 145 or something like that: nothing guarantees what the last digits will be, they are off the precision.
You can of course use a much more precise representation, like double which has 15 digits of precision. So normally you should be able to represent integers from 0 to 1014 faithfully.
Finally some platforms may have a long long type with an ever greater precision.
But anyway, as soon as your value exceed the number of digits available to be converted back to an integer without loss... you can't test it for being a power of ten.
If you really need this precision, my suggestion is not to use a floating point number. There are mathematical libraries available with BigInt implementations or you can roll your own (though efficiency is difficult to achieve).
bool power_of_ten(double x) {
if(x < 1.0 || x > 10E15) {
warning("IEEE754 doubles can only precisely represent powers "
"of ten between 1 and 10E15, answer will be approximate.");
}
double exponent;
// power of ten if log10 of absolute value has no fractional part
return !modf(log10(fabs(x)), &exponent);
}
Depending on the platform your code needs to run on the log might be very expensive.
Since the amount of numbers that are 10^n (where n is natural) is very small,
it might be faster to just use a hardcoded lookup table.
(Ugly pseudo code follows:)
bool isPowerOfTen( int16 x )
{
if( x == 10 // n=1
|| x == 100 // n=2
|| x == 1000 // n=3
|| x == 10000 ) // n=4
return true;
return false;
}
This covers the whole int16 range and if that is all you need might be a lot faster.
(Depending on the platform.)
How about a code like this:
#include <stdio.h>
#define MAX 20
bool check_pow10(double num)
{
char arr[MAX];
sprintf(arr,"%lf",num);
char* ptr = arr;
bool isFirstOne = true;
while (*ptr)
{
switch (*ptr++)
{
case '1':
if (isFirstOne)
isFirstOne = false;
else
return false;
break;
case '0':
break;
case '.':
break;
default:
return false;
}
}
return true;
}
int main()
{
double number;
scanf("%lf",&number);
printf("isPower10: %s\n",check_pow10(number)?"yes":"no");
}
That would not work for negative powers of 10 though.
EDIT: works for negative powers also.
if you don't need it to be fast, use recursion. Pseudocode:
bool checkifpoweroften(double Candidadte)
if Candidate>=10
return (checkifpoweroften(Candidadte/10)
elsif Candidate<=0.1
return (checkifpoweroften(Candidadte*10)
elsif Candidate == 1
return 1
else
return 0
You still need to choose between false positives and false negatives and add tolerances accordingly, as other answers pointed out. The tolerances should apply to all comparisons, or else, for exemple, 9.99999999 would fail the >=10 comparison.
how about that:
bool isPow10(double number, double epsilon)
{
if (number > 0)
{
for (int i=1; i <16; i++)
{
if ( (number >= (pow((double)10,i) - epsilon)) &&
(number <= (pow((double)10,i) + epsilon)))
{
return true;
}
}
}
return false;
}
I guess if performance is an issue the few values could be precomputed, with or without the epsilon according to the needs.
A variant of this one:
double log10_value= log10(value);
double integer_value;
double fractional_value= modf(log10_value, &integer_value);
return fractional_value==0.0;
Note that the comparison to 0.0 is exact rather than within a particular epsilon since you want to ensure that log10_value is an integer.
EDIT: Since this sparked a bit of controversy due to log10 possibly being imprecise and the generic understanding that you shouldn't compare doubles without an epsilon, here's a more precise way of determining if a double is a power of 10 using only properties of powers of 10 and IEEE 754 doubles.
First, a clarification: a double can represent up to 1E22, as 1e22 has only 52 significant bits. Luckily, 5^22 also only has 52 significant bits, so we can determine if a double is (2*5)^n for n= [0, 22]:
bool is_pow10(double value)
{
int exponent;
double mantissa= frexp(value, &exponent);
int exponent_adjustment= exponent/10;
int possible_10_exponent= (exponent - exponent_adjustment)/3;
if (possible_10_exponent>=0 &&
possible_10_exponent<=22)
{
mantissa*= pow(2.0, exponent - possible_10_exponent);
return mantissa==pow(5.0, possible_10_exponent);
}
else
{
return false;
}
}
Since 2^10==1024, that adds an extra bit of significance that we have to remove from the possible power of 5.

Heuristic to identify if a series of 4 bytes chunks of data are integers or floats

What's the best heuristic I can use to identify whether a chunk of X 4-bytes are integers or floats? A human can do this easily, but I wanted to do it programmatically.
I realize that since every combination of bits will result in a valid integer and (almost?) all of them will also result in a valid float, there is no way to know for sure. But I still would like to identify the most likely candidate (which will virtually always be correct; or at least, a human can do it).
For example, let's take a series of 4-bytes raw data and print them as integers first and then as floats:
1 1.4013e-45
10 1.4013e-44
44 6.16571e-44
5000 7.00649e-42
1024 1.43493e-42
0 0
0 0
-5 -nan
11 1.54143e-44
Obviously they will be integers.
Now, another example:
1065353216 1
1084227584 5
1085276160 5.5
1068149391 1.33333
1083179008 4.5
1120403456 100
0 0
-1110651699 -0.1
1195593728 50000
These will obviously be floats.
PS: I'm using C++ but you can answer in any language, pseudo code or just in english.
The "common sense" heuristic from your example seems to basically amount to a range check. If one interpretation is very large (or a tiny fraction, close to zero), that is probably wrong. Check the exponent of the float interpretation and compare it to the exponent that results from a proper static cast of the integer interpretation to a float.
Looks like a kolmogorov complexity issue. Basically, from what you show as example, the shorter number (when printed as string to be read by a human), be it integer or float, is the right answer for your heuristic.
Also, obviously if the value is an incorrect float, it is an integer :-)
Seems direct enough to implement.
You can probably "detect" it by looking at the high bits, with floats they'd generally be non-zero, with integers, they would be unless you're dealing with a very large number. So... you could try and see if (2^30) & number returns 0 or not.
If both numbers are positive, your floats are reasonably large (greater than 10^-42), and your ints are reasonably small (less than 8*10^6), then the check is pretty simple. Treat the data as a float and compare to the least normalized float.
union float_or_int {
float f;
int32_t i;
};
bool is_positive_normalized_float( float_or_int &u ) {
return u.f >= numeric_limits<float>::min();
}
This assumes IEEE float and same endinanness between the CPU and the FPU.
A human can do this easily
A human can't do it at all. Ergo neither can a computer. There are 2^32 valid int values. A large number of them are also valid float values. There is no way of distinguishing the intent of the data other than by tagging it or by not getting into such a mess in the first place.
Don't attempt this.
You are going to be looking at the upper 8 or 9 bits. That's where the sign and mantissa of a floating point value are. Values of 0x00 0x80 and 0xFF here are pretty uncommon for valid float data.
In particular if the upper 9 bits are all 0 then this likely to be a valid floating point value only if all 32 bits are 0. Another way to say this is that if the exponent is 0, the mantissa should also be zero. If the upper bit is 1 and the next 8 bits are 0, this is legal, but also not likely to be valid. It represents -0.0 which is a legal floating point value, but a meaningless one.
To put this into numerical terms. if the upper byte is 0x00 (or 0x80), then the value has a magnitude of at most 2.35e-38. Plank's constant is 6.62e-34 m2kg/s that's 4 orders of magnitude larger. The estimated diameter of a proton is much much larger than that (estimated at 1.6e−15 meters). The smallest non-zero value for audio data is about 2.3e-10. You aren't likely to see floating point values are are legitimate measurements of anything real that are smaller than 2.35e-38 but not zero.
Going the other direction if the upper byte is 0xFF then this value is either Infinite, a NaN or larger in magnitude than 3.4e+38. The age of the universe is estimated to be 1.3e+10 years (1.3e+25 femtoseconds). The observable universe has roughly e+23 stars, Avagadro's number is 6.02e+23. Once again float values larger than e+38 rarely show up in legitimate measurements.
This is not to say that the FPU can't load or produce such values, and you will certainly see them in intermediate values of calculations if you are working with modern FPUs. A modern FPU will load a floating point value that has a exponent of 0 but the other bits are not 0. These are called denormalized values. This is why you are seeing small positive integers show up as float values in the range of e-42 even though the normal range of a float only goes down to e-38
An exponent of all 1s represents Infinity. You probably won't find infinities in your data, but you would know better than I. -Infinity is 0xFF800000, +Infinity is 0x7F800000, any value other than 0 in the mantissa of Infinity is malformed. malformed infinities are used as NaNs.
Loading a NaN into a float register can cause it to throw an exception, so you want to use integer math to do your guessing about whether your data is float or int until you are fairly certain it is int.
If you know that your floats are all going to be actual values (no NaNs, INFs, denormals or other aberrant values) then you can use this a criterion. In general an array of ints will have a high probability of containing "bad" float values.
I assume the following:
that you mean IEEE 754 single precision floating point numbers.
that the sign bit of the float is saved in the MSB of an int.
So here we go:
static boolean probablyFloat(uint32_t bits) {
bool sign = (bits & 0x80000000U) != 0;
int exp = ((bits & 0x7f800000U) >> 23) - 127;
uint32_t mant = bits & 0x007fffff;
// +- 0.0
if (exp == -127 && mant == 0)
return true;
// +- 1 billionth to 1 billion
if (-30 <= exp && exp <= 30)
return true;
// some value with only a few binary digits
if ((mant & 0x0000ffff) == 0)
return true;
return false;
}
int main() {
assert(probablyFloat(1065353216));
assert(probablyFloat(1084227584));
assert(probablyFloat(1085276160));
assert(probablyFloat(1068149391));
assert(probablyFloat(1083179008));
assert(probablyFloat(1120403456));
assert(probablyFloat(0));
assert(probablyFloat(-1110651699));
assert(probablyFloat(1195593728));
return 0;
}
simplifying what Alan said, I'd ONLY look at the integer form. and say, if the number is bigger than 99999999 then it's almost definitely a float.
This has the advantage that it's fast, easy, and avoids nan issues.
It has the disadvantage that it pretty much full of crap... i didn't actually look at what floats these will represent or anything, but it looks reasonable from your examples...
In any case, this is a heuristic, so it's GONNA be full of crap, and not always work anyway...
Measure with a micrometer, mark with chalk, cut with an axe.
Here is a heuristic I came up with, based on #kriss' idea. After a brief look at some of my data, it seems to work fairly well.
I am using it in a disassembler to detect if a 32-bit value was likely originally an integer or float literal.
public class FloatUtil {
private static final int canonicalFloatNaN = Float.floatToRawIntBits(Float.NaN);
private static final int maxFloat = Float.floatToRawIntBits(Float.MAX_VALUE);
private static final int piFloat = Float.floatToRawIntBits((float)Math.PI);
private static final int eFloat = Float.floatToRawIntBits((float)Math.E);
private static final DecimalFormat format = new DecimalFormat("0.####################E0");
public static boolean isLikelyFloat(int value) {
// Check for some common named float values
if (value == canonicalFloatNaN ||
value == maxFloat ||
value == piFloat ||
value == eFloat) {
return true;
}
// Check for some named integer values
if (value == Integer.MAX_VALUE || value == Integer.MIN_VALUE) {
return false;
}
// a non-canocical NaN is more likely to be an integer
float floatValue = Float.intBitsToFloat(value);
if (Float.isNaN(floatValue)) {
return false;
}
// Otherwise, whichever has a shorter scientific notation representation is more likely.
// Integer wins the tie
String asInt = format.format(value);
String asFloat = format.format(floatValue);
// try to strip off any small imprecision near the end of the mantissa
int decimalPoint = asFloat.indexOf('.');
int exponent = asFloat.indexOf("E");
int zeros = asFloat.indexOf("000");
if (zeros > decimalPoint && zeros < exponent) {
asFloat = asFloat.substring(0, zeros) + asFloat.substring(exponent);
} else {
int nines = asFloat.indexOf("999");
if (nines > decimalPoint && nines < exponent) {
asFloat = asFloat.substring(0, nines) + asFloat.substring(exponent);
}
}
return asFloat.length() < asInt.length();
}
}
And here are some of the values it works for (and a couple it doesn't)
#Test
public void isLikelyFloatTest() {
Assert.assertTrue(FloatUtil.isLikelyFloat(Float.floatToRawIntBits(1.23f)));
Assert.assertTrue(FloatUtil.isLikelyFloat(Float.floatToRawIntBits(1.0f)));
Assert.assertTrue(FloatUtil.isLikelyFloat(Float.floatToRawIntBits(Float.NaN)));
Assert.assertTrue(FloatUtil.isLikelyFloat(Float.floatToRawIntBits(Float.NEGATIVE_INFINITY)));
Assert.assertTrue(FloatUtil.isLikelyFloat(Float.floatToRawIntBits(Float.POSITIVE_INFINITY)));
Assert.assertTrue(FloatUtil.isLikelyFloat(Float.floatToRawIntBits(1e-30f)));
Assert.assertTrue(FloatUtil.isLikelyFloat(Float.floatToRawIntBits(1000f)));
Assert.assertTrue(FloatUtil.isLikelyFloat(Float.floatToRawIntBits(1f)));
Assert.assertTrue(FloatUtil.isLikelyFloat(Float.floatToRawIntBits(-1f)));
Assert.assertTrue(FloatUtil.isLikelyFloat(Float.floatToRawIntBits(-5f)));
Assert.assertTrue(FloatUtil.isLikelyFloat(Float.floatToRawIntBits(1.3333f)));
Assert.assertTrue(FloatUtil.isLikelyFloat(Float.floatToRawIntBits(4.5f)));
Assert.assertTrue(FloatUtil.isLikelyFloat(Float.floatToRawIntBits(.1f)));
Assert.assertTrue(FloatUtil.isLikelyFloat(Float.floatToRawIntBits(50000f)));
Assert.assertTrue(FloatUtil.isLikelyFloat(Float.floatToRawIntBits(Float.MAX_VALUE)));
Assert.assertTrue(FloatUtil.isLikelyFloat(Float.floatToRawIntBits((float)Math.PI)));
Assert.assertTrue(FloatUtil.isLikelyFloat(Float.floatToRawIntBits((float)Math.E)));
// Float.MIN_VALUE is equivalent to integer value 1. this should be detected as an integer
// Assert.assertTrue(FloatUtil.isLikelyFloat(Float.floatToRawIntBits(Float.MIN_VALUE)));
// This one doesn't quite work. It has a series of 2 0's, but we only strip 3 0's or more
// Assert.assertTrue(FloatUtil.isLikelyFloat(Float.floatToRawIntBits(1.33333f)));
Assert.assertFalse(FloatUtil.isLikelyFloat(0));
Assert.assertFalse(FloatUtil.isLikelyFloat(1));
Assert.assertFalse(FloatUtil.isLikelyFloat(10));
Assert.assertFalse(FloatUtil.isLikelyFloat(100));
Assert.assertFalse(FloatUtil.isLikelyFloat(1000));
Assert.assertFalse(FloatUtil.isLikelyFloat(1024));
Assert.assertFalse(FloatUtil.isLikelyFloat(1234));
Assert.assertFalse(FloatUtil.isLikelyFloat(-5));
Assert.assertFalse(FloatUtil.isLikelyFloat(-13));
Assert.assertFalse(FloatUtil.isLikelyFloat(-123));
Assert.assertFalse(FloatUtil.isLikelyFloat(20000000));
Assert.assertFalse(FloatUtil.isLikelyFloat(2000000000));
Assert.assertFalse(FloatUtil.isLikelyFloat(-2000000000));
Assert.assertFalse(FloatUtil.isLikelyFloat(Integer.MAX_VALUE));
Assert.assertFalse(FloatUtil.isLikelyFloat(Integer.MIN_VALUE));
Assert.assertFalse(FloatUtil.isLikelyFloat(Short.MIN_VALUE));
Assert.assertFalse(FloatUtil.isLikelyFloat(Short.MAX_VALUE));
}