I am attempting to delay load wintrust.dll and crypt32.dll in my application (these are used to perform digital signature/publisher checks in a DLL). I am using VS2008. After adding these two DLLs as entries in the Delay Load property in the Linker section of my project properties, I still get LNK4199 warnings that nothing was loaded from the DLL and LNK2019 errors unable to resolve symbols such as WinVerifyTrust.
Adding the following as entries to Additional Dependencies alleviates this problem: crypt32.lib and wintrust.lib. I now get no issues with linking. However, what I am wondering is how do I make sure this isn't being linked to the static lib? I do not want to link to the static lib because of potential licensing issues. I want to dynamically load the DLLs that are installed in Windows, and was hoping DelayLoad could help me do this without having to resort to LoadLibrary and GetProcAddress function calls.
Any information about all the different library usage/linking options would be greatly appreciated!
Thanks.
There is no static .lib for these. The SDK libraries are always import libraries, not static .libs because the corresponding Windows API lives in a DLL. No need to worry about this.
Delay loading doesn't free you from having to link to the lib file. Normally, DLLs are loaded as soon as your application starts. Delay loading just delays this until the first time you call a function from that DLL. Either way, you need to link to the lib file so that the linker can verify that the functions you are calling are actually present in the DLL.
If you don't want to link to the lib files, your only way out is to use LoadLibrary and GetProcAddress.
One tool that can help you determine if things are being linked as you expect is DependecyWalker: http://www.dependencywalker.com/ - specifically, in the case of delay-loads it marks them with a special symbol.
You may want to look at the Win32 API methods LoadLibrary and GetProcAddress.
Related
I am making a win32 console app using msvc++ that is going to use a really simple dll. I put my .lib and header for my dll (my dll only has one header) into my console applications folder.
When I run it, I don't get any compile or linking errors, but when the app is actually open, it says it cant find the dll. When I put the .dll file into the console app's folder and run, it actually works. I would like to know why this happens??????
Look at this link:
Dynamic-Link Library Search Order
Windows has a DLL search order. You can change it by functions specified in the above link.
Your import library is used to define information about functions in your DLL and so. You can use LoadLibrary("myDLL.dll") function to load DLL without header.
In this case you must use GetProcAddress(module, "function_name") function to get function adresses in your DLL.
GetProcAddress function
and here is the link where is some solution for GetProcAddress():
Calling functions in a DLL from C++
This question is regarding dynamic linking of libraries and usage of dynamic linking of libraries in application.
For example we are devloping an application using C++ using Visual studio environment.
Here for include header files we specify in Additional Include Directories, and
in Additional Dependencies: Mylibrary.lib
in Additional Libraries Directories: We specifies path of libraries
And in Windows we also have "LoadLibrary" API which is used to load dynamically linked ibrary.
My question is
when we include dll in Additional dependencies libraries why we should use "LoadLibrary" API?
When we should use "LoadLibrary" API?
Thanks!
LoadLibrary lets you continue program execution if the dll is not on the running machine. It returns an error status that can be checked and execution can be continued.
Also, linking lets you do stuff like use classes from the other binary & others. LoadLibrary only lets you find functions via GetProcAddress.
Imagine that you have a software that for example needes at a determined time to convert
Internet network address into strings.
On windows vista or later you can use the "InetNtop" function that is also able to deal with ipv6, but if you link directly to the DLL your program will no work on lower OS (ex: windows xp).
So the best solution would probably be making 2 DLL's one that used "InetNtop" and another that used for example "inet_ntoa".
Then your "main" program would do at runtime a LoadLibrary of the "InetNtop DLL", or the "inet_ntoa DLL", according to the OS that he his installed.
You asked that you can include dll in Additional dependencies libraries, and then why to use loadlibrary.
First lets clear the understanding:
While linking statically, A programmer is needed to add the .lib file to
Additional library dependency, which is linked to the caller program at compile time,
However, Dlls are loaded dynamically, hence you need not to add dlls in Additional library dependency when you are using LoadLibrary ie; if you are linking the Dll explicitly you are not needed to give your dll path in Additional library dependencies.
Please note:
using LoadLibrary you will be able to Get the Dll handle, which you can call the exported function using GetProcAddress.
refer:
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684175(v=vs.85).aspx
I have a framework (in C++) which is dependent on a few third party libraries. When I compile a static version of the library framework, no additional dependencies are needed, that is, the lib files of the third part libraries are not needed. When I compile the same framework as a DLL, additional dependencies are now needed otherwise I get linking errors. I can guess as to why this is happening but would like a concrete answer/explanation to understand what is happening.
EDIT: Just to clarify, I am developing a framework which can be compiled as a lib and as a dll and then used in a(n) (executable) project. When compiling the framework as a lib and using functions from a third party library, I don't need additional dependencies. However, a project that now uses the lib file (which is the framework) must include the 3rd party lib files. When I compile the framework as a dll it gives me linking errors unless I specify the 3rd part libraries the framework is technically dependent on. For example: I have a few classes that call functionality from within Ogre3D. These classes are compiled as a lib file. I don't need to link against OgreMain.lib when compiling a lib of the classes. On the other hand, when I am compiling a dll version of the same classes, I now need to link against OgreMain.lib
When you have a static library (a .lib file), which is just a collection of one or more object files (.obj), the linker just adds that code to yours in one executable. You can tell the linker to do this via a command line switch, an IDE configuration setting, or perhaps even a #pragma (specifics depend on your environment and compiler).
When you link in a DLL, you need to give the linker some code to call when you invoke one of the DLLs functions. Usually, this is done with a file of the same name as the .dll, save that it is a .lib. The code in that .lib is linked into your program the same way as described above, but when you call it, it loads the DLL (if not already loaded) and then invokes the proper function.
There are other ways to handle DLL linking (for instance, .def files or #using statements in .NET), but this seems to be what you're talking about.
Responding to your question clarification:
The issue is that a .lib is not a final product. It is just an aggregation of object code to be used later when a linker connects all your functions calls to function addresses.
A DLL, on the other hand, is a final product, and so the linker requires all functions and variables be connected to actual addresses.
I'm speaking a bit imprecisely, but you get the idea.
A static library can include other static libraries, providing a single lib to link
A DLL can include static libraries, providing a single DLL to link.
A DLL or static library with dependencies on other DLLs has no way to combine them so your executable must explicitly link to those other DLLs.
When you link to a LIB it adds all the symbols/functions you actually use to your executable. The ones you don't use won't get added. When you link to a dll - all the code from the external library gets loaded. If this additional code (code you don't use) depends on more external libraries you need to provide these as well.
One example: You want to use a ip class from a network library. The ip class does not depend on other libraries. Other functions in the network library depend on other external libraries. If you link the network library as a LIB you just link the ip class -> you don't need the other libraries since the other code wont get linked. When you use the DLL all code in the dll need to be instanciated -> so you will need to provide the other external libraries.
Building a DLL is more like building an application than a library. The difference between building an application and a DLL is knowledge of what might be called. In an application all symbols that are not used can be discarded in the build, but in a DLL you cannot strip symbols that are not used - that would be all of them...
You would find the same link problems in your static libraries if you where able to call all the symbols that the DLL links.
I know this may seem quite basic to geeks. But I want to make it crystal clear.
When I want to use a Win32 DLL, usually I just call the APIs like LoadLibrary() and GetProcAdderss(). But recently, I am developing with DirectX9, and I need to add d3d9.lib, d3dx9.lib, etc files.
I have heard enough that LIB is for static linking and DLL is for dynamic linking.
So my current understanding is that LIB contains the implementation of the methods and is statically linked at link time as part of the final EXE file. While DLL is dynamic loaded at runtime and is not part of the final EXE file.
But sometimes, there're some LIB files coming with the DLL files, so:
What are these LIB files for?
How do they achieve what they are meant for?
Is there any tools that can let me inspect the internals of these LIB files?
Update 1
After checking wikipedia, I remember that these LIB files are called import library.
But I am wondering how it works with my main application and the DLLs to be dynamically loaded.
Update 2
Just as RBerteig said, there're some stub code in the LIB files born with the DLLs. So the calling sequence should be like this:
My main application --> stub in the LIB --> real target DLL
So what information should be contained in these LIBs? I could think of the following:
The LIB file should contain the fullpath of the corresponding DLL; So the DLL could be loaded by the runtime.
The relative address (or file offset?) of each DLL export method's entry point should be encoded in the stub; So correct jumps/method calls could be made.
Am I right on this? Is there something more?
BTW: Is there any tool that can inspect an import library? If I can see it, there'll be no more doubts.
Linking to a DLL file can occur implicitly at compile link time, or explicitly at run time. Either way, the DLL ends up loaded into the processes memory space, and all of its exported entry points are available to the application.
If used explicitly at run time, you use LoadLibrary() and GetProcAddress() to manually load the DLL and get pointers to the functions you need to call.
If linked implicitly when the program is built, then stubs for each DLL export used by the program get linked in to the program from an import library, and those stubs get updated as the EXE and the DLL are loaded when the process launches. (Yes, I've simplified more than a little here...)
Those stubs need to come from somewhere, and in the Microsoft tool chain they come from a special form of .LIB file called an import library. The required .LIB is usually built at the same time as the DLL, and contains a stub for each function exported from the DLL.
Confusingly, a static version of the same library would also be shipped as a .LIB file. There is no trivial way to tell them apart, except that LIBs that are import libraries for DLLs will usually be smaller (often much smaller) than the matching static LIB would be.
If you use the GCC toolchain, incidentally, you don't actually need import libraries to match your DLLs. The version of the Gnu linker ported to Windows understands DLLs directly, and can synthesize most any required stubs on the fly.
Update
If you just can't resist knowing where all the nuts and bolts really are and what is really going on, there is always something at MSDN to help. Matt Pietrek's article An In-Depth Look into the Win32 Portable Executable File Format is a very complete overview of the format of the EXE file and how it gets loaded and run. Its even been updated to cover .NET and more since it originally appeared in MSDN Magazine ca. 2002.
Also, it can be helpful to know how to learn exactly what DLLs are used by a program. The tool for that is Dependency Walker, aka depends.exe. A version of it is included with Visual Studio, but the latest version is available from its author at http://www.dependencywalker.com/. It can identify all of the DLLs that were specified at link time (both early load and delay load) and it can also run the program and watch for any additional DLLs it loads at run time.
Update 2
I've reworded some of the earlier text to clarify it on re-reading, and to use the terms of art implicit and explicit linking for consistency with MSDN.
So, we have three ways that library functions might be made available to be used by a program. The obvious follow up question is then: "How to I choose which way?"
Static linking is how the bulk of the program itself is linked. All of your object files are listed, and get collected together in to the EXE file by the linker. Along the way, the linker takes care of minor chores like fixing up references to global symbols so that your modules can call each other's functions. Libraries can also be statically linked. The object files that make up the library are collected together by a librarian in a .LIB file which the linker searches for modules containing symbols that are needed. One effect of static linking is that only those modules from the library that are used by the program are linked to it; other modules are ignored. For instance, the traditional C math library includes many trigonometry functions. But if you link against it and use cos(), you don't end up with a copy of the code for sin() or tan() unless you also called those functions. For large libraries with a rich set of features, this selective inclusion of modules is important. On many platforms such as embedded systems, the total size of code available for use in the library can be large compared to the space available to store an executable in the device. Without selective inclusion, it would be harder to manage the details of building programs for those platforms.
However, having a copy of the same library in every program running creates a burden on a system that normally runs lots of processes. With the right kind of virtual memory system, pages of memory that have identical content need only exist once in the system, but can be used by many processes. This creates a benefit for increasing the chances that the pages containing code are likely to be identical to some page in as many other running processes as possible. But, if programs statically link to the runtime library, then each has a different mix of functions each laid out in that processes memory map at different locations, and there aren't many sharable code pages unless it is a program that all by itself is run in more than process. So the idea of a DLL gained another, major, advantage.
A DLL for a library contains all of its functions, ready for use by any client program. If many programs load that DLL, they can all share its code pages. Everybody wins. (Well, until you update a DLL with new version, but that isn't part of this story. Google DLL Hell for that side of the tale.)
So the first big choice to make when planning a new project is between dynamic and static linkage. With static linkage, you have fewer files to install, and you are immune from third parties updating a DLL you use. However, your program is larger, and it isn't quite as good citizen of the Windows ecosystem. With dynamic linkage, you have more files to install, you might have issues with a third party updating a DLL you use, but you are generally being friendlier to other processes on the system.
A big advantage of a DLL is that it can be loaded and used without recompiling or even relinking the main program. This can allow a third party library provider (think Microsoft and the C runtime, for example) to fix a bug in their library and distribute it. Once an end user installs the updated DLL, they immediately get the benefit of that bug fix in all programs that use that DLL. (Unless it breaks things. See DLL Hell.)
The other advantage comes from the distinction between implicit and explicit loading. If you go to the extra effort of explicit loading, then the DLL might not even have existed when the program was written and published. This allows for extension mechanisms that can discover and load plugins, for instance.
These .LIB import library files are used in the following project property, Linker->Input->Additional Dependencies, when building a bunch of dll's that need additional information at link time which is supplied by the import library .LIB files. In the example below to not get linker errors I need to reference to dll's A,B,C, and D through their lib files. (note for the linker to find these files you may need to include their deployment path in Linker->General->Additional Library Directories else you will get a build error about being unable to find any of the provided lib files.)
If your solution is building all dynamic libraries you may have been able to avoid this explicit dependency specification by relying instead on the reference flags exposed under the Common Properties->Framework and References dialog. These flags appear to automatically do the linking on your behalf using the *.lib files.
This however is as it says a Common Properties, which is not configuration or platform specific. If you need to support a mixed build scenario as in our application we had a build configuration to render a static build and a special configuration that built a constrained build of a subset of assemblies that were deployed as dynamic libraries. I had used the Use Library Dependency Inputs and Link Library Dependencies flags set to true under various cases to get things to build and later realizing to simplify things but when introducing my code to the static builds I introduced a ton of linker warnings and the build was incredibly slow for the static builds. I wound up introducing a bunch of these sort of warnings...
warning LNK4006: "bool __cdecl XXX::YYY() already defined in CoreLibrary.lib(JSource.obj); second definition ignored D.lib(JSource.obj)
And I wound up using the manual specification of Additional Dependencies to satisfy the linker for the dynamic builds while keeping the static builders happy by not using a common property that slowed them down. When I deploy the dynamic subset build I only deploy the dll files as these lib files are only used at link time, not at runtime.
Here are some related MSDN topics to answer my question:
Linking an Executable to a DLL
Linking Implicitly
Determining Which Linking Method to Use
Building an Import Library and Export File
There are three kinds of libraries: static, shared and dynamically loaded libraries.
The static libraries are linked with the code at the linking phase, so they are actually in the executable, unlike the shared library, which has only stubs (symbols) to look for in the shared library file, which is loaded at run time before the main function gets called.
The dynamically loaded ones are much like the shared libraries, except they are loaded when and if the need arises by the code you've written.
In my mind, there are two method to link dll to exe.
Use dll and the import library (.lib file) implicitly
Use functions like loadlibrary() explicitly
It's pointed out by this answer:
Failed to link mysql5.1.39\bin\libmySQL.dll
But I don't understand why,.dll is essentially the same as .lib except for there is only one copy of it used by different processes.
Does it have anything to do with the IDE?I'm using visual c++ 2008 express
UPDATE
Anyone know a free tool to convert .dll into .lib in windows?
You are wrong on two counts. Firstly, DLLs and LIBs (static libraries) are very different beasts. The LIB you are talking about (I think) is the export library, which is simply a list of names in the DLL. This library is typically produced when the DLL is compiled and is shipped with the DLL if the DLL is intended to be linked to by other developers.
To use a DLL with a modern IDE (I don't use VS) you typically include the matching .LIB (export library) in the project. At run-time you must make sure the DLL is available to your program - the simplest way to do this is to put the DLL in the same directory as the executable.
And secondly, DLLs can be used with C++.
DLL are specific windows executables which load on runtime. Their equivalent in Linux is the *.so .
If you want to understand what's the difference between a DLL and a static lib see here.
Main reason has probably something to do with dll-file being an output of the linker (link.exe). This command line utility doesnt know how to read dlls, only how to write them.
Actually sometimes .lib-files contain more than a list of functions. For example libpng.lib works as a standalone file, without any dll file.
In order to use a DLL in C/C++ you need to link with what is called an import lib. This is a small .lib that contains the names/ordinals the DLL exports in a format that the linker understands. Once this has been linked in, the resulting binary will be able to use the DLL. If you do not have the appropriate import lib, your C/C++ compiler should come with a tool to generate one from the DLL.
You can use the following analogy to understand the difference between a dll and a lib file.
the dll is like the source .cpp file while the lib is the header .h file.
While this is not exactly true, the DLL holds the executable code while the LIB file tells the linker how to glue the code together.
It is also possible (in some cases) to generate the lib from the dll. Basically, all you need to know to call a function is the function entry point in the dll, the number of parameters and the size of each parameters. Sending relevant information is then your own problem.