C++ input question - c++

I am attempting to build a small local-purpose 3d engine, which has to be platform-independent and right now I'm looking for a way to handle different possible types of user input.
This, obviously, includes mouse / keyboard events and possibly, another analogue controllers (joysticks, for example). I can think of several ways to implement this and am seeking for an advice - what would be better.
So far, I can write my own controller event handling and dispatching module, reimplement the whole functionality myself, though I guess I would face some troubles making this work for different platforms and integrating it. That's the hardest and the reinventing way.
Another approach would mean reusing some existing scheme / library for this sort of things, but I can't come with a good choice. Qt seems like an overkill for my small library, allegro and other SDL-like libraries have pretty tight logic coupling and writing a generic wrapper around them could become even harder then rewriting everything from scratch.
Maybe there is some appropriate library, which could help me in this situation?
What would you do?
Thank you.

OIS is pretty good. It's the default one that the OGRE tutorials use.

Related

Articles for developing a GUI library

Basically, I'm unable to find any good articles for developing your own GUI, that deal with good practices, the basic structure, event bubbling, tips and avoiding all the usual pitfalls. I'm specifically not interested on how to build some proof-of-concept GUI in 5 minutes that just barely works... nor am I interested in building the next future GUI.
The purpose is to build a reasonably capable GUI to be used for tools for a game, however they will exist within the game itself so I don't want to use existing large scale GUIs, and I find most game GUIs to be rather bloated for what I need. And I enjoy the experience of doing it myself.
I have done a GUI in the past which worked very well to a point, however, due to some bad design decisions and inexperience it could only do so much (and was built in Flash so it got a lot of stuff for free). So I would like to really understand the basics this time.
A few tips -
1) Pick your style the UI will work - will it be stateless? If yes, how are you going to handle the events appropriately? In case it'll be stateless, you'll maybe have to re-evaluate your UI user code twice in order to get up to date event changes from user side. If your UIs store state, then you won't have to care about handling events, but it'll limit your UIs when it comes to rapid mutations and rebuilds.
2) Do not rely on the OO too much, virtual methods are not the fastest thing in the world so use them with care; having some sort of inheritance based structure might help though. Beware of dynamic_cast and RTTI if you use objects; they will slow you down. Instead, set up an enum, get_type() method for every widget class, and do manual checks for castability.
3) Try to separate the looks and the UI logic/layout.
4) If you want dynamic windows, layouts etc. then you'll have to handle aligning, clamping, positions etc. and their updates. If you want just statically positioned widgets, it'll make it much easier.
5) Do not overdesign, you won't benefit from that.
There is not really anything too specific I tell you; having some concrete question would help, maybe?
Take a look at the docs for existing GUI libraries. That should give you details on proven designs to handle the issues you've run into.
You might want to start with one you're familiar with, but one that I think is designed quite well is AppKit. Its API is Obj-C so it would require some adjustment if you wanted to copy it, but the docs give all kinds of details about how objects interact to, e.g. handle events, and how layout constraints work, which should be directly applicable to designing an OO GUI in most any language.

c++ exception-like message passing

I'm working on developing a fairly robust 2D game engine as a base that other games can be built off of as a for-fun project (I know theres already things that do this, but that's no fun).
I'm trying to figure out a good way to do message-passing between classes within the engine. At first I was thinking about using a heirarchy of exceptions and throwing them whenever something required it. But as I was developing that way, I realized that there was quite a large number of exceptions being thrown, as they were being used for fairly common things (part of subroutines that handle pathfinding and unit locating and things that need to test the state of the game board alot). The exceptions were being used for things like the pathfinding came across a unit in the way and needed to go around it, it would throw a TileOccupied exception and the pathfinding could gracefully handle that and continue. As can be expected, this created a lot of exceptions.
The internet has told me that exceptions are expensive due to all the run-time processing they need to do. But they handle what I need perfectly, which is being able to propogate a message back to the caller even through branching subroutines to indicate when something has happened or something was not as expected.
Is there any clean/efficient way to do this in c++? Or am I structuring things very wrongly if I am using this type of notification? I'm still learning, so any suggestions would be greatly appreciated (and I'm willing to read / learn any references you can throw my way)
Edit
I'm trying to do this in standard c++ btw. I am writing it on linux, and want it to compile and be runnable platform-independent. I'm currently using Boost in it.
Although this requires explicit registration, this sounds like you want callbacks (eased by e.g. Boost.Function) or signals (like Boost.Signals/Signals2).
Is there any reason you haven't used an event queue and/or observer setup?
Exceptions are the wrong way of doing this. Usual suggestion would be direct events/listeners design, but that quickly gets out of hand within any non-trivial system. I'd point you to a whiteboard design for loose communications.

Is there a good graph layout library callable from C++?

The (directed) graphs represent finite automata. Up until now my test program has been writing out dot files for testing. This is pretty good both for regression testing (keep the verified output files in subversion, ask it if there has been a change) and for visualisation. However, there are some problems...
Basically, I want something callable from C++ and which plans a layout for my states and transitions but leaves the drawing to me - something that will allow me to draw things however I want and draw on GUI (wxWidgets) windows.
I also want a license which will allow commercial use - I don't need that at present, and I may very well release as open source, but I don't want to limit my options ATM.
The problems with GraphViz are (1) the warnings about building from source on Windows, (2) all the unnecessary dependencies for rendering and parsing, and (3) the (presumed) lack of a documented API specifically and purely for layout.
Basically, I want to be able to specify my states (with bounding rectangle sizes) and transitions, and read out positions for the states and waypoints for each transition, then draw based on those co-ordinates myself. I haven't really figured out how annotations on transitions should be handled, but there should be some kind of provision for specifying bounding-box-sizes for those, associating them with transitions, and reading out positions.
Does anyone know of a library that can handle those requirements?
I'm not necessarily against implementing something for myself, but in this case I'd rather avoid it if possible.
Hmm, GDToolkit (or GDT) looks okay: many of the images in the tutorial look pretty nice, and it doesn't look like it's terribly complicated to use.
Edit: But checking the license, it looks like it's commercial software :-(. Whoops!
OGDF is under the GPL.
Pigale is also under the GPL.
GoVisual is commercial software, but it looks like it starts at $1800 for one developer.
I was dealing with a similar problem earlier this year. One important input parameter for a decision however is the expected number of nodes.
I decided to use the Browser as the GUI and therefore looked for nice Javascript libraries, one i came across was wireit, it is very well suited for technical layouts (and also editing with drag and drop and "on the fly" layouting). You could easily connect that to your c++ by running a small webserver in a thread (You will need some kind of eventloop/thread thingie for GUI anyways).
Well just my 2 cents.
Although the answers so far were worth an upvote, I can't really accept any of them. I've still been searching, though.
One thing I found is AGLO. The code is GPL v1, but there are papers that describe the algorithms, so it should be easy enough to re-implement from scratch if necessary.
There's also the paper by Gansner, Koutsofios, North and Vo - "A Technique for Drawing Directed Graphs" - available from here on the Graphviz site.
I've also been looking closely at the BSD-licensed (but Java) JGraph.
One way or the other, it looks like I might be re-implementing the wheel, if not actually re-inventing it.
Here is a good collection of Graph Libs with comparison and searching functionality:
http://gvsr.polytech.univ-nantes.fr/GVSR/task?action=browse#
Maybe you find a lib which fits for you.

Write C++ in a graphical scratch-like way?

I am considering the possibility of designing an application that would allow people to develop C++ code graphically. I was amazed when I discovered Scratch (see site and tutorial videos).
I believe most of C++ can be represented graphically, with the exceptions of preprocessor instructions and possibly function pointers.
What C++ features do you think could be (or not be) represented by graphical items?
What would be the pros and cons of such an application ? How much simpler would it be than "plain" C++?
RECAP and MORE:
Pros:
intuitive
simple for small applications
helps avoid typos
Cons:
may become unreadable for large (medium?) - sized applications
manual coding is faster for experienced programmers
C++ is too complicated a language for such an approach
Considering that we -at my work- already have quite a bit of existing C++ code, I am not looking for a completely new way of programming. I am considering an alternate way of programming that is fully compatible with legacy code. Some kind of "viral language" that people would use for new code and, hopefully, would eventually use to replace existing code as well (where it could be useful).
How do you feel towards this viral approach?
When it comes to manual vs graphical programming, I tend to agree with your answers. This is why, ideally, I'll find a way to let the user always choose between typing and graphical programming. A line-by-line parser (+partial interpreter) might be able to convert typed code into graphical design. It is possible. Let's all cross our fingers.
Are there caveats to providing both typing and graphical programming capabilities that I should think about and analyze carefully?
I have already worked on template classes (and more generally type-level C++) and their graphical representation.
See there for an example of graphical representation of template classes. Boxes represent classes or class templates. First top node is the class itself, the next ones (if any) are typedef instructions inside the class. Bottom nodes are template arguments. Edges, of course, connect classes to template arguments for instantiations.
I already have a prototype for working on such type-level diagrams.
If you feel this way of representing template classes is plain wrong, don't hesitate to say so and why!
Much as I like Scratch, it is still much quicker for an experienced programmer to write code using a text editor than it is to drag blocks around, This has been proved time and again with any number of graphical programming environments.
Writing code is the easiest part of a developers day. I don't think we need more help with that. Reading, understanding, maintaining, comparing, annotating, documenting, and validating is where - despite a gargantuan amount of tools and frameworks - we still are lacking.
To dissect your pros:
Intuitive and simple for small applications - replace that with "misleading". It makes it look simple, but it isn't: As long as it is simple, VB.NET is simpler. When it gets complicated, visual design would get in the way.
Help avoid typos - that's what a good style, consistency and last not least intellisense are for. The things you need anyway when things aren't simple anymore.
Wrong level
You are thinking on the wrong level: C++ statements are not reusable, robust components, they are more like a big bag of gears that need to be put together correctly. C++ with it's complexity and exceptions (to rules) isn't even particulary suited.
If you want to make things easy, you need reusable components at a much higher level. Even if you have these, plugging them together is not simple. Despite years of struggle, and many attempts in many environments, this sometimes works and often fails.
Viral - You are correct IMO about that requriement: allow incremental adoption. This is closely related to switching smoothly between source code and visual representation, which in turn probably means you must be able to generate the visual representation from modified source code.
IDE Support - here's where most language-centered approaches go astray. A modern IDE is more than just a text editor and a compiler. What about debugging your graph - with breakpoints, data inspection etc? Will profilers, leak detectors etc. highlight nodes in your graph? Will source control give me a Visual Diff of yesterday's graph vs. today's?
Maybe you are on to something, despite all my "no"s: a better way to visualize code, a way to put different filters on it so that I see just what I need to see.
The early versions of C++ were originally written so that they compiled to C, then the C was compiled as normal.
What it sounds like you are describing is a graphical language that is compiled to C++, which will then be compiled as normal.
So really you are not creating a graphical C++, you are creating a new language that happens to be graphical. Nothing wrong with that, but don't let C++ restrict what you do, because eventually you may want to compile the graphical language straight to machine code, or even to something like CIL, Java ByteCode, or whatever else tickles your fancy.
Other graphical languages you may want to check out are LabVIEW, and more generally the category of visual programming languages.
Good luck in your efforts.
The complexity of a nontrivial program is usually too high to be represented with graphical symbols, which are low in their information content. Unless your approach is markedly different in some way, I am skeptical that this would be of value based on past efforts.
So, practically speaking, his will be useful only for instructional purposes and very simple programs. But that would still be a great target market for a product like this. sometimes people have trouble grasping the fundamentals, and a visual model might be just the thing to help things click.
Interesting idea. I doubt I'd use it though. I tend to prefer coding in a flat text editor, not even an IDE, and for tough problems I prefer a pad of paper. Most of the really experienced programmers I know work this way, Maybe it's because we grew up in a different environment, but I think it's also because of the way we think about programming. As you get more experience, you start seeing the code in your head more clearly than any GUI tool will show it to you.
As for your question, I'd nominate templates as one of the harder / more interesting sort of thing to try to represent well. They are ubiquitous and carry information that you won't have access to as you are designing your tool. Getting that to the user in a useful way should pose an interesting challenge.
What C++ features do you think could be [...] represented by graphical items?
Object Oriented Design. Hence classes, inheritance, polymorphism, mutability, const-ness etc. And, templates.
What would be the pros and cons of such an application?
It may be easier for beginners to start writing programs. For the experienced, it may be get rid of the boring parts of programming.
Think of any other code generator. They create a framework for you to write the more involved portion(s). They also lead to bloated-code (think of any WYSIWYG HTML editor).
The biggest challenge, as I see it, is that any such UI necessarily hinders the user's imagination.
How much simpler would it be than "plain" c++ ?
It can be a real pain, when you wade through truckloads of errors which is typical of code generators.
Further, since a lot of code is generated, you have no idea of what is going on -- debugging becomes difficult.
Also, for the experienced there may be some irritation to find that the generated code is not per their preferred coding style.
I prefer hot-keys instead graphical menus and buttons.
And I think same thing will happen with graphical development tool. Many peoples will prefer manual codding.
But, source code visualizer - should be nice thing.
I like the idea, but I suspect there comes a point where things get far too complicated to be represented graphically.
However, given recent experience at work; it would be useful to give such a graphical interface to a non-techie person to use to create basic drag-and-drop programs, leaving myself free to get on with some "proper" programming ;-) If it can do the job of allowing somebody non-skilled to build something functional it can be a very good thing (even if programming logic escapes them)
There comes a point in such a system where it becomes easier to define what you want to do using literal C++ code, rather than have a user interface getting in the way; it can get frustrating to the sessioned programmer knowing the precise code that needs to be written but then only being limited to the design GUI. I'm specifically thinking about a more common application, such as html editors/designers in which they allow newbies to build their websites without knowing any html at all.
It would be interesting to see how such a system would handle the dynamic allocation of memory, and the different states of a program as time progressed; I suspect that there are some very basic programming concepts that may be difficult to represent graphically.. Polymorphism..? Virtual Classes, LinkList, Stacks/Circular Queues. I wonder for a moment how you would explain an image compression algorithm (such as jpg) successfully too without the help of a gigantic display screen.
I also wonder if such a system would even go to such a low level, and whether you would be dealing with abstracted concepts and the compiler would be working out the best way to do something.
I've been working on a new model-driven software development paradigm named ABSE (http://www.abse.info) that supports end-user programming: It's a template-based system that can be complemented with transformation code. I also have an IDE (named AtomWeaver) implementing ABSE that is in pre-alpha stage right now.
With AtomWeaver, as an expert/architect, you build your knowledge Templates, and then the developers (or end-users if you make your meta-models simpler) can just "assemble" systems by building blocks, and then filling template parameters in form-style editors.
At the end, pressing the "Generate" button will create the final system as specified by the architect/expert.
I'm surprised you think function pointers would be a particular problem. How about anything at all to do with pointers?
A programming language can be represented by a hierarchy of nodes - that's exactly what the compiler turns it into. It is very strange that the UI for editing programs is still a sequence of characters that get parsed, because the degrees of freedom in the editor is way larger than the available set of allowed choices. But intellisense helps to reduce this problem a lot.
C++ would be a strange choice to base such a system on.
I think the major problem of this kind of IDEs are that the code generated becomes unmantainable easily.
This happened to Delphi. It's a really nice tool to develop some kind of applications, however, when we start adding complex relationships between the components, start adding Design Patterns, etc. the code grows to an unmantainable size.
I believe it's also because graphical tools don't apply the concept of MVC (or if they do, it's only in the way that the IDE understands).
It can be really helpful for prototypes and very small applications that don't tend to grow, otherwise it can become a mess for the developer(s)

How do you glue Lua to C++ code?

Do you use Luabind, toLua++, or some other library (if so, which one) or none at all?
For each approach, what are the pro's and con's?
I can't really agree with the 'roll your own' vote, binding basic types and static C functions to Lua is trivial, yes, but the picture changes the moment you start dealing with tables and metatables; things go trickier very quickly.
LuaBind seems to do the job, but I have a philosophical issue with it. For me it seems like if your types are already complicated the fact that Luabind is heavily templated is not going to make your code any easier to follow, as a friend of mine said "you'll need Herb Shutter to figure out the compilation messages". Plus it depends on Boost, plus compilation times get a serious hit, etc.
After trying a few bindings, Tolua++ seems the best. Tolua doesn't seem to be very much in development, where as Tolua++ seems to work fine (plus half the 'Tolua' tutorials out there are, in fact, 'Tolua++' tutorials, trust me on that:) Tolua does generate the right stuff, the source can be modified and it seems to deal with complicated cases (like templates, unions, nameless structs, etc, etc)
The biggest issue with Tolua++ seems to be the lack of proper tutorials, pre-set Visual Studio projects, or the fact that the command line is a bit tricky to follow (you path/files can't have white spaces -in Windows at least- and so on) Still, for me it is the winner.
To answer my own question in part:
Luabind: once you know how to bind methods and classes via this awkward template syntax, it's pretty straightforward and easy to add new bindings. However, luabind has a significant performance impact and shouldn't be used for realtime applications. About 5-20 times more overhead than calling C functions that manipulate the stack directly.
I don't use any library. I have used SWIG to expose a C library some time ago, but there was too much overhead, and I stop using it.
The pros are better performance and more control, but its takes more time to write.
Use raw Lua API for your bindings -- and keep them simple. Take inspiration in the API itself (AUX library) and libraries by Lua authors.
With some practice raw API is the best option -- maximum flexibility and minimum of unneeded overhead. You've got what you want and no more, the way you need it to be.
If you must bind large third-party libraries use automated generators like tolua, tolua++ (or even roll your own for the specific case). It would free you from manual work.
I would not recommend using Luabind. At the moment it's development stalled (however starting to come back to life), and if you would meet some corner case, you may be on your own. Also Luabind heavily uses template metaprogramming. This may (and may not) be unacceptable, depending on the point of view.