OpenGL ES 1.1 image rotation from its center - c++

I'm trying to rotate a 2D image using OGL ES. After load it I can move it through the screen but when trying to rotate the image through its center, it has an odd behavior as the rotation center is the lower-left screen corner, not the center of the image itself.
Googling around I've read that I could push the current matrix, change whatever I need (translate the coords, rotate the image, etc) and then pop the matrix coming back to the previous matrix status... I did it but still not working as I'm looking for (but at least now seems that the original coords where it does the rotation are not the lower-left corner...)
Any thoughts? Anyone could spot where my problem is?
Any help would be much appreciated! Thanks!!
void drawImage(Image *img)
{
GLfloat fX = (GLfloat)img->x;
GLfloat fY = (GLfloat)(flipY(img->m_height+img->y));
GLfloat coordinates[] = { 0, img->m_textureHeight, img->m_textureWidth, img->m_textureHeight, 0, 0, img->m_textureWidth, 0 };
GLfloat vertices[] =
{
fX, fY, 0.0,
img->m_width+fX, fY, 0.0,
fX, img->m_height+fY, 0.0,
img->m_width+fX, img->m_height+fY, 0.0
};
//Push and change de matrix, translate coords, rotate and scale image and then pop the matrix
glPushMatrix(); //push texture matrix
glTranslatef((int)fX, (int)fY, 0.0); //translate texture matrix
// rotate
if (img->rotation != 0.0f )
glRotatef( -img->rotation, 0.0f, 0.0f, 1.0f );
// scale
if (img->scaleX != 1.0f || img->scaleY != 1.0f)
glScalef( img->scaleX, img->scaleY, 1.0f );
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glColor4f(1.0, 0.0, 0.0, 1.0);
glBindTexture(GL_TEXTURE_2D, img->m_name);
glVertexPointer(3, GL_FLOAT, 0, vertices);
glTexCoordPointer(2, GL_FLOAT, 0, coordinates);
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
glPopMatrix();
}

Most importantly, you need to understand how to do this operation.
before doing a rotation you have to translate your self in the rotation origin and only then apply to rotation.
Check out this article which explains it well.
The simple breakdown is:
move object to origin.
Rotate.
Move object back.

Related

shapes skewed when rotated, using openGL, glm math, orthographic projection

For practice I am setting up a 2d/orthographic rendering pipeline in openGL to be used for a simple game, but I am having issues related to the coordinate system.
In short, rotations distort 2d shapes, and I cannot seem to figure why. I am also not entirely sure that my coordinate system is sound.
First I looked for previous answers, but the following (the most relevant 2D opengl rotation causes sprite distortion) indicates that the problem was an incorrect ordering of transformations, but for now I am using just a view matrix and projection matrix, multiplied in the correct order in the vertex shader:
gl_Position = projection * view * model vec4(1.0); //(The model is just the identity matrix.)
To summarize my setup so far:
- I am successfully uploading a quad that should stretch across the whole screen:
GLfloat vertices[] = {
-wf, hf, 0.0f, 0.0, 0.0, 1.0, 1.0, // top left
-wf, -hf, 0.0f, 0.0, 0.0, 1.0, 1.0, // bottom left
wf, -hf, 0.0f, 0.0, 0.0, 1.0, 1.0, // bottom right
wf, hf, 0.0f, 0.0, 0.0, 1.0, 1.0, // top right
};
GLuint indices[] = {
0, 1, 2, // first Triangle
2, 3, 0, // second Triangle
};
wf and hf are 1, and I am trying to use a -1 to 1 coordinate system so I don't need to scale by the resolution in shaders (though I am not sure that this is correct to do.)
My viewport and orthographic matrix:
glViewport(0, 0, SCREEN_WIDTH, SCREEN_HEIGHT);
...
glm::mat4 mat_ident(1.0f);
glm::mat4 mat_projection = glm::ortho(-1.0f, 1.0f, -1.0f, 1.0f, -1.0f, 1.0f);
... though this clearly does not factor in the screen width and height. I have seen others use width and height instead of 1s, but this seems to break the system or display nothing.
I rotate with a static method that modifies a struct containing a glm::quaternion (time / 1000) to get seconds:
main_cam.rotate((GLfloat)curr_time / TIME_UNIT_TO_SECONDS, 0.0f, 0.0f, 1.0f);
// which does: glm::angleAxis(angle, glm::vec3(x, y, z) * orientation)
Lastly, I pass the matrix as a uniform:
glUniformMatrix4fv(MAT_LOC, 1, GL_FALSE, glm::value_ptr(mat_projection * FreeCamera_calc_view_matrix(&main_cam) * mat_ident));
...and multiply in the vertex shader
gl_Position = u_matrix * vec4(a_position, 1.0);
v_position = a_position.xyz;
The full-screen quad rotates on its center (0, 0 as I wanted), but its length and width distort, which means that I didn't set something correctly.
My best guess is that I haven't created the right ortho matrix, but admittedly I have had trouble finding anything else on stack overflow or elsewhere that might help debug. Most answers suggest that the matrix multiplication order is wrong, but that is not the case here.
A secondary question is--should I not set my coordinates to 1/-1 in the context of a 2d game? I did so in order to make writing shaders easier. I am also concerned about character/object movement once I add model matrices.
What might be causing the issue? If I need to multiply the arguments to gl::ortho by width and height, then how do I transform coordinates so v_position (my "in"/"varying" interpolated version of the position attribute) works in -1 to 1 as it should in a shader? What are the implications of choosing a particular coordinates system when it comes to ease of placing entities? The game will use sprites and textures, so I was considering a pixel coordinate system, but that quickly became very challenging to reason about on the shader side. I would much rather have THIS working.
Thank you for your help.
EDIT: Is it possible that my varying/interpolated v_position should be set to the calculated gl_Position value instead of the attribute position?
Try accounting for the aspect ratio of the window you are displaying on in the first two parameters of glm::ortho to reflect the aspect ratio of your display.
GLfloat aspectRatio = SCREEN_WIDTH / SCREEN_HEIGHT;
glm::mat4 mat_projection = glm::ortho(-aspectRatio, aspectRatio, -1.0f, 1.0f, -1.0f, 1.0f);

OpenGL4: Rotation looks all wrong

Here's the vertex buffer information of the quad I'm drawing:
static const GLfloat pv_quad[] = {
-1.0f, -1.0f, 0.0f,
1.0f, -1.0f, 0.0f,
-1.0f, 1.0f, 0.0f,
1.0f, 1.0f, 0.0f,
};
This quad is used to draw 2D frames on the screen as part of the graphical user interface. The class I use to do this is Mage::Interface::Frame. I'll spare you the header definition and instead give you the class's implementation, as it's small. There's some test code in here, so ignore the fact the shader is part of the class. I know it shouldn't be there.
#include <Mage/Root.h>
#include <Mage/Interface/Frame.h>
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtx/transform.hpp>
using Mage::Interface::Frame;
Frame::Frame()
: width(300), height(200), position(0, 0), color(1.0, 1.0, 1.0), model(1.0), rotation(0) {
prog.compileFile("Data/Shaders/FrameVertex.glsl", Mage::ShaderType::VERTEX);
prog.compileFile("Data/Shaders/FrameFragment.glsl", Mage::ShaderType::FRAGMENT);
prog.link();
this->calcTransform();
}
void Frame::setSize(int w, int h) {
this->width = w;
this->height = h;
this->calcTransform();
}
void Frame::setColor(int r, int g, int b) {
this->color = glm::vec3(float(r) / 256, float(g) / 256, float(b) / 256);
}
void Frame::setRotation(float degrees) {
this->rotation = glm::radians(degrees);
this->calcTransform();
}
void Frame::calcTransform() {
this->model = glm::mat4(1.0f); // reset model to origin.
// 1280 and 720 are the viewport's size. This is only hard coded for tests.
this->model = glm::scale(this->model, glm::vec3(float(width) / 1280, float(height) / 720, 1.0f));
this->model = glm::rotate(this->model, this->rotation, glm::vec3(0.0f, 0.0f, 1.0f));
this->model = glm::translate(this->model, glm::vec3(position.x, position.y, 0.0f));
}
void Frame::draw() {
Mage::VertexObject obj = ROOT.getRenderWindow()->getVertexBufferObject()->getObject("PrimitiveQuad");
prog.use();
prog.setUniform("mvp", this->model);
prog.setUniform("fColor", this->color);
glEnableVertexAttribArray(0);
ROOT.getRenderWindow()->getVertexBufferObject()->bind();
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 0, (void*)obj.begin);
glDrawArrays(GL_TRIANGLE_STRIP, 0, obj.size);
glDisableVertexAttribArray(0);
}
Here's the drawing function that's called every frame:
void RenderWindow::render() {
Mage::Interface::Frame F;
F.setSize(400, 200);
F.setRotation(0);
while (glfwWindowShouldClose(this->win) == 0) {
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
F.draw();
glfwSwapBuffers(this->win);
glfwPollEvents();
}
}
When I have setRotation(0), the resulting quad is indeed, 400 pixels wide and 200 pixels high, right in the centre of my screen as you would expect.
However, if I set the rotation to (90), well, this happens:
As you can see, that's not at all close to a 90 degrees turn. It should be 400px high and 200px wide.
Anyone care to explain what's going on here?
EDIT: Some playing around has shown me that the problem is with the scale, not the rotation. When I comment out the scale, the rotation appears to be correct.
The angle argument to glm::rotate() is in radians, not degrees:
m: Input matrix multiplied by this rotation matrix.
angle: Rotation angle expressed in radians.
axis: Rotation axis, recommanded [sic] to be normalized.
Use this:
void Frame::setRotation(float degrees) {
this->rotation = glm::radians( degrees );
this->calcTransform();
}
I am assuming that this game is supposed to be a 3D game with a 2D GUI, although this was not specified in the question, though not entirely necessary, as my answer will be the same.
When rendering with a 3D matrix, using a perspective view (Field of View taken into account), as opposed to using an orthographic view, the shapes will bend to their position depending on the fov.
So with that, I propose that you use a simple solution, and initialize a 2D viewing matrix (or orthographic matrix) for your 2D interface. If you are just looking for a simple way to render a 2D quad onto the screen freeGLUT(free Graphics Library Utility Toolkit) is there for you. There are plenty of docs out there to help install freeglut, so once you finish that, initialize a 2D rendering matrix, then render the quad using glVertex2i/f or glVertex3i/f, like so:
void setView2d()
{
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluOrtho2D(0, *SCREEN_WIDTH, *SCREEN_HEIGHT, 0);
glMatrixMode( GL_MODELVIEW );
glDisable(GL_DEPTH_TEST);
glLoadIdentity();
}
void setView3d()
{
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluPerspective(70, (GL_FLOAT)*SCREEN_WIDTH / *SCREEN_HEIGHT, 0.1, 100);
glEnable(GL_DEPTH_TEST);
glLoadIdentity();
}
void render()
{
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_TEST);
setView2d(); //Render 2D objects
glPushMatrix();
{
//glTranslatef() and glRotatef() still work for 2D
//if using rotate, rotate on z axis, like so:
glRotatef(90, 0, 0, 1);
glBegin(GL_TRIANGLES);
{
glVertex2i(0, 0);
glVertex2i(100, 0);
glVertex2i(0, 100);
/*
glVertex2i is replacable with glVertex2f, glVertex3i, and glVertex3f
if using a glVertex3, set the z value to 0
*/
}
glEnd();
}
glPopMatrix();
setView3d(); //Render 3D objects
glPushMatrix();
{
//render 3D stuff
}
glPopMatrix();
glutSwapBuffers();
}
I should also mention that when using the gluOrtho2D, coordinates used in vertex x,y are based on pixels, instead of the 3D blocks.
Hope this helped,
-Nick

From gluOrtho2D to 3D

I followed a guide to draw a Lorenz system in 2D.
I want now to extend my project and switch from 2D to 3D. As far as I know I have to substitute the gluOrtho2D call with either gluPerspective or glFrustum. Unfortunately whatever I try is useless.
This is my initialization code:
// set the background color
glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
/// set the foreground (pen) color
glColor4f(1.0f, 1.0f, 1.0f, 1.0f);*/
// set the foreground (pen) color
glColor4f(1.0f, 1.0f, 1.0f, 0.02f);
// enable blending
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
// enable point smoothing
glEnable(GL_POINT_SMOOTH);
glPointSize(1.0f);
// set up the viewport
glViewport(0, 0, 400, 400);
// set up the projection matrix (the camera)
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
//gluOrtho2D(-2.0f, 2.0f, -2.0f, 2.0f);
gluPerspective(45.0f, 1.0f, 0.1f, 100.0f); //Sets the frustum to perspective mode
// set up the modelview matrix (the objects)
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
while to draw I do this:
glClear(GL_COLOR_BUFFER_BIT);
// draw some points
glBegin(GL_POINTS);
// go through the equations many times, drawing a point for each iteration
for (int i = 0; i < iterations; i++) {
// compute a new point using the strange attractor equations
float xnew=z*sin(a*x)+cos(b*y);
float ynew=x*sin(c*y)+cos(d*z);
float znew=y*sin(e*z)+cos(f*x);
// save the new point
x = xnew;
y = ynew;
z = znew;
// draw the new point
glVertex3f(x, y, z);
}
glEnd();
// swap the buffers
glutSwapBuffers();
the problem is that I don't visualize anything in my window. It's all black. What am I doing wrong?
The name "gluOrtho2D" is a bit misleading. In fact gluOrtho2D is probably the most useless function ever. The definition of gluOrtho2D is
void gluOrtho2D(
GLdouble left,
GLdouble right,
GLdouble bottom,
GLdouble top )
{
glOrtho(left, right, bottom, top, -1, 1);
}
i.e. the only thing it does it calling glOrtho with default values for near and far. Wow, how complicated and ingenious </sarcasm>.
Anyway, even if it's called ...2D, there's nothing 2-dimensional about it. The projection volume still has a depth range of [-1 ; 1] which is perfectly 3-dimensional.
Most likely the points generated lie outside the projection volume, which has a Z value range of [0.1 ; 100] in your case, but your points are confined to the range [-1 ; 1] in either axis (and IIRC the Z range of the strange attractor is entirely positive). So you have to apply some translation to see something. I suggest you choose
near = 1
far = 10
and apply a translation of Z: -5.5 to move things into the center of the viewing volume.

How to get the whole scene rotate around itself? (my code has a little bug which just lets the objects rotate around themselves)

What must be changed to let me see the impression of flying around the whole fixed scene? My current code just lets me look from a fixed viewpoint at objects each one rotating around itself. Enabling glLoadIdentity() just stops their rotation. Note that 3dWidget::paintGL() is permanently called by a timer every 20ms.
void 3dWidget::paintGL()
{
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glTranslatef(0.5f, 0.5f, 0.5f);
glRotatef(3.0f, 1.0f, 1.0f, 1.0f);
glTranslatef(-0.5f, -0.5f, -0.5f);
glPushMatrix();
//glLoadIdentity();
for (int i = 0; i < m_cubes.count(); i++) {
m_cubes[i]->render();
}
glPopMatrix();
}
void Cube::render() {
glTranslatef(m_x, m_y, m_z); // local position of this object
glCallList(m_cubeId); // render code is in createRenderCode()
glTranslatef(-m_x, -m_y, -m_z);
}
void Cube::createRenderCode(int cubeId) {
m_cubeId = cubeId;
glVertexPointer(3, GL_FLOAT, 0, m_pCubePoints);
glColorPointer(4, GL_UNSIGNED_BYTE, 0, m_pCubeColors);
glNewList(m_cubeId, GL_COMPILE);
{
glEnableClientState(GL_COLOR_ARRAY);
glDrawArrays(GL_TRIANGLE_STRIP, 0, m_numPoints);
glDisableClientState(GL_COLOR_ARRAY);
}
glEndList();
}
void 3dWidget::init(int w, int h)
{
...
glViewport(0, 0, w, h);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
float aspect = w/(float)(h ? h : 1);
glFrustum(-aspect, aspect, -1, 1, 10, 100);
glTranslatef(0., 0., -12);
glMatrixMode(GL_MODELVIEW);
}
EDIT: It seems it's important to know that 2 cubes are created with the following 3D position coordinates (m_x, m_y, m_z):
void 3dWidget::createScene()
{
Cube* pCube = new Cube;
pCube->create(0.5 /*size*/, -0.5 /*m_x*/, -0.5 /*m_y*/, -0.5 /*m_z*/);
pCube = new Cube;
pCube->create(0.5 /*size*/, +0.5 /*m_x*/, +0.5 /*m_y*/, +0.5 /*m_z*/);
}
Use gluLookAt to position the camera. You apply it to the modelview matrix before any object transforms.
Obviously, you'll have to figure out a path for the camera to follow. That's up you and how you want the "flight" to proceed.
EDIT: Just to be clear, there's no camera concept, as such, in OpenGL. gluLookAt is just another transform that (when applied to the modelview matrix) has the effect of placing a camera at the prescribed location.
If you really are just trying to rotate the world, your code seems to perform the transforms in a reasonable order. I can't see why your objects rotate around themselves rather than as a group. It might help to present a SSCCE using glut.
Now I've found the reason by myself. It works as soon as I change method paintGL() to
void 3dWidget::paintGL()
{
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
#if 0 // not working
glTranslatef(0.5f, 0.5f, 0.5f);
glRotatef(3.0f, 1.0f, 1.0f, 1.0f);
glTranslatef(-0.5f, -0.5f, -0.5f);
#else // this works properly, they rotate horizontally around (0,0,0)
glRotatef(3.0f, 0.0f, 1.0f, 0.0f);
#endif
for (int i = 0; i < m_cubes.count(); i++) {
m_cubes[i]->render();
}
}
I don't get it exactly why, but it obviously appeared that some transformations had compensated in a way that the objects just rotate around itself. Thanks for your help anyway.
I think it's always better to let the scene rotate than to move by gluLookAt (beside the issue that finding the right formula for the angle of view is more difficult).

Apply transformations to Bounding Box

I am trying to make a tank game. I have successfully loaded an OBJ model, and calculated its bounding box for the model at the origin.
I am now trying to apply the transformations done to my model in the game logic to the original coordinates for the bounding box. For this, I grab the modelview matrix right before drawing my model, then multiply this matrix for the two vectors that define the BBox.
Here is the code that draws my tank:
void drawTank()
{
bBox = calcBBox(modelo, 1);
glPushMatrix();
glBindTexture(GL_TEXTURE_2D, texTank);
glScalef(0.2, 0.2, 0.2);
glTranslatef(posTank.x,posTank.y,posTank.z);
glRotatef(anguloTanque, 0, 1, 0); // rotate around Y (horizontal)
glRotatef(90, 0, 1, 0);
glRotatef(-90, 1, 0, 0);
glGetFloatv(GL_MODELVIEW_MATRIX, matrix);
glmDraw(modelo, GLM_TEXTURE | GLM_MATERIAL);
glColor3f(1,0,0);
drawBBox(bBox);
glPopMatrix();
}
With this snippet, my bbox is properly drawn over the tank model (transformations are applied in rendering by the glTranslate & glRotate functions). As you can see I also grab here my ModelView matrix.
Then I apply this matrix as follows (this is my entire display function):
void Display(void) {
// Clear the window with current clearing color
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glPushMatrix();
camera();
glEnable(GL_TEXTURE_2D);
//glTranslatef(0,-40,150);
//PLANE
glBindTexture(GL_TEXTURE_2D, texArena);
glBegin(GL_POLYGON);
glTexCoord2f( 0.0f, 0.0f );
glVertex3f(-500, 0, -500);
glTexCoord2f( 5.0f, 5.0f );
glVertex3f(500, 0, -500);
glTexCoord2f(5.0f, 0.0f );
glVertex3f(500, 0, 500);
glTexCoord2f( 0.0f, 5.0f );
glVertex3f(-500, 0, 500);
glEnd();
drawTank();
glPopMatrix();
point3D max = bBox.max;
point3D min = bBox.min;
point3D resultMax;
point3D resultMin;
//Transformacion
multVectorByMatrix(matrix, max, resultMax);
multVectorByMatrix(matrix, min, resultMin);
bBox.max.x = resultMax.x; bBox.max.y = resultMax.y; bBox.max.z = resultMax.z;
bBox.min.x = resultMin.x; bBox.min.y = resultMin.y; bBox.min.z = resultMin.z;
glPushMatrix();
glColor3f(1,1,1);
drawBBox(bBox);
glPopMatrix();
glFlush();
glutSwapBuffers();
}
The function that multiplies a vector by a matrix:
void multVectorByMatrix(float* matrix, point3D vector, point3D &result)
{
result.x = (matrix[0] * vector.x) +
(matrix[4] * vector.y) +
(matrix[8] * vector.z) +
matrix[12];
result.y = (matrix[1] * vector.x) +
(matrix[5] * vector.y) +
(matrix[9] * vector.z) +
matrix[13];
result.z = (matrix[2] * vector.x) +
(matrix[6] * vector.y) +
(matrix[10] * vector.z) +
matrix[14];
}
If I draw the bounding box with this render loop, then my bounding box gets drawn but transformations are not applied properly. I can see the bounding box moving correctly with translations, but rotations are not done right.
What might be the problem here?
edit: some screenshots
Your problem is in this code.
point3D max = bBox.max;
point3D min = bBox.min;
point3D resultMax;
point3D resultMin;
//Transformacion
multVectorByMatrix(matrix, max, resultMax);
multVectorByMatrix(matrix, min, resultMin);
bBox.max.x = resultMax.x; bBox.max.y = resultMax.y; bBox.max.z = resultMax.z;
bBox.min.x = resultMin.x; bBox.min.y = resultMin.y; bBox.min.z = resultMin.z;
glPushMatrix();
glColor3f(1,1,1);
drawBBox(bBox);
glPopMatrix();
You take two vertices from your box and then apply transformations to them, then you use this transformed vertices to display a box, which of course will be axis aligned, because that's the only box you can get from just two opposite vertices. And you can see on your screenshot, that you bbox and the correct bbox have common vertices - these are exactly the vertices you applied your transformations to. So, in order to get a correct bbox, you need to get all vertices of the bbox and apply these transformations to all of them. Then you'll get exactly what you want.