In the Qt world, what is the difference of events and signal/slots?
Does one replace the other? Are events an abstraction of signal/slots?
In Qt, signals and events are both implementations of the Observer pattern. They are used in different situations because they have different strengths and weaknesses.
First of all let's define what we mean by 'Qt event' exactly: a virtual function in a Qt class, which you're expected to reimplement in a base class of yours if you want to handle the event. It's related to the Template Method pattern.
Note how I used the word "handle". Indeed, here's a basic difference between the intent of signals and events:
You "handle" events
You "get notified of" signal emissions
The difference is that when you "handle" the event, you take on the responsibility to "respond" with a behavior that is useful outside the class. For example, consider an app that has a button with a number on it. The app needs to let the user focus the button and change the number by pressing the "up" and "down" keyboard keys. Otherwise the button should function like a normal QPushButton (it can be clicked, etc). In Qt this is done by creating your own little reusable "component" (subclass of QPushButton), which reimplements QWidget::keyPressEvent. Pseudocode:
class NumericButton extends QPushButton
private void addToNumber(int value):
// ...
reimplement base.keyPressEvent(QKeyEvent event):
if(event.key == up)
this.addToNumber(1)
else if(event.key == down)
this.addToNumber(-1)
else
base.keyPressEvent(event)
See? This code presents a new abstraction: a widget that acts like a button, but with some extra functionality. We added this functionality very conveniently:
Since we reimplemented a virtual, our implementation automatically became encapsulated in our class. If Qt's designers had made keyPressEvent a signal, we would need to decide whether to inherit QPushButton or just externally connect to the signal. But that would be stupid, since in Qt you're always expected to inherit when writing a widget with a custom behavior (for good reason - reusability/modularity). So by making keyPressEvent an event, they convey their intent that keyPressEvent is just a basic building block of functionality. If it were a signal, it'd look like a user-facing thing, when it's not intended to be.
Since the base-class-implementation of the function is available, we easily implement the Chain-of-responsibility pattern by handling our special cases (up&down keys) and leaving the rest to the base class. You can see this would be nearly impossible if keyPressEvent were a signal.
The design of Qt is well thought out - they made us fall into the pit of success by making it easy to do the right thing and hard to do the wrong thing (by making keyPressEvent an event).
On the other hand, consider the simplest usage of QPushButton - just instantiating it and getting notified when it's clicked:
button = new QPushButton(this)
connect(button, SIGNAL(clicked()), SLOT(sayHello())
This is clearly meant to be done by the user of the class:
if we had to subclass QPushButton every time we want some button to notify us of a click, that would require a lot of subclasses for no good reason! A widget that always shows a "Hello world" messagebox when clicked is useful only in a single case - so it's totally not reusable. Again, we have no choice but to do the right thing - by connecting to it externally.
we may want to connect several slots to clicked() - or connect several signals to sayHello(). With signals there is no fuss. With subclassing you would have to sit down and ponder some class diagrams until you decide on an appropriate design.
Note that one of the places QPushButton emits clicked() is in its mousePressEvent() implementation. That doesn't mean clicked() and mousePressEvent() are interchangable - just that they're related.
So signals and events have different purposes (but are related in that both let you "subscribe" to a notification of something happening).
I don’t like the answers so far. – Let me concentrate on this part of the question:
Are events an abstraction of signal/slots?
Short answer: no. The long answer raises a “better” question: How are signals and events related?
An idle main loop (Qt’s for example) is usually “stuck” in a select() call of the operating system. That call makes the application “sleep”, while it passes a bunch of sockets or files or whatever to the kernel asking for: if something changes on these, let the select() call return. – And the kernel, as the master of the world, knows when that happens.
The result of that select() call could be: new data on the socket connect to X11, a packet to a UDP port we listen on came in, etc. – That stuff is neither a Qt signal, nor a Qt event, and the Qt main loop decides itself if it turns the fresh data into the one, the other or ignores it.
Qt could call a method (or several) like keyPressEvent(), effectively turning it into a Qt event. Or Qt emits a signal, which in effect looks up all functions registered for that signal, and calls them one after the other.
One difference of those two concepts is visible here: a slot has no vote on whether other slots registered to that signal will get called or not. – Events are more like a chain, and the event handler decides if it interrupts that chain or not. Signals look like a star or tree in this respect.
An event can trigger or be entirely turned into a signal (just emit one, and don’t call “super()”). A signal can be turned into an event (call an event handler).
What abstracts what depends on the case: the clicked()-signal abstracts mouse events (a button goes down and up again without too much moving around). Keyboard events are abstractions from lower levels (things like 果 or é are several key strokes on my system).
Maybe the focusInEvent() is an example of the opposite: it could use (and thus abstract) the clicked() signal, but I don’t know if it actually does.
The Qt documentation probably explains it best:
In Qt, events are objects, derived
from the abstract QEvent class, that
represent things that have happened
either within an application or as a
result of outside activity that the
application needs to know about.
Events can be received and handled by
any instance of a QObject subclass,
but they are especially relevant to
widgets. This document describes how
events are delivered and handled in a
typical application.
So events and signal/slots are two parallel mechanisms accomplishing the same things. In general, an event will be generated by an outside entity (for example, keyboard or mouse wheel) and will be delivered through the event loop in QApplication. In general, unless you set up the code, you will not be generating events. You might filter them through QObject::installEventFilter() or handle events in subclassed object by overriding the appropriate functions.
Signals and Slots are much easier to generate and receive and you can connect any two QObject subclasses. They are handled through the Metaclass (have a look at your moc_classname.cpp file for more), but most of the interclass communication that you will produce will probably use signals and slots. Signals can get delivered immediately or deferred via a queue (if you are using threads).
A signal can be generated.
Events are dispatched by the event loop. Each GUI program needs an event loop, whatever you write it Windows or Linux, using Qt, Win32 or any other GUI library. As well each thread has its own event loop. In Qt "GUI Event Loop" (which is the main loop of all Qt applications) is hidden, but you start it calling:
QApplication a(argc, argv);
return a.exec();
Messages OS and other applications send to your program are dispatched as events.
Signals and slots are Qt mechanisms. In the process of compilations using moc (meta-object compiler), they are changed to callback functions.
Event should have one receiver, which should dispatch it. No one else should get that event.
All slots connected to the emitted signal will be executed.
You shouldn't think of Signals as events, because as you can read in the Qt documentation:
When a signal is emitted, the slots connected to it are usually executed immediately, just like a normal function call. When this happens, the signals and
slots mechanism is totally independent
of any GUI event loop.
When you send an event, it must wait for some time until the event loop dispatches all events that came earlier. Because of this, execution of the code after sending event or signal is different. Code following sending an event will be run immediately. With the signals and slots mechanisms it depends on the connection type. Normally it will be executed after all slots. Using Qt::QueuedConnection, it will be executed immediately, just like events. Check all connection types in the Qt documentation.
There is an article that discusses event processing in some detail: http://www.packtpub.com/article/events-and-signals
It discussions the difference between events and signals here:
Events and signals are two parallel mechanisms used to accomplish the
same thing. As a general difference, signals are useful when using a
widget, whereas events are useful when implementing the widget. For
example, when we are using a widget like QPushButton, we are more
interested in its clicked() signal than in the low-level mouse press
or key press events that caused the signal to be emitted. But if we
are implementing the QPushButton class, we are more interested in the
implementation of code for mouse and key events. Also, we usually
handle events but get notified by signal emissions.
This seems to be a common way of talking about it, as the accepted answer uses some of the same phrases.
Note, please see helpful comments below on this answer from Kuba Ober, that make me wonder if it might be a bit simplistic.
TL;DR: Signals and slots are indirect method calls. Events are data structures. So they are quite different animals.
The only time when they come together is when slot calls are made across thread boundaries. The slot call arguments are packed up in a data structure and get sent as an event to the receiving thread's event queue. In the receiving thread, the QObject::event method unpacks the arguments, executes the call, and possibly returns the result if it was a blocking connection.
If we're willing to generalize to oblivion, one could think of events as as a way of invoking the target object's event method. This is an indirect method call, after a fashion - but I don't think it's a helpful way of thinking about it, even if it's a true statement.
'Event processing' by Leow Wee Kheng says:
Jasmine Blanchette says:
The main reason why you would use events rather than standard function calls, or signals and slots, is that events can be used both synchronously and asynchronously (depending on whether you call sendEvent() or postEvents()), whereas calling a function or invoking a slot is always synchronous. Another advantage of events is that they can be filtered.
Events (in a general sense of user/network interaction) are typically handled in Qt with signals/slots, but signals/slots can do plenty of other things.
QEvent and its subclasses are basically just little standardized data packages for the framework to communicate with your code. If you want to pay attention to the mouse in some way, you only have to look at the QMouseEvent API, and the library designers don't have to reinvent the wheel every time you need to figure out what the mouse did in some corner of the Qt API.
It is true that if you're waiting for events (again in the general case) of some sort, your slot will almost certainly accept a QEvent subclass as an argument.
With that said, signals and slots can certainly be used without QEvents, although you'll find that the original impetus for activating a signal will often be some kind of user interaction or other asynchronous activity. Sometimes, however, your code will just reach a point where firing off a certain signal will be the right thing to do. For example, firing off a signal connected to a progress bar during a long process doesn't involve a QEvent up to that point.
Another minor pragmatic consideration: emitting or receiving signals requires inheriting QObject whereas an object of any inheritance can post or send an event (since you invoke QCoreApplication.sendEvent() or postEvent()) This is usually not an issue but: to use signals PyQt strangely requires QObject to be the first super class, and you might not want to rearrange your inheritance order just to be able to send signals.)
In my opinion events are completely redundant and could be thrown out. There is no reason why signals could not be replaced by events or events by signals, except that Qt is already set up as it is. Queued signals are wrapped by events and events could conceivably be wrapped by signals, for example:
connect(this, &MyItem::mouseMove, [this](QMouseEvent*){});
Would replace the convenience mouseMoveEvent() function found in QWidget (but not in QQuickItem anymore) and would handle mouseMove signals that a scene manager would emit for the item. The fact that the signal is emitted on behalf of the item by some outside entity is unimportant and happens quite often in the world of Qt components, even though it is supposedly not allowed (Qt components often circumvent this rule). But Qt is a conglomerate of many different design decisions and pretty much cast in stone for fear of breaking old code (which happens often enough anyway).
Related
So when I use a setText() on a QLabel for example, Qt automatically updates the view/gui for me and the new text is shown, but what happens behind the scenes? Is there an update function that gets called automatically when using functions like setText()?
Thanks!!
You should check the basic documentation in this link.
The internal system is a little bit more complex but in general, it follows the observer pattern. This mechanism allows the detection of a user action or changing state, and respond to this action.
Low-level interactions, like refreshing the screen are implemented via the Event System
In Qt, events are objects, derived from the abstract QEvent class, that represent things that have happened either within an application or as a result of outside activity that the application needs to know about. Events can be received and handled by any instance of a QObject subclass, but they are especially relevant to widgets. This document describes how events are delivered and handled in a typical application.
So, regarding the display process, there is a dedicated event. A QWidget object handles/subscribe to a PaintEvent, see QWidget::paintEvent.
This event handler can be reimplemented in a subclass to receive paint events passed in event. A paint event is a request to repaint all or part of a widget.
When you call, QLineEdit::setText(), the widget will be repainted the next time a display event is triggered, based in the OS configuration, refresh rate, etc.
For high-level interactions, Qt uses a similar pattern based in the signal/slot mechanism:
Observer pattern is used everywhere in GUI applications and often leads to some boilerplate code. Qt was created with the idea of removing this boilerplate code and providing a nice and clean syntax, and the signal and slots mechanism is the answer.
I have a small Qt plotting application and I am enabling/disabling widgets (combo/spin boxes) based on a "master" combo box. For example, say the master is combo1, which changes the entries in combo2, based on currentIndex(), enables/disables spin1, and sets a value for spin1 if a certain entry in combo1 is selected. There are more widgets than only these, though.
After the small discussion in the chat (and onwards), I used Qt::QueuedConnection with every connect(), but this didn't stop the re-enabled widgets to emit signals when re-enabled. This caused my many connect() to all be executed for all the re-enabled widgets, resulting in multiple plottings, which I want to avoid. As they are right now, (almost) all the widgets use plot() inside a connect(), so it's multiple signals to one slot.
My question: is there a way to prevent emitting the signals when the widgets are re-enabled? I could make plot() use some bool to check whether the plot has been executed and prevent further actions of the same type, but that would still cause the widgets to emit the signal and run plot(), even if the check will prevent the actual plotting, but that doesn't seem like the way to go. I would also prefer to avoid running installEventFilter(), or similar, as that would, most probably, slow down even more than the previous fix.
Another option, already mentioned in a comment, is to use QObject::blockSignals:
combo1->blockSignals(true);
// do what ever you need
combo1->blockSignals(false);
I find it easier to use and read. Also, there are many situations where you simply don't know / handle the connections.
Update
Since Qt 5.3 you also have QSignalBlocker, an exception-safe wrapper for blockSignals (internally it uses RAII to block signals in the constructor and restore them to their previous state on destruction):
{
QSignalBlocker blocker{combo1}
// do what ever you need
}
Use disconnect before every connect to prevent multiple connections. Disconnecting a not connected slot is always allowed.
disconnect(spinbox1,...);
connect(spinbox1,...);
Blocking signals is also possible but I think you want the first solution.
From QtDocumentation:
bool QObject::blockSignals(bool block)
If block is true, signals emitted by this object are blocked (i.e., emitting a signal will not invoke anything connected to it). If block is false, no such blocking will occur.
Does Qt offer functionality to know the number of queued signals that are pending for a given slot to process? Is there a way to clear them? For example, if several emits are done on a signal connected to a given slot, how could someone know the amount of these emitted signals?
QMetaObject::Connection class has a laconic interface and does not seem to offer related functionality. Deleting the object that receives the signals, hence destroying the connections, solves the problem. But is there a way to do this without disconnecting the slots or deleting the receiving objects?
The reason you ask the question most likely indicates that your design is broken. The signals and slots are a mechanism to decouple code. The objects connected together should behave themselves no matter how many senders or receiver are there, and certainly shouldn't attempt to track such matters!
It'd be wiser to fix the issue at the source by altering the design. If you are uffering from an event storm e.g. due to changing a widget's data in a slot, the slot should be very lightweight and only schedule an update of the widget by calling update(), but never forcing an immediate repaint. This leverages repaint event compression done by Qt. You might wish to compress your own events too.
Connection types in Qt
Signals and slots in Qt can be delivered using a direct, queued or blocking connection. The automatic type is not really a fixed connection type. It is an instruction to resolve the type for every receiver, at every signal emission into either a direct or queued type.
The direct connection is like any indirect function call: nothing is queued, and the slot is called from within the body of the signal method:
// all direct-connected slots/functors are invoked before mySignal() returns
emit mySignal();
The queued connection posts a QMetaCallEvent to the receiving object thread's event loop. That event contains the arguments of the call, or carries the functor. Is is handled by QObject::event(). You can certainly intercept such events. For details, see this question.
As far as I know, it is not possible to access the queue.
First of all, if the slot is in a QWidget subclass, in the GUI thread, then you can just update the member variables and call update(), and then just use the current values in paintEvent() when it gets called. These are automatically compressed, so there will be just one repaint event, no matter how many times update() gets called.
However, if the slot is not related to painting, or not in the GUI thread at all, then you need something else.
A simple solution to many cases needing this is to use a 2nd slot and a single-shot QTimer with delay 0 (or even longer delay if desirable).
Here's some example code, which should give you the idea of what I mean:
// in constructor, set mActualSlotTimer to
// singleshot, interval 0, parent this (needed for multi-threaded use)
// and connect timeout() to privateActualSlot()
// public slot for receiving the signal from outside
void MyClass::actualSlot(int data) {
// class member to store the new data value until it can be set
mNewData = data;
// restart the timer, no matter if it was already running or not
mActualSlotTimer.start();
}
// "private" slot for actually doing the change
void MyClass::privateActualSlot() {
// maybe useful: if (this->mData == this->mNewData) return;
mData = mNewData;
// do whatever else needs to be done!
}
Obviously, if your public slot does not actually take any parameters, then you don't need mData and mNewData.
One thing to note about this approach is, it works on all connections, it's not limited to just Qt::QueuedConnecton. As a consequence, it also makes using Qt::BlockingQueuedConnection kinda pointless.
A disclaimery note: I briefly checked Qt source code and it seems using timer with interval 0 should be ok: restarting the timer will work as expected. But if there still seems to be too many calls to privateActualSlot, then providing a suitable interval might be necessary. I have usually wanted a little delay (5 ms for example) to throttle things down a bit more than "as often as possible", so have not tested this extensively with interval 0.
I have something like the following design of classes and I'm wondering if it's OK that I use many signal slot connections to communicate between them. There is a MainWindow class which holds all the GUI, then a Wrapper class, which provides an interface to the back-end, then there is a Controller class for spawning and managing threads and finally there are Workers which do all the work.
Now let's say I'm loading a file and want to display progress using a progress bar in the MainWindow. My Worker class sends updateProgress(int progress) to Controller::handleProgress(int progress) slot which again sends progress signal to the Wrapper class, which in return sends a progress signal to the main window, which finally updates the progress bar.
Similarly when the data has been loaded it is processed in the Wrapper class and, again, communicated through signals and slots (although with one less step).
Is it a standard way of doing things in Qt or should I rethink my design?
It is a valid possibility.
Note that Qt allows you to go even further and do the following:
QObject::connect(&sender, SIGNAL(mySenderSignal(int)),
&receiver, SIGNAL(myReceiverSignal(int));
That's right, you can bind a signal to a signal. All it does can be seen as "when the sender's signal is emitted, emit the receiver's signal".
If you don't have any specific task to perform in your intermediary slots, that might save you a few lines, while showing exactly what you're doing: you're "forwarding" a signal. Otherwise, if you must absolutely do work in between, then you must keep the signals and the slots.
Note that you still have to be sure that the signals signatures match.
I'm attempting to implement a simple, lightweight system for recording Qt GUI events and playing them back from a script. I thought this would be fairly straightforward using the magic of Qt's event system, but I'm running into a problem I don't understand.
Here's quick summary of what I'm doing:
RECORDING:
I use QApplication.instance().eventFilter() to capture all GUI events I'm interested in* and save them to a Python script, in which each step looks something like this:
obj = get_named_object('MainWindow.my_menubar')
recorded_event = QMouseEvent(2, PyQt4.QtCore.QPoint(45, 8), 1, Qt.MouseButtons(0x1), Qt.KeyboardModifiers(0x0))
post_event(obj, recorded_event)
PLAYBACK:
I simply execute the script above, in a worker (non-GUI) thread. (I can't use the GUI thread because I want to keep sending scripted events to the application, even if the 'main' eventloop is blocked while a modal dialog eventloop is running.)
The important stuff happens in my post_event() function, which needs to do two things:
First, call QApplication.postEvent(obj, recorded_event)
Wait for all events to finish processing:**
Post a special event to the same eventloop that obj is running in.
When the special event is handled:
Call QApplication.processEvents()
Set a flag that tells the playback thread it's okay to continue
After the second part is complete, my expectation is that all effects of the first part (the recorded event) have completed, since the special event was queued after the recorded event.
The whole system mostly seems to work just fine for mouse events, key events, etc. But I'm having a problem with QAction handlers when I attempt to playback events for my main QMenuBar.
No matter what I try, it seems that I can't force my playback thread to block for the completion of all QAction.triggered handlers that result from clicking on my QMenu items. As far as I can tell, QApplication.processEvents() is returning before the QAction handler is complete.
Is there something special about QMenu widgets or QAction signals that breaks the normal rules for QApplication.postEvent() and/or QApplication.processEvents()? I need a way to block for the completion of my QMenu's QAction handlers.
[*] Not every event is recorded. I only record spontaneous() events, and I also filter out a few other types (e.g. Paint events and ordinary mouse movements).
[**] This is important because the next event in the script might refer to a widget that was created by the previous event.
I think your problem might best be served by using QFuture and QFutureWatcher (that is, if you're using the QtConcurrent namespace for threads, and not QThreads). Basically, the Qt Event handling system does NOT necessarily handle events in the order they're posted. If you need to block until a certain action is completed, and you're doing that action in a separate thread, you can use the QFuture object returned by QtConcurrent::run() with a QFutureWatcher to block until that particular thread finishes its processing.
Something else to consider is the way you handle events. When you use QApplication.postEvent(), the event you create gets added to the receiver's event queue to be handled later. Behind the scenes, Qt can reorder and compress these events to save processor time. I suspect this is more your problem.
In your function which handles playback, consider using QCoreApplication::processEvents(), which will not return until all events have finished processing. Documentation for QCoreApplication is here.
QMenu widgets and QAction signals are a special case. QMenu has an exec() function, normally used for popups. I suspect (but I don't know for sure) that QMenuBar would use this mechanism when it opens a regular pull-down menu. The docs are not clear about this, but Menus act a lot like dialog boxes in that they block all other user activity - how would Qt do this except by giving menus their own event loop? I can't fill in all the blanks from the information in your post, but I don't see how your playback thread would cope with a new event loop.