I have a Django model with foreign-key relations that are marked as deletion.PROTECT, and I am OK with that behavior, since it's how the model should behave in most scenarios.
However, there is one use case for those models where I kind of need to do a "hard delete" (ie user wants to delete their account). In that case, I'd really like everything to behave like a CASCADE, instead of having to delete each of the foreign-key relationships manually. Is there a way to do this cleanly? In an ideal world, the model.delete() call would take a parameter that is something like force_cascade=True.
As django also creates the database with PROTECTED relations you need to do the cascading deletion yourself manually. The database itself will otherwise forbid the deletion.
Django's ORM can help you with that, the only thing you need to do is to find recursively all references to the user and delete them in reverse order.
It is also an advantage to do this manually as you might want to replace some occurrences of the user with a substitute (i.e. a virtual "deleted user"). I could think of comments in a message board that should be kept even so if the user deletes their account.
To find the relations pointing to the current user and replace them with a ghost user, you can use the following snippet.
from typing import List
from django.contrib.auth import get_user_model
from django.db.models import Model
from django.db.models.fields.reverse_related import (
ManyToOneRel,
ForeignObjectRel,
)
User = get_user_model()
def get_all_relations(model: Model) -> List[ForeignObjectRel]:
"""
Return all Many to One Relation to point to the given model
"""
result: List[ForeignObjectRel] = []
for field in model._meta.get_fields(include_hidden=True):
if isinstance(field, ManyToOneRel):
result.append(field)
return result
def print_updated(name, number):
"""
Simple Debug function
"""
if number > 0:
print(f" Update {number} {name}")
def delete_user_and_replace_with_substitute(user_to_delete: User):
"""
Replace all relations to user with fake replacement user
:param user_to_delete: the user to delete
"""
replacement_user: User = User.objects.get(pk=0) # define your replacement user
# replacement_user: User = User.objects.get(email='email#a.com')
for field in get_all_relations(user_to_delete):
field: ManyToOneRel
target_model: Model = field.related_model
target_field: str = field.remote_field.name
updated: int = target_model.objects.filter(
**{target_field: user_to_delete}
).update(**{target_field: replacement_user})
print_updated(target_model._meta.verbose_name, updated)
user_to_delete.delete()
For a real deletion simply replace the .update(...) function with a .delete() call (don't forget to recursively look for protected relations before, if needed)
There might be also a postgresql related solution that I am not aware of. The given solution is database independent.
In general it is a good idea to keep every relation PROTECTED to prevent accidentally deleting important database entries and delete manually with care.
models.PROTECT is a setting for the table in the database. You would have to issue raw SQL instructions to override it, and that would be database-specific (and I don't have a clue how to do that).
The alternative is to navigate the "tree" of objects that you want to remove, and then delete objects working from the protected "leaves" inwards to the "trunk". So if you had
class Bar( models.Model):
user = models.ForeignKey( User, models.PROTECT, ...)
...
class Foo( models.Model):
bar = models.ForeignKey( Bar, models.PROTECT, ... )
...
Then to delete a user object user you would need
def delete_user( user):
for bar in user.bar_set.all():
bar.foo_set.all().delete()
bar.delete()
user.delete()
I'd wrap it in a transaction so it either deleted everything or nothing.
It will hit the DB multiple times. I'm assuming that the number of related (bar, baz) objects is fairly small and that you won't be deleting users very often.
I have always wondered what one does if instance a has a protected foreign key relation to instance b and vice versa (maybe via intermediates). At face value this means you can create objects that are un-deleteable.
I'm quite familiar with Django, but I recently noticed there exists an on_delete=models.CASCADE option with the models. I have searched for the documentation for the same, but I couldn't find anything more than:
Changed in Django 1.9:
on_delete can now be used as the second positional argument (previously it was typically only passed as a keyword argument). It will be a required argument in Django 2.0.
An example case of usage is:
from django.db import models
class Car(models.Model):
manufacturer = models.ForeignKey(
'Manufacturer',
on_delete=models.CASCADE,
)
# ...
class Manufacturer(models.Model):
# ...
pass
What does on_delete do? (I guess the actions to be done if the model is deleted.)
What does models.CASCADE do? (any hints in documentation)
What other options are available (if my guess is correct)?
Where does the documentation for this reside?
This is the behaviour to adopt when the referenced object is deleted. It is not specific to Django; this is an SQL standard. Although Django has its own implementation on top of SQL. (1)
There are seven possible actions to take when such event occurs:
CASCADE: When the referenced object is deleted, also delete the objects that have references to it (when you remove a blog post for instance, you might want to delete comments as well). SQL equivalent: CASCADE.
PROTECT: Forbid the deletion of the referenced object. To delete it you will have to delete all objects that reference it manually. SQL equivalent: RESTRICT.
RESTRICT: (introduced in Django 3.1) Similar behavior as PROTECT that matches SQL's RESTRICT more accurately. (See django documentation example)
SET_NULL: Set the reference to NULL (requires the field to be nullable). For instance, when you delete a User, you might want to keep the comments he posted on blog posts, but say it was posted by an anonymous (or deleted) user. SQL equivalent: SET NULL.
SET_DEFAULT: Set the default value. SQL equivalent: SET DEFAULT.
SET(...): Set a given value. This one is not part of the SQL standard and is entirely handled by Django.
DO_NOTHING: Probably a very bad idea since this would create integrity issues in your database (referencing an object that actually doesn't exist). SQL equivalent: NO ACTION. (2)
Source: Django documentation
See also the documentation of PostgreSQL for instance.
In most cases, CASCADE is the expected behaviour, but for every ForeignKey, you should always ask yourself what is the expected behaviour in this situation. PROTECT and SET_NULL are often useful. Setting CASCADE where it should not, can potentially delete all of your database in cascade, by simply deleting a single user.
Additional note to clarify cascade direction
It's funny to notice that the direction of the CASCADE action is not clear to many people. Actually, it's funny to notice that only the CASCADE action is not clear. I understand the cascade behavior might be confusing, however you must think that it is the same direction as any other action. Thus, if you feel that CASCADE direction is not clear to you, it actually means that on_delete behavior is not clear to you.
In your database, a foreign key is basically represented by an integer field which value is the primary key of the foreign object. Let's say you have an entry comment_A, which has a foreign key to an entry article_B. If you delete the entry comment_A, everything is fine. article_B used to live without comment_A and don't bother if it's deleted. However, if you delete article_B, then comment_A panics! It never lived without article_B and needs it, it's part of its attributes (article=article_B, but what is article_B???). This is where on_delete steps in, to determine how to resolve this integrity error, either by saying:
"No! Please! Don't! I can't live without you!" (which is said PROTECT or RESTRICT in Django/SQL)
"All right, if I'm not yours, then I'm nobody's" (which is said SET_NULL)
"Good bye world, I can't live without article_B" and commit suicide (this is the CASCADE behavior).
"It's OK, I've got spare lover, I'll reference article_C from now" (SET_DEFAULT, or even SET(...)).
"I can't face reality, I'll keep calling your name even if that's the only thing left to me!" (DO_NOTHING)
I hope it makes cascade direction clearer. :)
Footnotes
(1) Django has its own implementation on top of SQL. And, as mentioned by #JoeMjr2 in the comments below, Django will not create the SQL constraints. If you want the constraints to be ensured by your database (for instance, if your database is used by another application, or if you hang in the database console from time to time), you might want to set the related constraints manually yourself. There is an open ticket to add support for database-level on delete constraints in Django.
(2) Actually, there is one case where DO_NOTHING can be useful: If you want to skip Django's implementation and implement the constraint yourself at the database-level.
The on_delete method is used to tell Django what to do with model instances that depend on the model instance you delete. (e.g. a ForeignKey relationship). The on_delete=models.CASCADE tells Django to cascade the deleting effect i.e. continue deleting the dependent models as well.
Here's a more concrete example. Assume you have an Author model that is a ForeignKey in a Book model. Now, if you delete an instance of the Author model, Django would not know what to do with instances of the Book model that depend on that instance of Author model. The on_delete method tells Django what to do in that case. Setting on_delete=models.CASCADE will instruct Django to cascade the deleting effect i.e. delete all the Book model instances that depend on the Author model instance you deleted.
Note: on_delete will become a required argument in Django 2.0. In older versions it defaults to CASCADE.
Here's the entire official documentation.
FYI, the on_delete parameter in models is backwards from what it sounds like. You put on_delete on a foreign key (FK) on a model to tell Django what to do if the FK entry that you are pointing to on your record is deleted. The options our shop have used the most are PROTECT, CASCADE, and SET_NULL. Here are the basic rules I have figured out:
Use PROTECT when your FK is pointing to a look-up table that really shouldn't be changing and that certainly should not cause your table to change. If anyone tries to delete an entry on that look-up table, PROTECT prevents them from deleting it if it is tied to any records. It also prevents Django from deleting your record just because it deleted an entry on a look-up table. This last part is critical. If someone were to delete the gender "Female" from my Gender table, I CERTAINLY would NOT want that to instantly delete any and all people I had in my Person table who had that gender.
Use CASCADE when your FK is pointing to a "parent" record. So, if a Person can have many PersonEthnicity entries (he/she can be American Indian, Black, and White), and that Person is deleted, I really would want any "child" PersonEthnicity entries to be deleted. They are irrelevant without the Person.
Use SET_NULL when you do want people to be allowed to delete an entry on a look-up table, but you still want to preserve your record. For example, if a Person can have a HighSchool, but it doesn't really matter to me if that high-school goes away on my look-up table, I would say on_delete=SET_NULL. This would leave my Person record out there; it just would just set the high-school FK on my Person to null. Obviously, you will have to allow null=True on that FK.
Here is an example of a model that does all three things:
class PurchPurchaseAccount(models.Model):
id = models.AutoField(primary_key=True)
purchase = models.ForeignKey(PurchPurchase, null=True, db_column='purchase', blank=True, on_delete=models.CASCADE) # If "parent" rec gone, delete "child" rec!!!
paid_from_acct = models.ForeignKey(PurchPaidFromAcct, null=True, db_column='paid_from_acct', blank=True, on_delete=models.PROTECT) # Disallow lookup deletion & do not delete this rec.
_updated = models.DateTimeField()
_updatedby = models.ForeignKey(Person, null=True, db_column='_updatedby', blank=True, related_name='acctupdated_by', on_delete=models.SET_NULL) # Person records shouldn't be deleted, but if they are, preserve this PurchPurchaseAccount entry, and just set this person to null.
def __unicode__(self):
return str(self.paid_from_acct.display)
class Meta:
db_table = u'purch_purchase_account'
As a last tidbit, did you know that if you don't specify on_delete (or didn't), the default behavior is CASCADE? This means that if someone deleted a gender entry on your Gender table, any Person records with that gender were also deleted!
I would say, "If in doubt, set on_delete=models.PROTECT." Then go test your application. You will quickly figure out which FKs should be labeled the other values without endangering any of your data.
Also, it is worth noting that on_delete=CASCADE is actually not added to any of your migrations, if that is the behavior you are selecting. I guess this is because it is the default, so putting on_delete=CASCADE is the same thing as putting nothing.
As mentioned earlier, CASCADE will delete the record that has a foreign key and references another object that was deleted. So for example if you have a real estate website and have a Property that references a City
class City(models.Model):
# define model fields for a city
class Property(models.Model):
city = models.ForeignKey(City, on_delete = models.CASCADE)
# define model fields for a property
and now when the City is deleted from the database, all associated Properties (eg. real estate located in that city) will also be deleted from the database
Now I also want to mention the merit of other options, such as SET_NULL or SET_DEFAULT or even DO_NOTHING. Basically, from the administration perspective, you want to "delete" those records. But you don't really want them to disappear. For many reasons. Someone might have deleted it accidentally, or for auditing and monitoring. And plain reporting. So it can be a way to "disconnect" the property from a City. Again, it will depend on how your application is written.
For example, some applications have a field "deleted" which is 0 or 1. And all their searches and list views etc, anything that can appear in reports or anywhere the user can access it from the front end, exclude anything that is deleted == 1. However, if you create a custom report or a custom query to pull down a list of records that were deleted and even more so to see when it was last modified (another field) and by whom (i.e. who deleted it and when)..that is very advantageous from the executive standpoint.
And don't forget that you can revert accidental deletions as simple as deleted = 0 for those records.
My point is, if there is a functionality, there is always a reason behind it. Not always a good reason. But a reason. And often a good one too.
Using CASCADE means actually telling Django to delete the referenced record.
In the poll app example below: When a 'Question' gets deleted it will also delete the Choices this Question has.
e.g Question: How did you hear about us?
(Choices: 1. Friends 2. TV Ad 3. Search Engine 4. Email Promotion)
When you delete this question, it will also delete all these four choices from the table.
Note that which direction it flows.
You don't have to put on_delete=models.CASCADE in Question Model put it in the Choice.
from django.db import models
class Question(models.Model):
question_text = models.CharField(max_length=200)
pub_date = models.dateTimeField('date_published')
class Choice(models.Model):
question = models.ForeignKey(Question, on_delete=models.CASCADE)
choice_text = models.CharField(max_legth=200)
votes = models.IntegerField(default=0)
simply put, on_delete is an instruction to specify what modifications will be made to the object in case the foreign object is deleted:
CASCADE: will remove the child object when the foreign object is deleted
SET_NULL: will set the child object foreign key to null
SET_DEFAULT: will set the child object to the default data given while creating the model
RESTRICT: raises a RestrictedError under certain conditions.
PROTECT: prevents the foreign object from being deleted so long there are child objects inheriting from it
additional links:
https://docs.djangoproject.com/en/4.0/ref/models/fields/#foreignkey
Here is answer for your question that says: why we use on_delete?
When an object referenced by a ForeignKey is deleted, Django by default emulates the behavior of the SQL constraint ON DELETE CASCADE and also deletes the object containing the ForeignKey. This behavior can be overridden by specifying the on_delete argument. For example, if you have a nullable ForeignKey and you want it to be set null when the referenced object is deleted:
user = models.ForeignKey(User, blank=True, null=True, on_delete=models.SET_NULL)
The possible values for on_delete are found in django.db.models:
CASCADE: Cascade deletes; the default.
PROTECT: Prevent deletion of the referenced object by raising ProtectedError, a subclass of django.db.IntegrityError.
SET_NULL: Set the ForeignKey null; this is only possible if null is True.
SET_DEFAULT: Set the ForeignKey to its default value; a default for the ForeignKey must be set.
Let's say you have two models, one named Person and another one named Companies, and that, by definition, one person can create more than one company.
Considering a company can have one and only one person, we want that when a person is deleted that all the companies associated with that person also be deleted.
So, we start by creating a Person model, like this
class Person(models.Model):
id = models.IntegerField(primary_key=True)
name = models.CharField(max_length=20)
def __str__(self):
return self.id+self.name
Then, the Companies model can look like this
class Companies(models.Model):
title = models.CharField(max_length=20)
description=models.CharField(max_length=10)
person= models.ForeignKey(Person,related_name='persons',on_delete=models.CASCADE)
Notice the usage of on_delete=models.CASCADE in the model Companies. That is to delete all companies when the person that owns it (instance of class Person) is deleted.
Reorient your mental model of the functionality of "CASCADE" by thinking of adding a FK to an already existing cascade (i.e. a waterfall). The source of this waterfall is a primary key (PK). Deletes flow down.
So if you define a FK's on_delete as "CASCADE," you're adding this FK's record to a cascade of deletes originating from the PK. The FK's record may participate in this cascade or not ("SET_NULL"). In fact, a record with a FK may even prevent the flow of the deletes! Build a dam with "PROTECT."
Deletes all child fields in the database when parent object is deleted then we use on_delete as so:
class user(models.Model):
commodities = models.ForeignKey(commodity, on_delete=models.CASCADE)
CASCADE will also delete the corresponding field connected with it.
I defined in Django two models, the second one is based on the first, and is not managed because it is based backend on a SQL Server view (not on a table)
class Embedder(models.Model):
{my_fields...}
class MostRecent(models.Model):
embedder = models.ForeignKey(Embedder)
status = models.IntegerField()
class Meta:
db_table = 'embedder_most_recent'
managed = False
The problem is that I can't delete an instance of Embedder because of this error:
View or function 'embedder_most_recent' is not updatable because the modification affects multiple base tables. (4405) (SQLExecDirectW)")
The problem seems to reside in Django since I can delete the embedder row in SQL without error. How can I solve the problem?
As marcusshep already posted, there is sufficient documentation for this behavior in the Django docs.
Since a Django ForeignKey references another Django model object, any attempt to delete the parent object means Django must find a way to manage objects referencing the ForeignKey. You should specify this behavior explicitly.
The example below will delete the object containing the ForeignKey:
class MostRecent(models.Model):
embedder = models.ForeignKey(Embedder, on_delete=models.CASCADE)
status = models.IntegerField()
Try defining an alternate on delete. https://docs.djangoproject.com/en/1.9/ref/models/fields/#django.db.models.ForeignKey.on_delete
When deleting an object in admin interface, I want to prevent removal of related objects.
class ObjectToDelete(models.Model):
timestamp = models.DateTimeField()
class RelatedObject(models.Model):
otd = models.ForeignKey('app.ObjectToDelete', null=True, blank=True)
Since the ForeignKey in RelatedObject is nullable, I should be able to set it to None instead of deleting the whole object. And this is exactly the behaviour I want to have.
I know that I can create custom delete actions for this admin interface.
And I am also aware that I could make ManyToManyField in ObjectToDelete which would also prevent removal of RelatedObject. But then I wouldn't have the one-to-many relation which I want.
Is there a simple way of achieving this?
Set the on_delete option for your foreign key. If you you want to set the value to None when the related object is deleted, use SET_NULL:
models.ForeignKey('app.ObjectToDelete', on_delete=models.SET_NULL)
These rules apply however you delete an object, whether you do it in the admin panel or working directly with the Model instance. (But it won't take effect if you work directly with the underlying database in SQL.)
Let us say I have a model which contains related (foreign key) fields. Likewise, those Foreign Key fields may refer to models which may or may not contain related fields. Note that relational fields in Django may be one-to-one, many-to-one, or many-to-many.
Now, given an instance of a model, I want to recursively and dynamically get all instances of the models related to it, either directly or indirectly down the line. Conceptually, i want to perform a traversal of the related objects and return them.
Example:
class Model1{
rfield1 = models.ForeignKey("Model2")
rfield2 = models.ManyToManyField("Model3")
normalfield1 = models.Charfield(max_length=50)
}
class Model2{
sfield = models.ForeignKey("Model3")
normalfield = models.CharField(max_length=50)
}
class Model3{
normalfield = models.CharField(max_length=50)
}
Let's say, I have an instance of model Model1 model1, and I want to get objects directly related to it i.e. all Model2 and Model3 objects, and also those which are indirectly related i.e. all Model3 objects related to the Model2 objects retrieved previously. I also want to consider the case of a One-to-One field where the related field is defined on the OTHER MODEL.
Also, note that it might not be the case that I know the model of an instance I'm currently working on. Let's say in the previous example, I may not now that model1 is an instance of Model1 model. So I want to perform all these dynamically.
In order to this, I think I need a way to get all related fields of an object.
How to get all the related fields of an object?
And how should I use them to get the actual related objects?
Or is there a way to better to do this? Thank you very much!
UPDATE:
I already know how to perform 1, and 2 basically follows directly from 1. :) Update later.
If you have model1 getting all it's many to many field names (etc) is easy since this is well know and these are all stored in the meta's 'local_many_to_many' list:
[field.name for field in model1._meta.local_many_to_many]
The foreign keys are a bit more tricky since they are stored with all other fields in the meta's 'local_fields' list. Hence we need to make sure that it has a relation of sorts. This can be done as follows:
[field.name for field in model1._meta.local_fields if field.rel]
This method has requires no knowledge of your models. Also further interrogation can be done on the field object if the name is not enough.