How to execute a method in another thread? - c++

I'm looking for a solution for this problem in C or C++.
edit: To clarify. This is on a linux system. Linux-specific solutions are absolutely fine. Cross-plaform is not a concern.
I have a service that runs in its own thread. This service is a class with several methods, some of which need to run in the own service's thread rather than in the caller's thread.
Currently I'm using wrapper methods that create a structure with input and output parameters, insert the structure on a queue and either return (if a "command" is asynchronous) or wait for its execution (if a "command" is synchronous).
On the thread side, the service wakes, pops a structure from the queue, figures out what to execute and calls the appropriate method.
This implementation works but adding new methods is quite cumbersome: define wrapper, structure with parameters, and handler. I was wondering if there is a more straightforward means of coding this kind of model: a class method that executes on the class's own thread, instead of in the caller's thread.
edit - kind of conclusion:
It seems that there's no de facto way to implement what I asked that doesn't involve extra coding effort.
I'll stick with what I came up with, it ensures type safeness, minimizes locking, allows sync and async calls and the overhead it fairly modest.
On the other hand it requires a bit of extra coding and the dispatch mechanism may become bloated as the number of methods increases. Registering the dispatch methods on construction, or having the wrappers do that work seem to solve the issue, remove a bit of overhead and also remove some code.

My standard reference for this problem is here.
Implementing a Thread-Safe Queue using Condition Variables
As #John noted, this uses Boost.Thread.
I'd be careful about the synchronous case you described here. It's easy to get perf problems if the producer (the sending thread) waits for a result from the consumer (the service thread). What happens if you get 1000 async calls, filling up the queue with a backlog, followed by a sync call from each of your producer threads? Your system will 'play dead' until the queue backlog clears, freeing up those sync callers. Try to decouple them using async only, if you can.

There are several ways to achieve this, depending upon the complexity you want to accept. Complexity of the code is directly proportional to the flexibility desired. Here's a simple one (and quite well used):
Define a classes corresponding to each functionality your server exposes.
Each of these classes implements a function called execute and take a basic structure called input args and output args.
Inside the service register these methods classes at the time of initialization.
Once a request comes to the thread, it will have only two args, Input and Ouput, Which are the base classes for more specialized arguments, required by different method classes.
Then you write you service class as mere delegation which takes the incoming request and passes on to the respective method class based on ID or the name of the method (used during initial registration).
I hope it make sense, a very good example of this approach is in the XmlRpc++ (a c++ implementation of XmlRpc, you can get the source code from sourceforge).
To recap:
struct Input {
virtual ~Input () = 0;
};
struct Ouput {
virtual ~Output () = 0;
};
struct MethodInterface {
virtual int32_t execute (Input* __input, Output* __output) = 0;
};
// Write specialized method classes and taking specialized input, output classes
class MyService {
void registerMethod (std::string __method_name, MethodInterface* __method);
//external i/f
int32_t execute (std::string __method, Input* __input, Output* __output);
};
You will still be using the queue mechanism, but you won't need any wrappers.

IMHO, If you want to decouple method execution and thread context, you should use Active Object Pattern (AOP)
However, you need to use ACE Framework, which supports many OSes, e.g. Windows, Linux, VxWorks
You can find detailed information here
Also, AOP is a combination of Command, Proxy and Observer Patterns, if you know the details of them, you may implement your own AOP. Hope it helps

In addition to using Boost.Thread, I would look at boost::function and boost::bind. That said, it seems fair to have untyped (void) arguments passed to the target methods, and let those methods cast to the correct type (a typical idiom for languages like C#).

Hey now Rajivji, I think you have it upside-down. Complexity of code is inversely proportional to flexibility. The more complex your data structures and algorithms are, the more restrictions you are placing on acceptable inputs and behaviour.
To the OP: your description seems perfectly general and the only solution, although there are different encodings of it. The simplest may be to derive a class from:
struct Xqt { virtual void xqt(){} virtual ~Xqt(){} };
and then have a thread-safe queue of pointers to Xqt. The service thread then just pops the queue to px and calls px->xqt(), and then delete px. The most important derived class is this one:
struct Dxqt : Xqt {
xqt *delegate;
Dxqt(xqt *d) : delegate(d) {}
void xqt() { delegate->xqt(); }
};
because "all problems in Computer Science can be solved by one more level of indirection" and in particular this class doesn't delete the delegate. This is much better than using a flag, for example, to determine if the closure object should be deleted by the server thread.

Related

How can I improve a messaging system that utilizes the singleton pattern?

I'm working on a piece of software that is constructed from a series of "modules". Modules can be connected together to form the full application (one module might go to another, sort of an implied state machine). Each module can render to the screen, get updates and access state from other modules. Note that the modules are still within the same process, so no IPC needs to be designed into this.
However, these modules do not directly depend on each other. There is a singleton object that has the sole purpose of managing message passing between the modules. When you want to register for an event from any module:
CPostMaster::Instance().RegisterEvent("TheEventName", [](std::string const& data) { /* the callback */ });
The data variable is serialized data. Can be anything, but usually is XML or JSON. To send the event you do:
std::string serialized_data = /* serialized data, do this before calling */;
CPostMaster::Instance().SendEvent("TheEventName", serialized_data);
The 2nd parameter is optional.
Having a "master authority" for message passing has a drawback: The events themselves can't send varying parameters without utilizing some sort of serialization or type erasure (removes type safety from the picture and impacts performance).
But it also has the benefit of strict/strong coupling not being required, which means that at any given time a different module can be responsible for sending a specific event without the receiving modules having to change.
The alternative seems to be not using a singleton, and instead each module receives an object that it can use to subscribe to. This could get messy especially when you are passing them around everywhere, it will quickly mean that functions start taking boilerplate parameters.
What is a good design for message passing in a system such as this? How can it be improved and be made manageable? Type safety and open/close principles are important here. I think it's OK to have direct dependencies across modules so long as they can be mocked (for unit testing) and easily swapped out should modules change without severely impacting the whole system (but this is part of the open/close principle).
First: I dislike singletons. The only singleton I accept is a singleton manager (some sort of central instance distributor) that handles a defined init and deinit of all "singletons" in a defined order.
But back to your problem:
Your title already has the solution: Define a message interface. If you want type-safety define an IMessage with common attributes.
Then define specializations of IMessage which then are consumed by your callbacks.
The tricky part is: You will need RTTI for that, which is odd in c++, I know but might be worth the benefits, if you are restricted to gcc or visual studio, you could make use of those types, or implement some simple RTTI in the IMessage itself to avoid dynamic_cast.
To avoid boilerplate code in a callback which checks and casts around the IMessage I would provide a utility function (pseudo code, adjust for pointers, references, smart ptrs, const correctness etc.)
T SafeCast<T>(IMessage message);
depending on the implementation of your compiler you should add restrictions to T to be of a sub type of IMessage and what should happen when the cast fails (exception, nullptr, etc).
Alternatively: Check how others have solved this (maybe Qt's Signals&Slots or something in Boost)
I would make the sub modules dependent on a parent class (in your case the singleton). Then you could pass this object's reference along the line, to be used in the modules.
Module(Handler& h) : _h(h) { }
void do_stuff(){
_h.RegisterEvent("TheEventName", [](std::string const& data)
{ /* the callback */ })
Then I would register your Module class itself, or another class, as an Event, and on the Handler side, I would formalize the messaging in a way that you'd get multiple callbacks instead of just one. You'd have to formalize your message though, but you'd have type safety instead of passing strings.
For example the handler, while parsing a message, he'd call:
_callback.start(); //signals the start of a message
_callback.signalParam1(1); //calls Module.signalParam(int);
_callback.signalParam2("test"); //calls Module.signalParam2(const char*);
_callback.end();
Your Module would need to implement those.

What is the meaning of a C++ Wrapper Class?

I have a little trouble in understanding a wrapper class. It would be great if some one could help providing apt examples.
What is a C++ Wrapper Class and what are the circumstances of writing it ?
What is it's use any way ?
Thanks.
A "wrapper class" is a de facto term meaning a class that "wraps around" a resource; i.e, that manages the resource. When people write a wrapper, then, they are doing something like this:
class int_ptr_wrapper
{
public:
int_ptr_wrapper(int value = 0) :
mInt(new int(value))
{}
// note! needs copy-constructor and copy-assignment operator!
~int_ptr_wrapper()
{
delete mInt;
}
private:
int* mInt;
};
This class manages ("wraps") a pointer to an int. All resources should be wrapped in some fashion, for cleanliness (no explicit clean up code or noise) and correctness (destructor is guaranteed to run; cannot forget to clean up, and safe with exceptions).
This pattern is called Scoped-bound Resource Management (SBRM), though a far more common (but most esoteric) name is Resource-Acquisition is Initialization (RAII). The idea is to bind a resource's clean-up to a destructor, for the reasons given above: the scope handles the rest.
Note that I said it was missing a copy-constructor and copy-assignment operator. This is due to the Rule of Three. (See linked question for detailed explanation.) The simplest way to correctly implement this rule is with the copy-and-swap idiom, explained here.
Sometimes, it's not pragmatic to write wrapper class for resource clean-up, usually when the resource is unique or used once. (Or with transactional programming.) The solution to this is called scope guard, a way of writing clean-up code inside the function that needs it.
You may find more information by searching for it in your favorite search provider (that is, Google), or going to the "primary" document here. Note that Boost provides a utility for this, as it usually does for good idioms.
A wrapper is just some smallish class whose purpose is to provide a different interface than the thing it wraps. For example, it is common to take a C API and write one or more classes that "wrap" it to provide an object-oriented interface rather than a procedural one.
You asked for circumstances of writing wrapper classes.For example, if you are in a company that makes use of different types of cameras, let us say USB, firewire etc. Each of the manufacturers will provide a different set of functions through an API to start the camera, set the parameters and read the image stream from it.
Now the programmer who builds the applications in your company need to be insulated from all the specific details in the various APIs. Now, what you can do is write a wrapper class around the APIs for each of the cameras or smarter, just one class with simple functions, wrapping around the existing code provided by the API.
For instance, we can design classes
MyUSBCameraWrapperClass,
MyFirewireCameraWrapperClass
with some member functions like
setFrameRate(int fps),
getImgFrame(*framebuffer), etc.
The programmers in your company can then use MyUSBCameraWrapperClass usbcam; usbcam.setFrameRate(30), etc. You get the point??
A wrapper class is a class that wraps a functionality with another interface.
Suppose you have the function f():
void f() { std::cout << "hello\n"; }
A simple wrapper class might be
class C {
f() { std::cout << "hello\n"; }
};
You might write a wrapper when your existing codebase expects a particular interface. This is the essence of the adapter design pattern. Or you might wrap a function in a class if you wish to maintain state for that function. Or you might wrap a function in a class' constructor or destructor if you want it to conveniently and automatically be called for you in a correct and deterministic manner. And the list goes on.
I use two kinds:
resource wrappers for function pairs provided by the OS like
UNIXs: open/close, mmap/munmap, dlopen/dlclose
Windows: CreateFile/DestroyHandle, CreateFileMapping/CloseHandle, LoadLibrary/FreeLibrary
functional wrappers for functions provided by the OS like
UNIXs: write, read, dlsym
Windows: ReadFile, WriteFile, GetProcAddress
The resource wrapper makes certain, that compiler generated code worries about the destruction of the resource created by the constructor via what is today called RAII. It is easy to combine such classes via base/member class relationships into complex classes.
In case of the creation function fails, a system error exception is thrown, providing rich error information about the error.
The functional wrapper is used instead of the plain OS function. Also in case of failure a system exception is being thrown.
This way somebody using my code doesn't need a debugger and debug code to find out what is failing in a complex environment with many libraries and processes and remote machines.
Also these wrappers provide some OS abstraction -- the code using them does not have to worry about OS differences.

Which is better: Function overriding or passing a function pointer for event handling

So, I'm writing code for a class that will go into a library that will be used by others. This class will intercept and process incoming messages (details are not important but it's using the activemq-cpp library). The outline of this consumer class is
class MessageConsumer {
...
public:
void runConsumer();
virtual void onMessage(const Message* message);
}
where runConsumer() sets up the connection and starts listening and onMessage() is called when a message is received.
My questions is this: People who'll use this code will each have their own way of processing the different messages. How can I keep MessageConsumer generic but offer this flexibility, while keeping their code simple?
Two options:
Should they inherit a new class from MessageConsumer and write their own onMessage()?
Should they pass a pointer to a message handling function to MessageConsumer?
What do you think, which option is better and why?
Thanks!
In one approach, clients are allowed to register a callback and then the MessageConsumer invokes the registered callback. This is something like an observer/broadcast design pattern.
The second approach, where clients have to inherit and override MessageConsumer would be something like Strategy design pattern.
Basic design goals suggest to use the weakest relationship to promote loose coupling. Since inhertiance is a stronger relationship as compared to a simple association, everything else being the same Approach 1 is preferred.
From Herb's article
"Inheritance is often overused, even
by experienced developers. Always
minimize coupling: If a class
relationship can be expressed in more
than one way, use the weakest
relationship that's practical. Given
that inheritance is nearly the
strongest relationship you can express
in C++ (second only to friendship),
it's only really appropriate when
there is no equivalent weaker
alternative."
But as James points out, it is tough to comment unless the overall design constraints are known clearly.
Inheritance will make your library more OO-friendly and may improve readability. But really, the choices are about the same since the compiler will check that the user has supplied the function (assuming you declare a pure virtual handler in the base class), and the underlying mechanism will be accomplished via a pointer anyway (virtual table in the case of inheritance).
Pure virtual functions allow the compiler to check that the client code implements the handler. Virtual dispatch is active immediately after an object is constructed, and someone looking at the derived class can reason accurately about its handling. Data needed for the handling can be conveniently and clearly grouped into the derived class. Factories can still select a particular derived class to instantiate.
Function pointers are run-time state, so there's a little more care needed to initialise them in a timely fashion, for optional run-time checks on their being set and error handling, and to reason about which set is in effect during program execution. With that comes more freedom to vary them within the lifetime of the object.
A third alternative is a template policy class, or the Curiously Recurring Template Pattern, to lock in the behaviours at compile time. This potentially allows inlining of callbacks, dead-code elimination and other optimisations.
virtual function or tepmlated functor are the way to go. These approaches give greater flexibility ad looser coupling than function pointer one.
To illustrate that - function pointer approach can be wrapped with first two, but not vice-versa.
void cbFunction();
class Interface {
virtual void act() =0 ;
};
class CbFuctionWrapper:public Interface {
public:
virtual void act() {cbFunction()};
};
class AnotherImpl: public Interface {
Context _c; // You can't pass additional context with usual function without downcasting, but OO is all about that.
public:
virtual void act() {...}
}

C++ Callbacks? Should I use Member Func Pointers/Delegates/Events?

I am entering a realm that is new to me, but basically I need to implement callbacks in C++. I am designing a toolkit for myself to use to simplify my life. Basically it is a .dll plugin that will be exposing a lot of functions to my other .dll plugins.
One of these functions is HookEvent(const char *event_name, void *callback) which will allow me to hook different events that get fired. Here would be an example...
Example_Plugin1.dll does HookEvent("player_spawn", &Plugin1::Event_PlayerSpawn);
Example_Plugin2.dll does HookEvent("player_spawn", &Plugin2::Event_PlayerSpawn);
I need to figure out the best (and preferably easiest) method of setting up a callbacks system that will work well for this. I have been reading up on C++ callbacks for a few hours now, and found quite a few different approaches.
I assume the easiest thing to do would be make a template, and use typedef bool (ClassName::*EventHookCallback)(IGameEvent, bool); After that, I am a bit foggy.
I also read that Delegates or a .NET style events system are other possible approaches. I am already somewhat confused, so I don't want to confuse myself more, but figured it was worth asking.
Here is a link to the C++ .NET style events system I was reading about.
http://cratonica.wordpress.com/2010/02/19/implementing-c-net-events-in-c/
So what do you guys suggest? Any tips as far as implementing it would be most appreciated.
If you want generalized event firing Boost.Signals2 might be applicable.
The Boost.Signals2 library is an
implementation of a managed signals
and slots system. Signals represent
callbacks with multiple targets, and
are also called publishers or events
in similar systems. Signals are
connected to some set of slots, which
are callback receivers (also called
event targets or subscribers), which
are called when the signal is
"emitted."
Even if you don't need this level of flexibility you should be able to simplify the function binding in your code using Boost.Bind, or the C++0x equivalents.
EDIT:
There's an excellent discussion from Herb Sutter of the issues you could face here. You could use this for guidance if you decide you don't need the full Boost feature set, and so roll your own.
How about using Qt Signal and Slot? It does what callbacks do but without the messiness of making anything not part of your callback parameters global.
Boost.Signals would be my choice, combined with things like boost::bind and Boost.Function.
I would use an abstract base class as a plugin interface. (And in fact, I have used a pattern like the one below before.)
Library, PluginIfc.h:
class PluginIfc {
public:
virtual ~PluginIfc() = 0;
virtual bool EventCallback(const char* event_name, IGameEvent, bool) = 0;
};
// For Windows, add dllexport/dllimport magic to this declaration.
// This is the only symbol you will look up from the plugin and invoke.
extern "C" PluginIfc* GetPlugin();
Plugin:
#include <PluginIfc.h>
class Plugin1 : public PluginIfc {
public:
virtual bool EventCallback(const char* event_name, IGameEvent, bool);
Plugin1& get() { return the_plugin_obj; }
bool Event_PlayerSpawn(IGameEvent, bool);
// ...
private:
std::vector<std::string> _some_member;
static Plugin1 the_plugin_obj; // constructed when plugin loaded
};
Plugin1 Plugin1::the_plugin_obj;
PluginIfc* GetPlugin() { return &Plugin1::get(); }
This way, your plugin classes can easily have members, and C++'s virtual call mechanism takes care of giving you a good this pointer in EventCallback.
It may be tempting to make a virtual method per event type, say just make Event_PlayerSpawn and similar methods virtual. But then whenever you want to add an event type, if this means changing class PluginIfc, your old compiled plugins are no longer compatible. So it's safer to use a string event identifier (for extensibility) and have the main callback sort events off to more specific methods.
The major drawback here (as compared to a signal-slot type implementation) is that all callbacks must take the same set of arguments. But your question sounded like that would be adequate. And it's often possible to work within that limitation by making sure the set of arguments is very flexible, using strings to be parsed or Any-style objects.
Sounds like you might be interested in how to build your own plugin framework. The problems you'll encounter are likely the same. Have a look at this nice Dr Dobbs article Building Your Own Plugin Framework.
Hope this helps!
Implementing your own callback system is non-trivial.
My understanding is that your aim is to map event types to specific callback functions.
E.g. if "player_spawn" event is risen the &Plugin1::Event_PlayerSpawn will be called.
So what you should do is the following:
1) Define all the events of interest. Make them as generic as possible. They can
encapsulate any information you need
2) Create a Registrar. I.e. a class that all modules register their interest for specific
methods. E.g. Registrar.register(player_spawn,this,Event_PlayerSpawn);
3) Registrar has a queue of all subscribers.
4) You can also have a uniform interface for the modules. I.e. all module implement a specific function but based on event's data can do different things
5) When an event occurs, all the subscribers interested for the specific event get notified by calling the appropriate function
6)Subscriber can de-register when ever is need
Hope this helps.

C++ threaded class design from non-threaded class

I'm working on a library doing audio encoding/decoding. The encoder shall be able to use multiple cores (i.e. multiple threads, using boost library), if available. What i have right now is a class that performs all encoding-relevant operations.
The next step i want to take is to make that class threaded. So i'm wondering how to do this.
I thought about writing a thread-class, creating n threads for n cores and then calling the encoder with the appropriate arguments. But maybe this is an overkill and there is no need for another class, so i'm going to make use of the "user interface" for thread-creation.
I hope there are any suggestions.
Edit: I'm forced to use multiple threads for the pre-processing, creating statistics of the input data using CUDA. So, if there are multiple Cards in a system the only way to use them in parallel is to create multiple threads.
Example: 4 Files, 4 different calculation units (separate memories, unique device id). Each of the files shall be executed on one calculation unit.
What i have right now is:
class Encoder {
[...]
public:
worker(T data, int devId);
[...]
}
So i think the best way is to call worker from threaded from main()
boost::thread w1(&Encoder::worker, data0, 0);
boost::thread w2(&Encoder::worker, data1, 1);
boost::thread w3(&Encoder::worker, data2, 2);
boost::thread w4(&Encoder::worker, data3, 3);
and not to implement a thread-class.
Have a look at OpenMP, if your compiler supports it. It can be as easy as adding a compiler flag and spraying on a few #pragmas.
I think the problem is more at a design level, can you elaborate a bit on what classes do you have ? I work on CUDA too, and usually one creates an interface (aka Facade pattern) for using the architecture specific (CUDA) layer.
Edit: After reading the update interface I think you are doing the right thing.
Keep the Encoder logic inside the class and use plain boost::threads to execute different units of work. Just pay attention on thread safety inside Encoder's methods.
Your current suggestion only works if Encoder::worker is static. I assume that is the case. One concern would be, if your current implementation supports a way to gracefully abort an encoding-job. I suppose there is some method in your code of the form:
while( MoreInputSamples ) {
// Do more encoding
}
This may be modified with some additional condition that checks if the jobs has received an abort signal. I work on video-decoding a lot and i like to have my decoder classes like that:
class Decoder {
public:
void DoOneStepOfDecoding( AccessUnit & Input );
}
The output usually goes to some ring-buffer. This way, I can easily wrap this in both single-and multithreaded scenarios.
The preceding code
boost::thread w1(&Encoder::worker, data0, 0);
is not valid until worker is static.
There is Boost.Task on th review Schedule that allows you to call asynchronously any callable, as follows
boost::tasks::async(
boost::tasks::make_task( &Encoder::worker, data0, 0) ) );
This results in Encoder::worker been called on a default threadpool. The function returns a handle that allows to know when the task has been executed.