I am trying to code a multicode Markov Chain in C++ and while I am trying to take advantage of the many CPUs (up to 24) to run a different chain in each one, I have a problem in picking a right container to gather the result the numerical evaluations on each CPU. What I am trying to measure is basically the average value of an array of boolean variables. I have tried coding a wrapper around a `std::vector`` object looking like that:
struct densityStack {
vector<int> density; //will store the sum of boolean varaibles
int card; //will store the amount of elements we summed over for normalizing at the end
densityStack(int size){ //constructor taking as only parameter the size of the array, usually size = 30
density = vector<int> (size, 0);
card = 0;
}
void push_back(vector<int> & toBeAdded){ //method summing a new array (of measurements) to our stack
for(auto valStack = density.begin(), newVal = toBeAdded.begin(); valStack != density.end(); ++valStack, ++ newVal)
*valStack += *newVal;
card++;
}
void savef(const char * fname){ //method outputting into a file
ofstream out(fname);
out.precision(10);
out << card << "\n"; //saving the cardinal in first line
for(auto val = density.begin(); val != density.end(); ++val)
out << << (double) *val/card << "\n";
out.close();
}
};
Then, in my code I use a single densityStack object and every time a CPU core has data (can be 100 times per second) it will call push_back to send the data back to densityStack.
My issue is that this seems to be slower that the first raw approach where each core stored each array of measurement in file and then I was using some Python script to average and clean (I was unhappy with it because storing too much information and inducing too much useless stress on the hard drives).
Do you see where I can be losing a lot of performance? I mean is there a source of obvious overheading? Because for me, copying back the vector even at frequencies of 1000Hz should not be too much.
How are you synchronizing your shared densityStack instance?
From the limited info here my guess is that the CPUs are blocked waiting to write data every time they have a tiny chunk of data. If that is the issue, a simple technique to improve performance would be to reduce the number of writes. Keep a buffer of data for each CPU and write to the densityStack less frequently.
I am developing an application for which performance is a fundamental issue. In particular, I was willing to organize a tree-like structure that needs to be traversed really quickly in blocks of the same size as my memory page size so that it would reduce the number of cache misses needed to reach a leaf.
I am quite a novice in the art of memory optimization. As far as I understand, the process of accessing the main memory goes more or less as follows:
CPUs have several layer of caches of increasing size and decreasing speed.
Every time some data that I need is already in the cache, it is fetched from the cache (cache hit).
If it is not in the cache, it will be fetched from the main memory.
Anytime something is loaded from the main memory, the whole page (or pages) containing the data are loaded and stored in the cache. In this way, if I try to access locations in memory that are close to the ones I already fetched from the main memory, they will already be in my CPU cache.
However, if I organize my data in blocks of the same size as my memory page size, I thought that it would also be needed to align that data properly, so that whenever a new block of my data needs to be loaded only one page of memory will need to be fetched from the main memory rather than the two pages containing the first half and the second half of my data block). In principle, shouldn't a correctly aligned data block mean only one access to the memory rather than two? Shouldn't that more or less double memory performance?
I tried the following:
#include <iostream>
#include <unistd.h>
#include <stdio.h>
#include <time.h>
#include <sys/time.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
using namespace std;
#define BLOCKS 262144
#define TESTS 131072
unsigned long int utime()
{
struct timeval tp;
gettimeofday(&tp, NULL);
return tp.tv_sec * 1000000 + tp.tv_usec;
}
unsigned long int pagesize = sysconf(_SC_PAGE_SIZE);
unsigned long int block_slots = pagesize / sizeof(unsigned int);
unsigned int t = 0;
unsigned int p = 0;
unsigned long int test(unsigned int * data)
{
unsigned long int start = utime();
for(unsigned int n=0; n<TESTS; n++)
{
for(unsigned int i=0; i<block_slots; i++)
t += data[p * block_slots + i];
p = t % BLOCKS;
}
unsigned long int end = utime();
return end - start;
}
int main()
{
srand((unsigned int) time(NULL));
char * buffer = new char[(BLOCKS + 3) * pagesize];
for(unsigned int i=0; i<(BLOCKS + 3) * pagesize; i++)
buffer[i] = rand();
for(unsigned int i=0; i<pagesize; i++)
cout<<test((unsigned int *) (buffer + i))<<endl;
cout<<"("<<t<<")"<<endl;
delete [] buffer;
}
This code instantiates more or less 1 GB of empty bytes, fills them with random numbers. Then the function test is called with all the possible shifts in a memory page (from a 0 shift to a 4096 shift). The test function interprets the pointer provided as a group of blocks of data and carries out some simple operation (sum) over those blocks. The order of access to the blocks is more or less random (it's determined by the partial sums) so that every time a new block is accessed it is nearly certain not to already be in the cache.
The function test is then timed. In all the shift configurations but one I should observe some timing, while in one particular shift configuration (the null shift, maybe?) I should observe some big improvement in terms of efficiency. This, however, does not happen at all: all the shift timings are perfectly compatible with each other.
Why does this happen and what does this mean? Can I just forget about memory alignment? Can I also forget about making my data blocks exactly as big as a memory page? (I was planning to use some padding in case they were smaller). Or maybe something in the cache management process is just unclear to me?
So I'm taking an assembly course and have been tasked with making a benchmark program for my computer - needless to say, I'm a bit stuck on this particular piece.
As the title says, we're supposed to create a function to read from 5x108 different array elements, 4 bytes each time. My only problem is, I don't even think it's possible for me to create an array of 500 million elements? So what exactly should I be doing? (For the record, I'm trying to code this in C++)
//Benchmark Program in C++
#include <iostream>
#include <time.h>
using namespace std;
int main() {
clock_t t1,t2;
int readTemp;
int* arr = new int[5*100000000];
t1=clock();
cout << "Memory Test"
<< endl;
for(long long int j=0; j <= 500000000; j+=1)
{
readTemp = arr[j];
}
t2=clock();
float diff ((float)t2-(float)t1);
float seconds = diff / CLOCKS_PER_SEC;
cout << "Time Taken: " << seconds << " seconds" <<endl;
}
Your system tries to allocate 2 billion bytes (1907 MiB), while the maximum available memory for Windows is 2 gigabytes (2048 MiB). These numbers are very close. It's likely your system has allocated the remaining 141 MiB for other stuff. Even though your code is very small, OS is pretty liberal in allocation of the 2048 MiB address space, wasting large chunks for e.g. the following:
C++ runtime (standard library and other libraries)
Stack: OS allocates a lot of memory to support recursive functions; it doesn't matter that you don't have any
Paddings between virtual memory pages
Paddings used just to make specific sections of data appear at specific addresses (e.g. 0x00400000 for lowest code address, or something like that, is used in Windows)
Padding used to randomize the values of pointers
There's a Windows application that shows a memory map of a running process. You can use it by adding a delay (e.g. getchar()) before the allocation and looking at the largest contiguous free block of memory at that point, and which allocations prevent it from being large enough.
The size is possible :
5 * 10^8 * 4 = ~1.9 GB.
First you will need to allocate your array (dynamically only ! There's no such stack memory).
For your task the 4 bytes is the size of an interger, so you can do it
int* arr = new int[5*100000000];
Alternatively, if you want to be more precise, you can allocate it as bytes
int* arr = new char[5*4*100000000];
Next, you need to make the memory dirty (meaning write something into it) :
memset(arr,0,5*100000000*sizeof(int));
Now, you can benchmark cache misses (I'm guessing that's what it's intended in such a huge array) :
int randomIndex= GetRandomNumberBetween(0,5*100000000-1); // make your own random implementation
int bytes = arr[randomIndex]; // access 4 bytes through integer
If you want 5* 10 ^8 accesses randomly you can make a knuth shuffle inside your getRandomNumber instead of using pure random.
I want to write to a file a series of binary strings whose length is expressed in bits rather than bytes. Take in consideration two strings s1 and s2 that in binary are respectively 011 and 01011. In this case the contents of the output file has to be: 01101011 (1 byte). I am trying to do this in the most efficient way possible since I have several million strings to concatenate for a total of several GB in output.
C++ has no way of working directly with bits because it aims at being a light layer
above the hardware and the hardware itself is not bit oriented. The very minimum
amount of bits you can read/write in one operation is a byte (normally 8 bits).
Also if you need to do disk i/o it's better to write your data in blocks instead of one byte at a time. The library has some buffering, but the earlier things are buffered the faster the code will be (less code is involved in passing data around).
A simple approach could be
unsigned char iobuffer[4096];
int bufsz; // how many bytes are present in the buffer
unsigned long long bit_accumulator;
int acc_bits; // how many bits are present in the accumulator
void writeCode(unsigned long long code, int bits) {
bit_accumulator |= code << acc_bits;
acc_bits += bits;
while (acc_bits >= 8) {
iobuffer[bufsz++] = bit_accumulator & 255;
bit_accumulator >>= 8;
acc_bits -= 8;
if (bufsz == sizeof(iobuffer)) {
// Write the buffer to disk
bufsz = 0;
}
}
}
There is no optimal way to solve your problem per se. But you can use a few pinches to speed things up:
Experiment with the file I/O sync flag. It might be that set/unset is significantly faster that the other, because of buffering and caching.
Try to use architecture sized variables so that they fit into the registers directly: uint32_t for 32 bit machines and uint64_t for 64 bit machines ...
"Volatile" might help to, keep things in registers
Use pointer and references for large data and copy small data blobs (to avoid unnecessary copy of large data and much lookups and page touching for small data)
Use mmap of the file for direct access and align your output to the page size of your architecture and hard disk (usually 4 KiB = 4096 Bytes)
Try to reduce branching (instructions like "if", "for", "while", "() ? :") and linearize your code.
And if that is not enough and when the going gets rough: Use assembler (but I would not recommend that for beginners)
I think multi threading would be contra productive in this case, because of the limited file writes that can be issued and the problem is not easy dividable into little tasks as each one needs to know how many bits after the other ones it has to start and then you would have to join all the results together in the end.
I've used the following in the past, it might help a bit...
FileWriter.h:
#ifndef FILE_WRITER_H
#define FILE_WRITER_H
#include <stdio.h>
class FileWriter
{
public:
FileWriter(const char* pFileName);
virtual ~FileWriter();
void AddBit(int iBit);
private:
FILE* m_pFile;
unsigned char m_iBitSeq;
unsigned char m_iBitSeqLen;
};
#endif
FileWriter.cpp:
#include "FileWriter.h"
#include <limits.h>
FileWriter::FileWriter(const char* pFileName)
{
m_pFile = fopen(pFileName,"wb");
m_iBitSeq = 0;
m_iBitSeqLen = 0;
}
FileWriter::~FileWriter()
{
while (m_iBitSeqLen > 0)
AddBit(0);
fclose(m_pFile);
}
void FileWriter::AddBit(int iBit)
{
m_iBitSeq |= iBit<<CHAR_BIT;
m_iBitSeq >>= 1;
m_iBitSeqLen++;
if (m_iBitSeqLen == CHAR_BIT)
{
fwrite(&m_iBitSeq,1,1,m_pFile);
m_iBitSeqLen = 0;
}
}
You can further improve it by accumulating the data up to a certain amount before writing it into the file.
OK, here's my situation :
I have a function - let's say U64 calc (U64 x) - which takes a 64-bit integer parameter, performs some CPU-intensive operation, and returns a 64-bit value
Now, given that I know ALL possible inputs (the xs) of that function beforehand (there are some 16000 though), I thought it might be better to pre-calculate them and then fetch them on demand (from an array-like structure).
The ideal situation would be to store them all in some array U64 CALC[] and retrieve them by index (the x again)
And here's the issue : I may know what the possible inputs for my calc function are, but they are most definitely NOT consecutive (e.g. not from 1 to 16000, but values that may go as low as 0 and as high as some trillions - always withing a 64-bit range)
E.G.
X CALC[X]
-----------------------
123123 123123123
12312 12312312
897523 986123
etc.
And here comes my question :
How would you store them?
What workaround would you prefer?
Now, given that these values (from CALC) will have to be accessed some thousands-to-millions of times, per sec, which would be the best solution performance-wise?
Note : I'm no mentioning anything I've thought of or tried so as not to turn the answers into some debate of A vs B type-of-thing, and mostly not influence anyone...
I would use some sort of hash function that creates an index to a u64 pair where one is the value the key was created from and the other the replacement value. Technically the index could be three bytes long (assuming 16 million -"16000 thousand" - pairs) if you need to conserve space but I'd use u32s. If the stored value does not match the value computed on (hash collision) you'd enter an overflow handler.
You need to determine a custom hashing algorithm to fit your data
Since you know the size of the data you don't need algorithms that allow the data to grow.
I'd be wary of using some standard algorithm because they seldom fit specific data
I'd be wary of using a C++ method unless you are sure the code is WYSIWYG (doesn't generate a lot of invisible calls)
Your index should be 25% larger than the number of pairs
Run through all possible inputs and determine min, max, average and standard deviation for the number of collisions and use these to determine the acceptable performance level. Then profile to achieve the best possible code.
The required memory space (using a u32 index) comes out to (4*1.25)+8+8 = 21 bytes per pair or 336 MeB, no problem on a typical PC.
________ EDIT________
I have been challenged by "RocketRoy" to put my money where my mouth is. Here goes:
The problem has to do with collision handling in a (fixed size) hash index. To set the stage:
I have a list of n entries where a field in the entry contains the value v that the hash is computed from
I have a vector of n*1.25 (approximately) indeces such that the number of indeces x is a prime number
A prime number y is computed which is a fraction of x
The vector is initialized to say -1 to denote unoccupied
Pretty standard stuff I think you'll agree.
The entries in the list are processed and the hash value h computed and modulo'd and used as an index into the vector and the index to the entry is placed there.
Eventually I encounter the situation where the vector entry pointed to by the index is occupied (doesn't contain -1) - voilĂ , a collision.
So what do I do? I keep the original h as ho, add y to h and take modulo x and get a new index into the vector. If the entry is unoccupied I use it, otherwise I continue with add y modulo x until I reach ho. In theory, this will happen because both x and y are prime numbers. In practice x is larger than n so it won't.
So the "re-hash" that RocketRoy claims is very costly is no such thing.
The tricky part with this method - as with all hashing methods - is to:
Determine a suitable value for x (becomes less tricky the larger x finally used)
Determine the algorithm a for h=a(v)%x such that a the h's index reasonably evenly ("randomly") into the index vector with as few collisions as possible
Determine a suitable value for y such that collisions index reasonably evenly ("randomly") into the index vector
________ EDIT________
I'm sorry I've taken so long to produce this code ... other things have had higher priorities.
Anyway, here is the code which proves that hashing has better prospects for quick lookups than a binary tree. It runs through a bunch of hashing index sizes and algorithms to aid in finding the most suitable combo for the specific data. For every algorithm the code will print the first index size such that no lookup takes longer than fourteen searches (worst case for binary searching) and an average lookup takes less than 1.5 searches.
I have a fondness for prime numbers in these types of applications, in case you haven't noticed.
There are many ways of creating a hashing algorithm with its mandatory overflow handling. I opted for simplicity assuming it will translate into speed ... and it does. On my laptop with an i5 M 480 # 2.67 GHz an average lookup requires between 55 and 60 clock cycles (comes out to around 45 million lookups per second). I implemented a special get operation with a constant number of indeces and ditto rehash value and the cycle count dropped to 40 (65 million lookups per second). If you look at the line calling getOpSpec the index i is xor'ed with 0x444 to exercise the caches to achieve more "real world"-like results.
I must again point out that the program suggests suitable combinations for the specific data. Other data may require a different combo.
The source code contains both the code for generating the 16000 unsigned long long pairs and for testing different constants (index sizes and rehash values):
#include <windows.h>
#define i8 signed char
#define i16 short
#define i32 long
#define i64 long long
#define id i64
#define u8 char
#define u16 unsigned short
#define u32 unsigned long
#define u64 unsigned long long
#define ud u64
#include <string.h>
#include <stdio.h>
u64 prime_find_next (const u64 value);
u64 prime_find_previous (const u64 value);
static inline volatile unsigned long long rdtsc_to_rax (void)
{
unsigned long long lower,upper;
asm volatile( "rdtsc\n"
: "=a"(lower), "=d"(upper));
return lower|(upper<<32);
}
static u16 index[65536];
static u64 nindeces,rehshFactor;
static struct PAIRS {u64 oval,rval;} pairs[16000] = {
#include "pairs.h"
};
struct HASH_STATS
{
u64 ninvocs,nrhshs,nworst;
} getOpStats,putOpStats;
i8 putOp (u16 index[], const struct PAIRS data[], const u64 oval, const u64 ci)
{
u64 nworst=1,ho,h,i;
i8 success=1;
++putOpStats.ninvocs;
ho=oval%nindeces;
h=ho;
do
{
i=index[h];
if (i==0xffff) /* unused position */
{
index[h]=(u16)ci;
goto added;
}
if (oval==data[i].oval) goto duplicate;
++putOpStats.nrhshs;
++nworst;
h+=rehshFactor;
if (h>=nindeces) h-=nindeces;
} while (h!=ho);
exhausted: /* should not happen */
duplicate:
success=0;
added:
if (nworst>putOpStats.nworst) putOpStats.nworst=nworst;
return success;
}
i8 getOp (u16 index[], const struct PAIRS data[], const u64 oval, u64 *rval)
{
u64 ho,h,i;
i8 success=1;
ho=oval%nindeces;
h=ho;
do
{
i=index[h];
if (i==0xffffu) goto not_found; /* unused position */
if (oval==data[i].oval)
{
*rval=data[i].rval; /* fetch the replacement value */
goto found;
}
h+=rehshFactor;
if (h>=nindeces) h-=nindeces;
} while (h!=ho);
exhausted:
not_found: /* should not happen */
success=0;
found:
return success;
}
volatile i8 stop = 0;
int main (int argc, char *argv[])
{
u64 i,rval,mulup,divdown,start;
double ave;
SetThreadAffinityMask (GetCurrentThread(), 0x00000004ull);
divdown=5; //5
while (divdown<=100)
{
mulup=3; // 3
while (mulup<divdown)
{
nindeces=16000;
while (nindeces<65500)
{
nindeces= prime_find_next (nindeces);
rehshFactor=nindeces*mulup/divdown;
rehshFactor=prime_find_previous (rehshFactor);
memset (index, 0xff, sizeof(index));
memset (&putOpStats, 0, sizeof(struct HASH_STATS));
i=0;
while (i<16000)
{
if (!putOp (index, pairs, pairs[i].oval, (u16) i)) stop=1;
++i;
}
ave=(double)(putOpStats.ninvocs+putOpStats.nrhshs)/(double)putOpStats.ninvocs;
if (ave<1.5 && putOpStats.nworst<15)
{
start=rdtsc_to_rax ();
i=0;
while (i<16000)
{
if (!getOp (index, pairs, pairs[i^0x0444]. oval, &rval)) stop=1;
++i;
}
start=rdtsc_to_rax ()-start+8000; /* 8000 is half of 16000 (pairs), for rounding */
printf ("%u;%u;%u;%u;%1.3f;%u;%u\n", (u32)mulup, (u32)divdown, (u32)nindeces, (u32)rehshFactor, ave, (u32) putOpStats.nworst, (u32) (start/16000ull));
goto found;
}
nindeces+=2;
}
printf ("%u;%u\n", (u32)mulup, (u32)divdown);
found:
mulup=prime_find_next (mulup);
}
divdown=prime_find_next (divdown);
}
SetThreadAffinityMask (GetCurrentThread(), 0x0000000fu);
return 0;
}
It was not possible to include the generated pairs file (an answer is apparently limited to 30000 characters). But send a message to my inbox and I'll mail it.
And these are the results:
3;5;35569;21323;1.390;14;73
3;7;33577;14389;1.435;14;60
5;7;32069;22901;1.474;14;61
3;11;35107;9551;1.412;14;59
5;11;33967;15427;1.446;14;61
7;11;34583;22003;1.422;14;59
3;13;34253;7901;1.439;14;61
5;13;34039;13063;1.443;14;60
7;13;32801;17659;1.456;14;60
11;13;33791;28591;1.436;14;59
3;17;34337;6053;1.413;14;59
5;17;32341;9511;1.470;14;61
7;17;32507;13381;1.474;14;62
11;17;33301;21529;1.454;14;60
13;17;34981;26737;1.403;13;59
3;19;33791;5333;1.437;14;60
5;19;35149;9241;1.403;14;59
7;19;33377;12289;1.439;14;97
11;19;34337;19867;1.417;14;59
13;19;34403;23537;1.430;14;61
17;19;33923;30347;1.467;14;61
3;23;33857;4409;1.425;14;60
5;23;34729;7547;1.429;14;60
7;23;32801;9973;1.456;14;61
11;23;33911;16127;1.445;14;60
13;23;33637;19009;1.435;13;60
17;23;34439;25453;1.426;13;60
19;23;33329;27529;1.468;14;62
3;29;32939;3391;1.474;14;62
5;29;34543;5953;1.437;13;60
7;29;34259;8263;1.414;13;59
11;29;34367;13033;1.409;14;60
13;29;33049;14813;1.444;14;60
17;29;34511;20219;1.422;14;60
19;29;33893;22193;1.445;13;61
23;29;34693;27509;1.412;13;92
3;31;34019;3271;1.441;14;60
5;31;33923;5449;1.460;14;61
7;31;33049;7459;1.442;14;60
11;31;35897;12721;1.389;14;59
13;31;35393;14831;1.397;14;59
17;31;33773;18517;1.425;14;60
19;31;33997;20809;1.442;14;60
23;31;34841;25847;1.417;14;59
29;31;33857;31667;1.426;14;60
3;37;32569;2633;1.476;14;61
5;37;34729;4691;1.419;14;59
7;37;34141;6451;1.439;14;60
11;37;34549;10267;1.410;13;60
13;37;35117;12329;1.423;14;60
17;37;34631;15907;1.429;14;63
19;37;34253;17581;1.435;14;60
23;37;32909;20443;1.453;14;61
29;37;33403;26177;1.445;14;60
31;37;34361;28771;1.413;14;59
3;41;34297;2503;1.424;14;60
5;41;33587;4093;1.430;14;60
7;41;34583;5903;1.404;13;59
11;41;32687;8761;1.440;14;60
13;41;34457;10909;1.439;14;60
17;41;34337;14221;1.425;14;59
19;41;32843;15217;1.476;14;62
23;41;35339;19819;1.423;14;59
29;41;34273;24239;1.436;14;60
31;41;34703;26237;1.414;14;60
37;41;33343;30089;1.456;14;61
3;43;34807;2423;1.417;14;59
5;43;35527;4129;1.413;14;60
7;43;33287;5417;1.467;14;61
11;43;33863;8647;1.436;14;60
13;43;34499;10427;1.418;14;78
17;43;34549;13649;1.431;14;60
19;43;33749;14897;1.429;13;60
23;43;34361;18371;1.409;14;59
29;43;33149;22349;1.452;14;61
31;43;34457;24821;1.428;14;60
37;43;32377;27851;1.482;14;81
41;43;33623;32057;1.424;13;59
3;47;33757;2153;1.459;14;61
5;47;33353;3547;1.445;14;61
7;47;34687;5153;1.414;13;59
11;47;34519;8069;1.417;14;60
13;47;34549;9551;1.412;13;59
17;47;33613;12149;1.461;14;61
19;47;33863;13687;1.443;14;60
23;47;35393;17317;1.402;14;59
29;47;34747;21433;1.432;13;60
31;47;34871;22993;1.409;14;59
37;47;34729;27337;1.425;14;59
41;47;33773;29453;1.438;14;60
43;47;31253;28591;1.487;14;62
3;53;33623;1901;1.430;14;59
5;53;34469;3229;1.430;13;60
7;53;34883;4603;1.408;14;59
11;53;34511;7159;1.412;13;59
13;53;32587;7963;1.453;14;60
17;53;34297;10993;1.432;13;80
19;53;33599;12043;1.443;14;64
23;53;34337;14897;1.415;14;59
29;53;34877;19081;1.424;14;61
31;53;34913;20411;1.406;13;59
37;53;34429;24029;1.417;13;60
41;53;34499;26683;1.418;14;59
43;53;32261;26171;1.488;14;62
47;53;34253;30367;1.437;14;79
3;59;33503;1699;1.432;14;61
5;59;34781;2939;1.424;14;60
7;59;35531;4211;1.403;14;59
11;59;34487;6427;1.420;14;59
13;59;33563;7393;1.453;14;61
17;59;34019;9791;1.440;14;60
19;59;33967;10937;1.447;14;60
23;59;33637;13109;1.438;14;60
29;59;34487;16943;1.424;14;59
31;59;32687;17167;1.480;14;61
37;59;35353;22159;1.404;14;59
41;59;34499;23971;1.431;14;60
43;59;34039;24799;1.445;14;60
47;59;32027;25471;1.499;14;62
53;59;34019;30557;1.449;14;61
3;61;35059;1723;1.418;14;60
5;61;34351;2803;1.416;13;60
7;61;35099;4021;1.412;14;59
11;61;34019;6133;1.442;14;60
13;61;35023;7459;1.406;14;88
17;61;35201;9803;1.414;14;61
19;61;34679;10799;1.425;14;101
23;61;34039;12829;1.441;13;60
29;61;33871;16097;1.446;14;60
31;61;34147;17351;1.427;14;61
37;61;34583;20963;1.412;14;59
41;61;32999;22171;1.452;14;62
43;61;33857;23857;1.431;14;98
47;61;34897;26881;1.431;14;60
53;61;33647;29231;1.434;14;60
59;61;32999;31907;1.454;14;60
3;67;32999;1471;1.455;14;61
5;67;35171;2621;1.403;14;59
7;67;33851;3533;1.463;14;61
11;67;34607;5669;1.437;14;60
13;67;35081;6803;1.416;14;61
17;67;33941;8609;1.417;14;60
19;67;34673;9829;1.427;14;60
23;67;35099;12043;1.415;14;60
29;67;33679;14563;1.452;14;61
31;67;34283;15859;1.437;14;60
37;67;32917;18169;1.460;13;61
41;67;33461;20443;1.441;14;61
43;67;34313;22013;1.426;14;60
47;67;33347;23371;1.452;14;61
53;67;33773;26713;1.434;14;60
59;67;35911;31607;1.395;14;58
61;67;34157;31091;1.431;14;63
3;71;34483;1453;1.423;14;59
5;71;34537;2423;1.428;14;59
7;71;33637;3313;1.428;13;60
11;71;32507;5023;1.465;14;79
13;71;35753;6529;1.403;14;59
17;71;33347;7963;1.444;14;61
19;71;35141;9397;1.410;14;59
23;71;32621;10559;1.475;14;61
29;71;33637;13729;1.429;14;60
31;71;33599;14657;1.443;14;60
37;71;34361;17903;1.396;14;59
41;71;33757;19489;1.435;14;61
43;71;34583;20939;1.413;14;59
47;71;34589;22877;1.441;14;60
53;71;35353;26387;1.418;14;59
59;71;35323;29347;1.406;14;59
61;71;35597;30577;1.401;14;59
67;71;34537;32587;1.425;14;59
3;73;34613;1409;1.418;14;59
5;73;32969;2251;1.453;14;62
7;73;33049;3167;1.448;14;61
11;73;33863;5101;1.435;14;60
13;73;34439;6131;1.456;14;60
17;73;33629;7829;1.455;14;61
19;73;34739;9029;1.421;14;60
23;73;33071;10399;1.469;14;61
29;73;33359;13249;1.460;14;61
31;73;33767;14327;1.422;14;59
37;73;32939;16693;1.490;14;62
41;73;33739;18947;1.438;14;60
43;73;33937;19979;1.432;14;61
47;73;33767;21739;1.422;14;59
53;73;33359;24203;1.435;14;60
59;73;34361;27767;1.401;13;59
61;73;33827;28229;1.443;14;60
67;73;34421;31583;1.423;14;71
71;73;33053;32143;1.447;14;60
3;79;35027;1327;1.410;14;60
5;79;34283;2161;1.432;14;60
7;79;34439;3049;1.432;14;60
11;79;34679;4817;1.416;14;59
13;79;34667;5701;1.405;14;59
17;79;33637;7237;1.428;14;60
19;79;34469;8287;1.417;14;60
23;79;34439;10009;1.433;14;60
29;79;33427;12269;1.448;13;61
31;79;33893;13297;1.445;14;61
37;79;33863;15823;1.439;14;60
41;79;32983;17107;1.450;14;60
43;79;34613;18803;1.431;14;60
47;79;33457;19891;1.457;14;61
53;79;33961;22777;1.435;14;61
59;79;32983;24631;1.465;14;60
61;79;34337;26501;1.428;14;60
67;79;33547;28447;1.458;14;61
71;79;32653;29339;1.473;14;61
73;79;34679;32029;1.429;14;64
3;83;35407;1277;1.405;14;59
5;83;32797;1973;1.451;14;60
7;83;33049;2777;1.443;14;61
11;83;33889;4483;1.431;14;60
13;83;35159;5503;1.409;14;59
17;83;34949;7151;1.412;14;59
19;83;32957;7541;1.467;14;61
23;83;32569;9013;1.470;14;61
29;83;33287;11621;1.474;14;61
31;83;33911;12659;1.448;13;60
37;83;33487;14923;1.456;14;62
41;83;33587;16573;1.438;13;60
43;83;34019;17623;1.435;14;60
47;83;31769;17987;1.483;14;62
53;83;33049;21101;1.451;14;61
59;83;32369;23003;1.465;14;61
61;83;32653;23993;1.469;14;61
67;83;33599;27109;1.437;14;61
71;83;33713;28837;1.452;14;61
73;83;33703;29641;1.454;14;61
79;83;34583;32911;1.417;14;59
3;89;34147;1129;1.415;13;60
5;89;32797;1831;1.461;14;61
7;89;33679;2647;1.443;14;73
11;89;34543;4261;1.427;13;60
13;89;34603;5051;1.419;14;60
17;89;34061;6491;1.444;14;60
19;89;34457;7351;1.422;14;79
23;89;33529;8663;1.450;14;61
29;89;34283;11161;1.431;14;60
31;89;35027;12197;1.411;13;59
37;89;34259;14221;1.403;14;59
41;89;33997;15649;1.434;14;60
43;89;33911;16127;1.445;14;60
47;89;34949;18451;1.419;14;59
53;89;34367;20443;1.434;14;60
59;89;33791;22397;1.430;14;59
61;89;34961;23957;1.404;14;59
67;89;33863;25471;1.433;13;60
71;89;35149;28031;1.414;14;79
73;89;33113;27143;1.447;14;60
79;89;32909;29209;1.458;14;61
83;89;33617;31337;1.400;14;59
3;97;34211;1051;1.448;14;60
5;97;34807;1789;1.430;14;60
7;97;33547;2417;1.446;14;60
11;97;35171;3967;1.407;14;89
13;97;32479;4349;1.474;14;61
17;97;34319;6011;1.444;14;60
19;97;32381;6337;1.491;14;64
23;97;33617;7963;1.421;14;59
29;97;33767;10093;1.423;14;59
31;97;33641;10739;1.447;14;60
37;97;34589;13187;1.425;13;60
41;97;34171;14437;1.451;14;60
43;97;31973;14159;1.484;14;62
47;97;33911;16127;1.445;14;61
53;97;34031;18593;1.448;14;80
59;97;32579;19813;1.457;14;61
61;97;34421;21617;1.417;13;60
67;97;33739;23297;1.448;14;60
71;97;33739;24691;1.435;14;60
73;97;33863;25471;1.433;13;60
79;97;34381;27997;1.419;14;59
83;97;33967;29063;1.446;14;60
89;97;33521;30727;1.441;14;60
Cols 1 and 2 are used to calculate a rough relationship between the rehash value and the index size. The next two are the first index size/rehash factor combination which averages less than 1.5 searches for a lookup with a worst case of 14 searches. Then average and worst case. Finally, the last column is the average number of clock cycles per lookup. It does not take into account the time required to read the time stamp register.
The actual memory space for the best constants (# of indeces = 31253 and rehash factor = 28591) comes out to more than I initially indicated (16000*2*8 + 1,25*16000*2 => 296000 bytes). The actual size is 16000*2*8+31253*2 => 318506.
The fastest combination is an approximate ratio of 11/31 with an index size of 35897 and rehash value of 12721. This will average 1.389 (1 initial hash + 0.389 rehashes) with a maximum of 14 (1+13).
________ EDIT________
I removed the "goto found;" in main () to show all combinations and it shows that much better performance is possible, of course at the expense of a larger index size. For example the combination 57667 and 33797 yields and average of 1.192 and a maximum rehash of 6. The combination 44543 and 23399 yields a 1.249 average and 10 maximum rehashes (it saves (57667-44543)*2=26468 bytes of index table compared to 57667/33797).
Specialized functions with hard-coded hash index size and rehash factor will execute in 60-70% of the time compared to variables. This is probably due to the compiler (gcc 64-bit) substituting the modulo with multiplications and not having to fetch the values from memory locations as they will be coded as immediate values.
________ EDIT________
On the subject of caches I see two issues.
The first is data cacheing which I don't think will be possible because the lookup will just be a small step in some larger process and you run the risk of the table data's cache lines begin invalidated to a lesser or (probably) greater degree - if not entirely - by other data accesses in other steps of the larger process. I e the more code executed and data accessed in the process as a whole the less likely it will be that any pertinent lookup data will remain in the caches (this may or may not be pertinent to the OP's situation). To find an entry using (my) hashing you will encounter two cache misses (one to load the correct part of the index, and the other to load the area containg the entry itself) for every comparison that needs to be performed. Finding an entry on the first try will have cost two misses, the second try four etc. In my example the 60 clock cycle average cost per lookup implies that the table probably resided entirely in the L2 cache and with L1 not having to go there in a majority of the cases. My x86-64 CPU has L1-3, RAM wait states of approximately 4, 10, 40 and 100 which to me shows that RAM was completely kept out and L3 mostly.
The second is code cacheing which will have a more significant impact if it is small, tight, in-lined and with few control transfers (jumps and calls). My hash routine probably resides entirely in the L1 code cache. For more normal cases, the fewer the number of code cache line loads the faster it will be.
Make an array of structures of key val pairs.
Sort the array by key, put this in your program as static array, would only be 128kbyte.
Then in your program a simple binary look up by key will need on average only 14 key comparisons to find the right value. Should be able to approach speeds of 300 million look ups per second on modern pc.
You can sort with qsort and search with bsearch, both std lib functions.
Perform memonization, or in simple terms, cache the values you've computed already and calculate the new ones. You should hash the input and check the cache for that result. You can even start off with a set of cache values that you think the function would get called more often for. Besides that, I don't think you need to go to any extreme as the other answer suggest. Do things simple and when you are done with your application you can use a profiling tool to find bottle necks.
EDIT: Some code
#include <iostream>
#include <ctime>
using namespace std;
const int MAX_SIZE = 16000;
int preCalcData[MAX_SIZE] = {};
int getPrecalculatedResult(int x){
return preCalcData[x];
}
void setupPreCalcDataCache(){
for(int i = 0; i < MAX_SIZE; ++i){
preCalcData[i] = i*i; //or whatever calculation
}
}
int main(){
setupPreCalcDataCache();
cout << getPrecalculatedResult(0) << endl;
cout << getPrecalculatedResult(15999) << endl;
return 0;
}
I wouldn't worry about performance too much. This simple example, using an array and binary search lower_bound
#include <stdint.h>
#include <algorithm>
#include <cstdlib>
#include <iostream>
#include <memory>
const int N = 16000;
typedef std::pair<uint64_t, uint64_t> CALC;
CALC calc[N];
static inline bool cmp_calcs(const CALC &c1, const CALC &c2)
{
return c1.first < c2.first;
}
int main(int argc, char **argv)
{
std::iostream::sync_with_stdio(false);
for (int i = 0; i < N; ++i)
calc[i] = std::make_pair(i, i);
std::sort(&calc[0], &calc[N], cmp_calcs);
for (long i = 0; i < 10000000; ++i) {
int r = rand() % 16000;
CALC *p = std::lower_bound(&calc[0], &calc[N], std::make_pair(r, 0), cmp_calcs);
if (p->first == r)
std::cout << "found\n";
}
return 0;
}
and compiled with
g++ -O2 example.cpp
does, including setup, 10,000,000 searches in about 2 seconds on my 5 year old PC.
You need to store 16 thousand values efficiently, preferably in memory. We are assuming that the computation of these values is more time consuming than accessing them from storage.
You have at your disposal many different data structures to get the job done, including databases. If you access these values in queriable chunks, then the DB overhead may very well be absorbed and spread accross your processing.
You mentioned map and hashmap (or hashtable) already in your question tags, but these are probably not the best possible answers for your problem, although they could do a fair job, provided that the hashing function isn't more expensive than the direct computation of the target UINT64 value, which has to be your reference benchmark.
Van Emde Boas Trees
Many variants of B-Trees (used extensively in database engines, high performance filesystems),
Tries
Are probably much better suited. Having some experience with it, I would probably go for a B-tree: they support fairly well serialization. That should let you prepare your dataset in advance in a different program. VEB trees have a very good access time (O(log log(n)), but I don't know how easily they may be serialized.
Later on, if you need even more performance, it would also be interesting to know usage patterns of your "database" to figure out what caching techniques you could implement on top of the store.
Using std::pair is better than any of map for speed.
but if I were you, I firstly use a std::list to store the data, after I got them all, I move them into a simple vector, then retrieving goes very fast if you implement a simple binary tree search by yourself.