Why is this giving me a segfault? - c++

This:
bool grid[1280][1024];
for (int x = 0; x<1280; x++)
{
for (int y = 0; y<1024; y++)
{
grid[x][y] = false;
}
}
works fine, but
bool grid[1280][1024];
bool grid2[1280][1024];
for (int x = 0; x<1280; x++)
{
for (int y = 0; y<1024; y++)
{
grid[x][y] = false;
grid2[x][y] = false;
}
}
gives me a segfault. Why?

Probably not enough stack space, your second example also crashes on my PC. Try allocating on the heap, or even better, use a proper container class:
#include <array>
#include <vector>
typedef std::array<bool, 1280> line;
int main()
{
std::vector<line> grid(1024);
std::vector<line> grid2(1024);
// no initialization to false necessary
}
Note how I switched the width and the height. You probably want your elements aligned this way to ensure fast linear access.

I think sizeof(bool) is defined as being the same as sizeof(char). Assuming a char takes one byte on the system you're on, that second example attempts to allocate 2*1280*1024 bytes on the stack. That's 2.5MB. Your system might not provide that much stack space.
Use one of the contaienrs from the standard library which use heap space to store their data.

Works fine for me, no segfaults on either using g++ 4.2.1, have you tried these examples alone?

Probably stack overflow. Create the array dynamically, it will work (because it will be created on the heap). Or, use std::vector< std::vector< char > >, instead. ( be very careful, if you decide to use std::vector< bool >.. unless you don't know what exactly you're doing (it's not normal STL container, containing just bools), use it with char ).
Using std::vector< std::vector< char > > will let you use the object as normal two-dimensional array.
EDIT:
std::vector< bool >: "This specialization is provided to optimize for space allocation: In this template specialization, each element occupies only one bit (which is eight times less than the smallest type in C++: char).
The references to elements of a bool vector returned by the vector members are not references to bool objects, but a special member type which is a reference to a single bit, defined inside the vector class specialization as". CPlusPlus

Related

Calculate length of double pointer array

I have a double pointer Array of a structure:
typedef struct Position{
int x;
int y;
} Position;
Position** array = (Position**)malloc(sizeof(Position*)*10); //10 elements
array[0] = (Position*)malloc(sizeof(Position*));
array[0]->x = 10;
array[0]->y = 5;
Can I calculate the length of set array and if so, how?
The normal way for arrays does not work :
int length = sizeof(<array>)/sizeof(<array>[0]);
Once you have dynamically allocated an array, there is no way of finding out the number of elements in it.
I once heard of some hacky way to obtain the size of a memory block, (msize) which would allegedly allow you to infer the size of the data within the block, but I would advice against any such weird tricks, because they are not covered by the standard, they represent compiler-vendor-specific extensions.
So, the only way to know the size of your array is to keep the size of the array around. Declare a struct, put the array and its length in the struct, and use that instead of the naked array.
As you marked the question as C++, I would suggest that you use std::vector, then, after you "allocated some memory" (or requested some memory to allocated by std::vector constructor or by using push_back, or resize), you can simply get the size back using by using std::vector::size.
typedef struct Position{
int x;
int y;
} Position;
std::vector<Position> array(10);
array[0].x = 10;
array[0].y = 5;
size_t size = array.size(); // will be 10
Having only a pointer to some memory block, you cannot defer the size of this memory block. So you cannot defer the number of elements in it.
For arrays of pointers, however, you could infer the number of elements in it under the following conditions:
make sure that every pointer (except the last one) points to a valid object.
for the last pointer in the array, make sure that it is always NULL.
Then you can derive the length by counting until you reach NULL.
Maybe there are some other similar strategies.
Solely from the pointer itself, however, you cannot derive the number of elements in it.
Old question, but in case someone needs it:
#include <stdio.h>
...
int main()
{
char **double_pointer_char;
...
int length_counter = 0;
while(double_pointer_char[length_counter])
length_counter++;
...
return 0;
}

Store shared pointer to array in vector

I’m trying to store a shared pointer to a fixed size array in to a vector, I want to use a shared pointer because I must pass a pointer to the array to another class that will write in the array, and I want to have more than one array because I may have more instances of the writing class and each one needs an array to write to, they will write a lot of data in the arrays so moving them is not a good option.
std::shared_ptr<char> sp( new char [MAX_LENGTH], std::default_delete< char[] >() );
arrayVect.push_back(sp);
the vector is defined as class member like:
std::vector< std::shared_ptr< char [ MAX_LENGTH ] > > arrayVect;
I'm getting the error:
error: no matching function for call to ‘std::vector<std::shared_ptr<char [MAX_LENGTH]> >::push_back(std::shared_ptr<char []>&)’
I have tried different alternatives but none of them have worked, could you point out the correct way of doing it? or is there an alternative that I am missing? the writing class needs an array of chars for the write function so I think I’m stuck with array.
thanks!
I feel like shared ownership is the wrong model here. Conceptually, why would you want your workers to continue to work on an array if no one else is observing the result anymore?
So I'd have the arrayVect own the arrays and hand out pointers to the arrays to the workers. When it doesn't make sense to keep one of the arrays around, stop the worker first and then delete the array.
The easiest way to get that behavior is to make arrayVect a std::vector<std::unique_ptr<std::array<char, MAX_LENGTH>>>. Then the pointer to the underlying char[MAX_LENGTH] array that you can pass to a worker can be obtained by calling arrayVect[idx].get().data().
By having the additional indirection through the unique_ptr the pointers to the arrays remain valid even if the vector is resized.
EDIT: Here is an example how that can work with unique_ptrs even though your workers also need a pointer to the array:
class Worker {
public:
Worker(std::array<char, MAX_SIZE>* array)
: _array{array} {
}
void perform_work() {
function_that_requires_c_arrays(_array->data()); // maybe also a size parameter?
}
private:
std::array<char, MAX_SIZE>* _array;
};
int main() {
std::vector<std::unique_ptr<std::array<char, MAX_SIZE>>> arrayVect;
arrayVect.emplace_back(std::make_unique<std::array<char, MAX_SIZE>>()));
Worker w{arrayVect.back().get()};
w.perform_work();
}
Try declaring vector like below,
std::vector<std::shared_ptr<char> > arrayVect;
Actually, You are declaring vector incorrectly. Please try and check with above change. Hope it helps!
You can use std::vector<std::shared_ptr<char>> without the array notation. It is important that you then still use std::default_delete<char[]>() as the deleter.
Here is a complete example.
#include <iostream>
#include <vector>
#include <memory>
#define MAX_LENGTH 10
int main() {
std::vector<std::shared_ptr<char>> arrayVect;
std::shared_ptr<char> sp(new char[MAX_LENGTH], std::default_delete<char[]>());
arrayVect.push_back(sp);
arrayVect.push_back(std::shared_ptr<char>(new char[MAX_LENGTH], std::default_delete<char[]>()));
char q = 0;
for (size_t x = 0; x < arrayVect.size(); ++x)
for (size_t y = 0; y < MAX_LENGTH; ++y)
arrayVect.at(x).get()[y] = ++q;
for (size_t x = 0; x < arrayVect.size(); ++x)
for (size_t y = 0; y < MAX_LENGTH; ++y)
std::cout << int(arrayVect.at(x).get()[y]) << '\n'; // Int cast to print numbers, and not ASCII control characters
}

Is it worth to use vector in case of making a map

I have got a class that represents a 2D map with size 40x40.
I read some data from sensors and create this map with marking cells if my sensors found something and I set value of propablity of finding an obstacle. For example when I am find some obstacle in cell [52,22] I add to its value for example to 10 and add to surrounded cells value 5.
So each cell of this map should keep some little value(propably not bigger). So when a cell is marked three times by sensor, its value will be 30 and surronding cells will have 15.
And my question is, is it worth to use casual array or is it better to use vector even I do not sort this cells, dont remove them etc. I just set its value, and read it later?
Update:
Actually I have in my header file:
using cell = uint8_t;
class Grid {
private:
int xSize, ySize;
cell *cells;
public:
//some methods
}
In cpp :
using cell = uint8_t;
Grid::Grid(int xSize, int ySize) : xSize(xSize), ySize(ySize) {
cells = new cell[xSize * ySize];
for (int i = 0; i < xSize; i++) {
for (int j = 0; j < ySize; j++)
cells[x + y * xSize] = 0;
}
}
Grid::~Grid(void) {
delete cells;
}
inline cell* Grid::getCell(int x, int y) const{
return &cells[x + y * xSize];
}
Does it look fine?
I'd use std::array rather than std::vector.
For fixed size arrays you get the benefits of STL containers with the performance of 'naked' arrays.
http://en.cppreference.com/w/cpp/container/array
A static (C-style) array is possible in your case since the size in known at compile-time.
BUT. It may be interesting to have the data on the heap instead of the stack.
If the array is a global variable, it's ugly an bug-prone (avoid that when you can).
If the array is a local variable (let say, in your main() function), then a stack overflow may occur. Well, it's very unlikely for a 40*40 array of tiny things, but I'd prefer have my data on the heap, to keep things safe, clean, and future-proof.
So, IMHO you should definitely go for the vector, it's fast, clean and readable, and you don't have to worry about stack overflow, memory allocation, etc.
About your data. If you know your values are storable on a single byte, go for it !
An uint8_t (same as unsigned char) can store values from 0 to 255. If it's enough, use it.
using cell = uint8_t; // define a nice name for your data type
std::vector<cell> myMap;
size_t size = 40;
myMap.reserve(size*size);
side note: don't use new[]. Well, you can, but it has no advantages over a vector. You will probably only gain headaches handling memory manually.
Some advantages of using a std::vector is that it can be dynamically allocated (flexible size, can be resized during execution, etc) and can be passed/returned from a function. Since you have a fixed size 40x40 and you know you have one element int in every cell, I don't think it matters that much in your case and I would NOT suggest using a class object std::vector to process this simple task.
And here is a possible duplicate.

Return 2d array from C++

Inside a function, I make a 2d array that fills itself from a text file and needs to get returned to main. The array stays a constant size through the whole program.
I know this is something that gets asked a lot, but I always seem to get one of two answers:
Use std::vector or std::array or some other STD function. I don't really understand how these work, is there any site actually explaining them and how they act compared to normal arrays? Are there any special #includes that I need?
Or
Use a pointer to the array, and return the pointer. First, on some of the answers to this it apparently doesn't work because of local arrays. How do I tell when it does and doesn't work? How do I use this array back in the main function?
I'm having more trouble with the concept of pointers and std::things than with the actual code, so if there's a website you know explains it particularly well, feel free to just put that.
Not necessarily the best solution, but the easiest way to get it working with vectors. The advantages are that you don't need to delete memory (happens automatically) and the array is bounds-checked in debug mode on most compilers.
#include <vector>
#include <iostream>
using array2D = std::vector< std::vector< int > >;
array2D MyFunc(int x_size, int y_size)
{
array2D array(y_size, vector< int >(x_size));
int i = 0;
for (int y = 0; y < array.size(); y++)
{
for (int x = 0; x < array[y].size(); x++)
{
// note the order of the index
array[y][x] = i++;
}
}
return array;
}
int main()
{
array2D bob = MyFunc(10, 5);
for (int y = 0; y < bob.size(); y++)
{
for (int x = 0; x < bob[y].size(); x++)
{
cout << bob[y][x] << "\n";
}
}
}
Live example:
http://ideone.com/K4ilfX
Sounds like you are new to C++. If this is indeed the case, I would suggest using arrays for now because you probably won't be using any of the stuff that STL containers give you. Now, let's talk about pointers.
You are correct that if you declare a local array in your function, the main function won't have access to it. However, this is not the case if you dynamically allocate the array using the new keyword. When you use new to allocate your array, you essentially tell the compiler to reserve a chunk of memory for your program. You can then access it using a pointer, which is really just the address of that chunk of memory you reserved. Therefore, instead of passing the entire array to the main function, all you need to do is pass a pointer (address) to that array.
Here are some relevant explanations. I will add to them as I find more:
Dynamic Memory
The easiest way to create a 2d array is as follows:
char (*array)[10];
array = new array[5][10];
Two dimensional arrays can be tricky to declare. The parenthesis above in the variable declaration are important to tell the compiler array is a pointer to an array of 10 characters.
It is really essential to understand pointers with C and C++ unless using the std:: collections. Even then, pointers are widely prevalent, and incorrect use can be devastating to a program.

elegant way to create&pass multi-dimensional array in c++?

first question:
for known dimensions, we don't need new/malloc for the creation
const int row = 3;
const int col = 2;
int tst_matrix[row][col] ={{1,2},{3,4},{5,6}}
however, there is no easy to pass this two-dimensional array to another function, right? because
int matrix_process(int in_matrix[][])
is illegal, you have to specify all the dimensions except the first one. if I need to change the content of in_matrix, how could I easily pass tst_matrix to the function matrix_process?
second question:
what's the standard way to create 2-dimensional array in c++ with new? I dont wanna use std::vector etc.. here.
here is what I come up with, is it the best way?
int **tst_arr = new int*[5];
int i=0, j=0;
for (i=0;i<5;i++)
{
tst_arr[i] = new int[5];
for (j=0;j<5;j++)
{
tst_arr[i][j] = i*5+j;
}
}
In addition, if I pass tst_array to another function, like:
int change_row_col( int **a)
{
.....................
//check which element is 0
for (i=0; i<5; i++)
for(j=0;j<5;j++)
{
if (*(*(a+i)+j)==0) //why I can not use a[i][j] here?
{
row[i]=1;
col[j]=1;
}
}
.....................
}
In addition, if I use ((a+i)+j), the result is not what I want.
Here is the complete testing code I had:
#include <iostream>
using namespace std;
//Input Matrix--a: Array[M][N]
int change_row_col( int **a)
{
int i,j;
int* row = new int[5];
int* col = new int[5];
//initialization
for(i=0;i<5;i++)
{
row[i]=0;
}
for(j=0;j<5;i++)
{
col[j]=0;
}
//check which element is 0
for (i=0; i<5; i++)
for(j=0;j<5;j++)
{
if (*(*(a+i)+j)==0) //why I can not use a[i][j] here?
{
row[i]=1;
col[j]=1;
}
}
for(i=0;i<5;i++)
for (j=0;j<5;j++)
{
if (row[i] || col[j])
{
*(*(a+i)+j)=0;
}
}
return 1;
}
int main ()
{
int **tst_arr = new int*[5];
int i=0, j=0;
for (i=0;i<5;i++)
{
tst_arr[i] = new int[5];
for (j=0;j<5;j++)
{
tst_arr[i][j] = i*5+j;
}
}
for (i=0; i<5;i++)
{
for(j=0; j<5;j++)
{
cout<<" "<<tst_arr[i][j];
}
cout<<endl;
}
change_row_col(tst_arr);
for (i=0; i<5;i++)
{
for(j=0; j<5;j++)
{
cout<<" "<<tst_arr[i][j];
}
cout<<endl;
}
for (i=0;i<5;i++)
{
delete []tst_arr[i];
}
delete []tst_arr;
}
For multidimensional arrays were all the bounds are variable at run time, the most common approach that I know of is to use a dynamically allocated one dimensional array and do the index calculations "manually". In C++ you would normally use a class such as a std::vector specialization to manage the allocation and deallocation of this array.
This produces essentially the same layout as a multidimensional array with fixed bounds and doesn't have any real implied overhead as, without fixed bounds, any approach would require passing all bar one of the array dimensions around at run time.
I honestly think the best idea is to eschew raw C++ arrays in favor of a wrapper class like the boost::multi_array type. This eliminates all sorts of weirdness that arises with raw arrays (difficulty passing them S parameters to functions, issues keeping track of the sizes of the arrays, etc.)
Also, I strongly urge you to reconsider your stance on std::vector. It's so much safer than raw arrays that there really isn't a good reason to use dynamic arrays over vectors in most circumstances. If you have a C background, it's worth taking the time to make the switch.
My solution using function template:
template<size_t M,size_t N>
void Fun(int (&arr)[M][N])
{
for ( int i = 0 ; i < M ; i++ )
{
for ( int j = 0 ; j < N ; j++ )
{
/*................*/
}
}
}
1)
template < typename T, size_t Row_, size_t Col_>
class t_two_dim {
public:
static const size_t Row = Row_;
static const size_t Col = Col_;
/* ... */
T at[Row][Col];
};
template <typename T>
int matrix_process(T& in_matrix) {
return T::Row * T::Col + in_matrix.at[0][0];
}
2) use std::vector. you're adding a few function calls (which may be inlined in an optimized build) and may be exporting a few additional symbols. i suppose there are very good reasons to avoid this, but appropriate justifications are sooooo rare. do you have an appropriate justification?
The simple answer is that the elegant way of doing it in C++ (you tagged C and C++, but your code is C++ new/delete) is by creating a bidimensional matrix class and pass that around (by reference or const reference). After that, the next option should always be std::vector (and again, I would implement the matrix class in terms of a vector). Unless you have a very compelling reason for it, I would avoid dealing with raw arrays of arrays.
If you really need to, but only if you really need to, you can perfectly work with multidimensional arrays, it is just a little more cumbersome than with plain arrays. If all dimensions are known at compile time, as in your first block this are some of the options.
const unsigned int dimX = ...;
const unsigned int dimY = ...;
int array[dimY][dimX];
void foo( int *array[dimX], unsigned int dimy ); // [1]
void foo( int (&array)[dimY][dimX] ); // [2]
In [1], by using pass-by-value syntax the array decays into a pointer to the first element, which means a pointer into an int [dimX], and that is what you need to pass. Note that you should pass the other dimension in another argument, as that will be unknown by the code in the function. In [2], by passing a reference to the array, all dimensions can be fixed and known. The compiler will ensure that you call only with the proper size of array (both dimensions coincide), and thus no need to pass the extra parameter. The second option can be templated to accomodate for different sizes (all of them known at compile time):
template <unsigned int DimX, unsigned int DimY>
void foo( int (&array)[DimY][DimX] );
The compiler will deduct the sizes (if a real array is passed to the template) and you will be able to use it inside the template as DimX and DimY. This enables the use of the function with different array sizes as long as they are all known at compile time.
If dimensions are not known at compile time, then things get quite messy and the only sensible approach is encapsulating the matrix in a class. There are basically two approaches. The first is allocating a single contiguous block of memory (as the compiler would do in the previous cases) and then providing functions that index that block by two dimensions. Look at the link up in the first paragraph for a simple approach, even if I would use std::vector instead of a raw pointer internally. Note that with the raw pointer you need to manually manage deletion of the pointer at destruction or your program will leak memory.
The other approach, which is what you started in the second part of your question is the one I would avoid at all costs, and consists in keeping a pointer into a block of pointers into integers. This complicates memory management (you moved from having to delete a pointer into having to delete DimY+1 pointers --each array[i], plus array) and you also need to manually guarantee during allocation that all rows contain the same number of columns. There is a substantial increase in the number of things that can go wrong and no gain, but some actual loss (more memory required to hold the intermediate pointers, worse runtime performance as you have to double reference, probably worse locality of data...
Wrapping up: write a class that encapsulates the bidimensional object in terms of a contiguous block of memory (array if sizes are known at compile time --write a template for different compile time sizes--, std::vector if sizes are not known until runtime, pointer only if you have a compelling reason to do so), and pass that object around. Any other thing will more often than not just complicate your code and make it more error prone.
For your first question:
If you need to pass a ND array with variable size you can follow the following method to define such a function. So, in this way you can pass the required size arguments to the function.
I have tested this in gcc and it works.
Example for 2D case:
void editArray(int M,int N,int matrix[M][N]){
//do something here
}
int mat[4][5];
editArray(4,5,mat); //call in this way