Binary tree that stores partial sums: Name and existing implementations - c++

Consider a sequence of n positive real numbers, (ai), and its partial sum sequence, (si). Given a number x ∊ (0, sn], we have to find i such that si−1 < x ≤ si. Also we want to be able to change one of the ai’s without having to update all partial sums. Both can be done in O(log n) time by using a binary tree with the ai’s as leaf node values, and the values of the non-leaf nodes being the sum of the values of the respective children. If n is known and fixed, the tree doesn’t have to be self-balancing and can be stored efficiently in a linear array. Furthermore, if n is a power of two, only 2 n − 1 array elements are required. See Blue et al., Phys. Rev. E 51 (1995), pp. R867–R868 for an application. Given the genericity of the problem and the simplicity of the solution, I wonder whether this data structure has a specific name and whether there are existing implementations (preferably in C++). I’ve already implemented it myself, but writing data structures from scratch always seems like reinventing the wheel to me—I’d be surprised if nobody had done it before.

This is known as a finger tree in functional programming but apparently there are implementations in imperative languages. In the articles there is a link to a blog post explaining an implementation of this data structure in C# which could be useful to you.

Fenwick tree (aka Binary indexed tree) is a data structure that maintains a sequence of elements, and is able to compute cumulative sum of any range of consecutive elements in O(logn) time. Changing value of any single element needs O(logn) time as well.

Related

Count of previously smaller elements encountered in an input stream of integers?

Given an input stream of numbers ranging from 1 to 10^5 (non-repeating) we need to be able to tell at each point how many numbers smaller than this have been previously encountered.
I tried to use the set in C++ to maintain the elements already encountered and then taking upper_bound on the set for the current number. But upper_bound gives me the iterator of the element and then again I have to iterate through the set or use std::distance which is again linear in time.
Can I maintain some other data structure or follow some other algorithm in order to achieve this task more efficiently?
EDIT : Found an older question related to fenwick trees that is helpful here. Btw I have solved this problem now using segment trees taking hints from #doynax comment.
How to use Binary Indexed tree to count the number of elements that is smaller than the value at index?
Regardless of the container you are using, it is very good idea to enter them as sorted set so at any point we can just get the element index or iterator to know how many elements are before it.
You need to implement your own binary search tree algorithm. Each node should store two counters with total number of its child nodes.
Insertion to binary tree takes O(log n). During the insertion counters of all parents of that new element should be incremented O(log n).
Number of elements that are smaller than the new element can be derived from stored counters O(log n).
So, total running time O(n log n).
Keep your table sorted at each step. Use binary search. At each point, when you are searching for the number that was just given to you by the input stream, binary search is going to find either the next greatest number, or the next smallest one. Using the comparison, you can find the current input's index, and its index will be the numbers that are less than the current one. This algorithm takes O(n^2) time.
What if you used insertion sort to store each number into a linked list? Then you can count the number of elements less than the new one when finding where to put it in the list.
It depends on whether you want to use std or not. In certain situations, some parts of std are inefficient. (For example, std::vector can be considered inefficient in some cases due to the amount of dynamic allocation that occurs.) It's a case-by-case type of thing.
One possible solution here might be to use a skip list (relative of linked lists), as it is easier and more efficient to insert an element into a skip list than into an array.
You have to use the skip list approach, so you can use a binary search to insert each new element. (One cannot use binary search on a normal linked list.) If you're tracking the length with an accumulator, returning the number of larger elements would be as simple as length-index.
One more possible bonus to using this approach is that std::set.insert() is log(n) efficient already without a hint, so efficiency is already in question.

Rank-Preserving Data Structure other than std:: vector?

I am faced with an application where I have to design a container that has random access (or at least better than O(n)) has inexpensive (O(1)) insert and removal, and stores the data according to the order (rank) specified at insertion.
For example if I have the following array:
[2, 9, 10, 3, 4, 6]
I can call the remove on index 2 to remove 10 and I can also call the insert on index 1 by inserting 13.
After those two operations I would have:
[2, 13, 9, 3, 4, 6]
The numbers are stored in a sequence and insert/remove operations require an index parameter to specify where the number should be inserted or which number should be removed.
My question is, what kind of data structures, besides a Linked List and a vector, could maintain something like this? I am leaning towards a Heap that prioritizes on the next available index. But I have been seeing something about a Fusion Tree being useful (but more in a theoretical sense).
What kind of Data structures would give me the most optimal running time while still keeping memory consumption down? I have been playing around with an insertion order preserving hash table, but it has been unsuccessful so far.
The reason I am tossing out using a std:: vector straight up is because I must construct something that out preforms a vector in terms of these basic operations. The size of the container has the potential to grow to hundreds of thousands of elements, so committing to shifts in a std::vector is out of the question. The same problem lines with a Linked List (even if doubly Linked), traversing it to a given index would take in the worst case O (n/2), which is rounded to O (n).
I was thinking of a doubling linked list that contained a Head, Tail, and Middle pointer, but I felt that it wouldn't be much better.
In a basic usage, to be able to insert and delete at arbitrary position, you can use linked lists. They allow for O(1) insert/remove, but only provided that you have already located the position in the list where to insert. You can insert "after a given element" (that is, given a pointer to an element), but you can not as efficiently insert "at given index".
To be able to insert and remove an element given its index, you will need a more advanced data structure. There exist at least two such structures that I am aware of.
One is a rope structure, which is available in some C++ extensions (SGI STL, or in GCC via #include <ext/rope>). It allows for O(log N) insert/remove at arbitrary position.
Another structure allowing for O(log N) insert/remove is a implicit treap (aka implicit cartesian tree), you can find some information at http://codeforces.com/blog/entry/3767, Treap with implicit keys or https://codereview.stackexchange.com/questions/70456/treap-with-implicit-keys.
Implicit treap can also be modified to allow to find minimal value in it (and also to support much more operations). Not sure whether rope can handle this.
UPD: In fact, I guess that you can adapt any O(log N) binary search tree (such as AVL or red-black tree) for your request by converting it to "implicit key" scheme. A general outline is as follows.
Imagine a binary search tree which, at each given moment, stores the consequitive numbers 1, 2, ..., N as its keys (N being the number of nodes in the tree). Every time we change the tree (insert or remove the node) we recalculate all the stored keys so that they are still from 1 to the new value of N. This will allow insert/remove at arbitrary position, as the key is now the position, but it will require too much time for all keys update.
To avoid this, we will not store keys in the tree explicitly. Instead, for each node, we will store the number of nodes in its subtree. As a result, any time we go from the tree root down, we can keep track of the index (position) of current node — we just need to sum the sizes of subtrees that we have to our left. This allows us, given k, locate the node that has index k (that is, which is the k-th in the standard order of binary search tree), on O(log N) time. After this, we can perform insert or delete at this position using standard binary tree procedure; we will just need to update the subtree sizes of all the nodes changed during the update, but this is easily done in O(1) time per each node changed, so the total insert or remove time will be O(log N) as in original binary search tree.
So this approach allows to insert/remove/access nodes at given position in O(log N) time using any O(log N) binary search tree as a basis. You can of course store the additional information ("values") you need in the nodes, and you can even be able to calculate the minimum of these values in the tree just by keeping the minimum value of each node's subtree.
However, the aforementioned treap and rope are more advanced as they allow also for split and merge operations (taking a substring/subarray and concatenating two strings/arrays).
Consider a skip list, which can implement linear time rank operations in its "indexable" variation.
For algorithms (pseudocode), see A Skip List Cookbook, by Pugh.
It may be that the "implicit key" binary search tree method outlined by #Petr above is easier to get to, and may even perform better.

Is this how I combine two min-heaps together?

I am currently creating a source code to combine two heaps that satisfy the min heap property with the shape invariant of a complete binary tree. However, I'm not sure if what I'm doing is the correct accepted method of merging two heaps satisfying the requirements I laid out.
Here is what I think:
Given two priority queues represented as min heaps, I insert the nodes of the second tree one by one into the first tree and fix the heap property. Then I continue this until all of the nodes in the second tree is in the first tree.
From what I see, this feels like a nlogn algorithm since I have to go through all the elements in the second tree and for every insert it takes about logn time because the height of a complete binary tree is at most logn.. But I think there is a faster way, however I'm not sure what other possible method there is.
I was thinking that I could just insert the entire tree in, but that break the shape invariant and order invariant..Is my method the only way?
In fact building a heap is possible in linear time and standard function std::make_heap guarantees linear time. The method is explained in Wikipedia article about binary heap.
This means that you can simply merge heaps by calling std::make_heap on range containing elements from both heaps. This is asymptotically optimal if heaps are of similar size. There might be a way to exploit preexisting structure to reduce constant factor, but I find it not likely.

Implementation of a locally ordered set or priority queue?

I have a rather large set of objects that represent numbers and I want to select such numbers according to a custom ordering. This ordering includes several criteria such as the type of their representation (some numbers are represented by an interval), their integrality and ultimatively their value. These numbers are shared throughout the programs (shared pointers) and there is nothing I can do about this.
However, the elements properties can change at any time such that the order changes while I can't notify the container about this. For example, some operations require a refinement of a number that is represented by an interval and during this refinement, the exact value can be found. Thereby, the number changes from the interval representation to a rational number, possibly even an integer. This change, due to the shared instance, immediately propagates to the number in the container and breaks the ordering (and I don't even know which number changed). This totally breaks std::set.
So what I'd like to have is a container that tries to be sorted, but does not rely on this. Whenever an operation detects an incorrect ordering, this ordering should be corrected locally. For example insert would insert the element (using binary search) and always check if the ordering of the current element (w.r.t. the neighbors) is correct.
I'd be willing to accept that "give me the smallest element" would then be only "give me a small element" and that find or remove would have linear complexity: I only need front, insert and remove_front to be particularly efficient.
Is there any implementation that does something like this?
How would you implement this?
If you are looking for an algorithm in the standard library, you should take a look at:
std::make_heap
std::pop_heap
std::push_heap
In <algorithm>. They might fit your need, and even if they don't I'm quite sure you will find what you are looking for in some kind of heap structure. Which one will probably depend on how your code is structured, and how often you expect a value to change etc.
In short:
A heap is a data structure in which it is fast to find and extract the smallest (or largest) element. It is also for most heaps possible to create restructure the heap in linear time or better. You could start out from this page on Wikipedia if you want to learn more about heaps.

suitable data structure for set (graph) partition

I need to store data grouping nodes of a graph partition, something like:
[node1, node2] [node3] [node4, node5, node6]
My first idea was to have just a simple vector or array of ints, where the position in the array denoted the node_id and it's value is some kind of group_id
The problem is many partition algorithms rely on operating on pairs of nodes within a group. With this method, I think I would waste a lot of computation searching through the vector to find out which nodes belong to the same group.
I could also store as a stl set of sets, which seems closer to the mathematical definition of a partition, but I am getting the impression nested sets are not advised or unnecessary, and I would need to modify the inner sets which I am not sure is possible.
Any suggestions?
Depending on what exactly you want to do with the sets, you could try a disjoint set data structure. In this structure, each element has a method find that returns the "representative" of the set it belongs to.
A C++ implementation is available in Boost.
There are two good data structures that come to mind.
The first data structure (and one that's been mentioned here before) is the disjoint-set forest, which gives extraordinarily efficient implementations of "merge these two sets" and "what set is x in?". However, it does not support the operation of splitting groups apart from one another.
The other structure I'd recommend is a link/cut tree. This structure lets you build up partitions of a graph that can be joined together into trees. Unlike the disjoint set forest, the tree describing the partition can be cut into smaller trees, allowing you to break partitions into smaller groups. This structure is a bit less efficient than the union/find structure, but it still supports all operations in amortized O(lg n).