Here is my issue.
I have a class to create timed events. It takes in:
A function pointer of void (*func)(void* arg)
A void* to the argument
A delay
The issue is I may want to create on-the-fly variables that I dont want to be a static variable in the class, or a global variable. If either of these are not met, I cant do something like:
void doStuff(void *arg)
{
somebool = *(bool*)arg;
}
void makeIt()
{
bool a = true;
container->createTimedEvent(doStuff,(void*)&a,5);
}
That wont work because the bool gets destroyed when the function returns. So I'd have to allocate these on the heap. The issue then becomes, who allocates and who deletes. what I'd like to do is to be able to take in anything, then copy its memory and manage it in the timed event class. But I dont think I can do memcpy since I dont know the tyoe.
What would be a good way to acheive this where the time event is responsible for memory managment.
Thanks
I do not use boost
class AguiTimedEvent {
void (*onEvent)(void* arg);
void* argument;
AguiWidgetBase* caller;
double timeStamp;
public:
void call() const;
bool expired() const;
AguiWidgetBase* getCaller() const;
AguiTimedEvent();
AguiTimedEvent(void(*Timefunc)(void* arg),void* arg, double timeSec, AguiWidgetBase* caller);
};
void AguiWidgetContainer::handleTimedEvents()
{
for(std::vector<AguiTimedEvent>::iterator it = timedEvents.begin(); it != timedEvents.end();)
{
if(it->expired())
{
it->call();
it = timedEvents.erase(it);
}
else
it++;
}
}
void AguiWidgetBase::createTimedEvent( void (*func)(void* data),void* data,double timeInSec )
{
if(!getWidgetContainer())
return;
getWidgetContainer()->addTimedEvent(AguiTimedEvent(func,data,timeInSec,this));
}
void AguiWidgetContainer::addTimedEvent( const AguiTimedEvent &timedEvent )
{
timedEvents.push_back(timedEvent);
}
Why would you not use boost::shared_ptr?
It offers storage duration you require since an underlying object will be destructed only when all shared_ptrs pointing to it will have been destructed.
Also it offers full thread safety.
Using C++0x unique_ptr is perfect for the job. This is a future standard, but unique_ptr is already supported under G++ and Visual Studio. For C++98 (current standard), auto_ptr works like a harder to use version of unique_ptr... For C++ TR1 (implemented in Visual Studio and G++), you can use std::tr1::shared_ptr.
Basically, you need a smart pointer. Here's how unique_ptr would work:
unique_ptr<bool> makeIt(){ // More commonly, called a "source"
bool a = true;
container->createTimedEvent(doStuff,(void*)&a,5);
return new unique_ptr<bool>(a)
}
When you use the code later...
void someFunction(){
unique_ptr<bool> stuff = makeIt();
} // stuff is deleted here, because unique_ptr deletes
// things when they leave their scope
You can also use it as a function "sink"
void sink(unique_ptr<bool> ptr){
// Use the pointer somehow
}
void somewhereElse(){
unique_ptr<bool> stuff = makeIt();
sink(stuff);
// stuff is now deleted! Stuff points to null now
}
Aside from that, you can use unique_ptr like a normal pointer, aside from the strange movement rules. There are many smart pointers, unique_ptr is just one of them. shared_ptr is implemented in both Visual Studio and G++ and is the more typical ptr. I personally like to use unique_ptr as often as possible however.
If you can't use boost or tr1, then what I'd do is write my own function that behaves like auto_ptr. In fact that's what I've done on a project here that doesn't have any boost or tr1 access. When all of the events who care about the data are done with it it automatically gets deleted.
You can just change your function definition to take in an extra parameter that represents the size of the object passed in. Then just pass the size down. So your new function declarations looks like this:
void (*func)(void* arg, size_t size)
void doStuff(void *arg, size_t size)
{
somebool = *(bool*)arg;
memcpy( arg, myStorage, size );
}
void makeIt()
{
bool a = true;
container->createTimedEvent(doStuff,(void*)&a,sizeof(bool), 5);
}
Then you can pass variables that are still on the stack and memcpy them in the timed event class. The only problem is that you don't know the type any more... but that's what happens when you cast to void*
Hope that helps.
You should re-work your class to use inheritance, not a function pointer.
class AguiEvent {
virtual void Call() = 0;
virtual ~AguiEvent() {}
};
class AguiTimedEvent {
std::auto_ptr<AguiEvent> event;
double timeSec;
AguiWidgetBase* caller;
public:
AguiTimedEvent(std::auto_ptr<AguiEvent> ev, double time, AguiWidgetBase* base)
: event(ev)
, timeSec(time)
, caller(base) {}
void call() { event->Call(); }
// All the rest of it
};
void MakeIt() {
class someclass : AguiEvent {
bool MahBool;
public:
someclass() { MahBool = false; }
void Call() {
// access to MahBool through this.
}
};
something->somefunc(AguiTimedEvent(new someclass())); // problem solved
}
Related
If I create a class in c++, it is possible to call a function of an object of this class, even if this class does not exists.
For example:
Class:
class ExampleClass
{
private:
double m_data;
public:
void readSomeData(double param)
{
m_data = param;
}
}
Any function where this class is used:
int main()
{
ExampleClass* myClass;
myClass->readSomeData(2.5);
}
Ofcourse this wouldn't function, because myClass is not defined.
To avoid such situations, I check if ExampleClass objects are a null_ptr
example:
void readSomeData(double param)
{
if(this == null_ptr)
return;
m_data = param;
}
But gcc says:
'this' pointer cannot be null in well-defined C++ code; comparison may
be assumed to always avaluate to false.
Ofcourse that is only a warning, but I think it is not nice to have this warning. Is there a better way to check if the pointer of a class is defined?
Testing it in the class is the wrong way, the warning is correct about that if your code is well defined then this must not be null, so the test should happen at the time when you call the member function:
int main()
{
ExampleClass* myClass = nullptr; // always initialize a raw pointer to ensure
// that it does not point to a random address
// ....
if (myClass != nullptr) {
myClass->readSomeData(2.5);
}
return 0;
}
If a pointer must not be null at a certain part of your code then you should do it according to CppCoreGuideline: I.12: Declare a pointer that must not be null as not_null
Micorosoft provides an Guidelines Support Library that has an implementation for not_null.
Or if possible then don't use pointers at all but std::optional.
So a code setup could look like this:
#include <gsl/gsl>
struct ExampleClass {
void readSomeData(double ){}
};
// now it is clear that myClass must not and can not be null within work_with_class
// it still could hold an invalid pointe, but thats another problem
void work_with_class(gsl::not_null<ExampleClass*> myClass) {
myClass->readSomeData(2.5);
}
int main()
{
ExampleClass* myClass = nullptr; // always initialize a raw pointer to ensure
// that it does not point to a random address
// ....
work_with_class(myClass);
return 0;
}
The best way is not use pointers at all:
int main()
{
ExampleClass myClass;
myClass.readSomeData(2.5);
}
That way there's no need for any check, and in fact, checking this inside the function is moot.
If you need nullability, use std::optional instead.
Either don't use pointers as Bartek Banachewicz has pointed out, or properly initialize and check the pointer:
int main()
{
ExampleClass* myClass= 0;
if (myClass)
myClass->readSomeData(2.5);
return 0;
}
Of course you still have to add the instantiation of the object at some point, otherwise the code is nonsense.
I'm having issues with getting a partially-qualified function object to call later, with variable arguments, in another thread.
In GCC, I've been using a macro and typedef I made but I'm finishing up my project an trying to clear up warnings.
#define Function_Cast(func_ref) (SubscriptionFunction*) func_ref
typedef void(SubscriptionFunction(void*, std::shared_ptr<void>));
Using the Function_Cast macro like below results in "warning: casting between pointer-to-function and pointer-to-object is conditionally-supported"
Subscriber* init_subscriber = new Subscriber(this, Function_Cast(&BaseLoaderStaticInit::init), false);
All I really need is a pointer that I can make a std::bind<function_type> object of. How is this usually done?
Also, this conditionally-supported thing is really annoying. I know that on x86 my code will work fine and I'm aware of the limitations of relying on that sizeof(void*) == sizeof(this*) for all this*.
Also, is there a way to make clang treat function pointers like data pointers so that my code will compile? I'm interested to see how bad it fails (if it does).
Relevant Code:
#define Function_Cast(func_ref) (SubscriptionFunction*) func_ref
typedef void(SubscriptionFunction(void*, std::shared_ptr<void>));
typedef void(CallTypeFunction(std::shared_ptr<void>));
Subscriber(void* owner, SubscriptionFunction* func, bool serialized = true) {
this->_owner = owner;
this->_serialized = serialized;
this->method = func;
call = std::bind(&Subscriber::_std_call, this, std::placeholders::_1);
}
void _std_call(std::shared_ptr<void> arg) { method(_owner, arg); }
The problem here is that you are trying to use a member-function pointer in place of a function pointer, because you know that, under-the-hood, it is often implemented as function(this, ...).
struct S {
void f() {}
};
using fn_ptr = void(*)(S*);
void call(S* s, fn_ptr fn)
{
fn(s);
delete s;
}
int main() {
call(new S, (fn_ptr)&S::f);
}
http://ideone.com/fork/LJiohQ
But there's no guarantee this will actually work and obvious cases (virtual functions) where it probably won't.
Member functions are intended to be passed like this:
void call(S* s, void (S::*fn)())
and invoked like this:
(s->*fn)();
http://ideone.com/bJU5lx
How people work around this when they want to support different types is to use a trampoline, which is a non-member function. You can do this with either a static [member] function or a lambda:
auto sub = new Subscriber(this, [](auto* s){ s->init(); });
or if you'd like type safety at your call site, a templated constructor:
template<typename T>
Subscriber(T* t, void(T::*fn)(), bool x);
http://ideone.com/lECOp6
If your Subscriber constructor takes a std::function<void(void))> rather than a function pointer you can pass a capturing lambda and eliminate the need to take a void*:
new Subscriber([this](){ init(); }, false);
it's normally done something like this:
#include <functional>
#include <memory>
struct subscription
{
// RAII unsubscribe stuff in destructor here....
};
struct subscribable
{
subscription subscribe(std::function<void()> closure, std::weak_ptr<void> sentinel)
{
// perform the subscription
return subscription {
// some id so you can unsubscribe;
};
}
//
//
void notify_subscriber(std::function<void()> const& closure,
std::weak_ptr<void> const & sentinel)
{
if (auto locked = sentinel.lock())
{
closure();
}
}
};
I have been beating my head around this issue of static versus non-static, callback functions, function pointers, etc... My goal is to access data of a struct outside the scope of my callback interface. I am trying to do this within my class called TextDetect. I thought I was on track when I asked this question: Avoiding a static member function in c++ when using a callback interface from C
However, I still can't access the data without losing scope over the data that I am most interested. At runtime, I get "Access violation reading location ..." I'll point it out below where it fails.
I implemented the answer to my previous question as the following class, shown entirely (Note: vtrInitialize is part of a 3rd party api code int vtrInitialize(const char *inifile, vtrCallback cb, void *calldata);):
class TextDetect {
const char * inifile;
vtrImage *vtrimage;
int framecount;
public:
TextDetect();
~TextDetect();
void vtrCB(vtrTextTrack *track);
static void vtrCB_thunk(vtrTextTrack *track, void *calldata);
int vtrTest(cv::Mat);
bool DrawBox(cv::Mat&);
vtrTextTrack *texttrack;
};
TextDetect::TextDetect() : inifile("vtr.ini")
{
if (vtrInitialize(inifile, vtrCB_thunk, static_cast<void *>(this) ) == -1)
std::cout << "Error: Failure to initialize" << std::endl;
vtrimage = new vtrImage;
}
int TextDetect::vtrTest(cv::Mat imagetest)
{
/*store image data in an image structure*/
}
void TextDetect::vtrCB(vtrTextTrack *track)
{
/*send data to command line from callback */
I've tried copying the data I need a variety of ways and nothing works (this code is a continuation from above):
//texttrack = track;
//texttrack = new vtrTextTrack (*track);
memcpy(texttrack,track,sizeof(*track));
//vtrTextTrackFree(track);
}
void TextDetect::vtrCB_thunk(vtrTextTrack *track, void *calldata)
{
static_cast<TextDetect *>(calldata)->vtrCB(track);
}
This is the member function were I want the data to be used. Texttrack is public member so I might need it outside my class as well (this code is a continuation from above):
bool TextDetect::DrawBox(cv::Mat& tobeboxed)
{
And I get the access violation error at runtime here at this line of code (this code is a continuation from above):
if (texttrack->best->ocrconf > 90)
{
/*do some more stuff*/
}
}
Hopefully I'm understanding this correctly.
It seems to me that the problem is trying to copy those vtrTextTrack structs improperly.
This:
//texttrack = track;
just copies the pointer. If the owner of the struct (probably the caller of the callback function) destroys/deletes the vtrTextTrack, then you're holding on to an invalid pointer.
This one:
memcpy(texttrack,track,sizeof(*track));
will copy all the members of the vtrTextTrack, but will not copy what's being pointed to by it's member pointers (e.g. texttrack->best). Again, if the owner destroys/deletes the track, then you're holding on to invalid pointers.
And since
//texttrack = new vtrTextTrack (*track);
didn't work, I'm guessing that vtrTextTrack doesn't provide a copy constructor.
As for a workaround, first check if your third party library provides a function to copy these structs. If that's not the case (could this be by design?), then you may have to implement one yourself. This might be hard because there might be all kinds of internals that you don't know about. If you don't need the whole vtrTextTrack, I'd say define another struct and store only the information you need. Something along the lines of
SomeType* bestCopier(SomeType* src)
{
SomeType* temp;
/* copy over struct */
return temp;
}
Foo* fooCopier(Foo* src)
{
/*...*/
}
struct myTextTrack
{
public:
myTextTrack(vtrTextTrack* src)
{
//copy over stuff
m_best = bestCopier(src->best);
m_foo = fooCopier(src->foo);
}
private:
/* the members you care about*/
SomeType* m_best;
Foo * m_foo;
}
Basically i need to do reference counting on certain resources (like an integer index) that are not inmediately equivalent to a pointer/address semantic; basically i need to pass around the resource around, and call certain custom function when the count reaches zero. Also the way to read/write access to the resource is not a simple pointer derreference operation but something more complex. I don't think boost::shared_ptr will fit the bill here, but maybe i'm missing some other boost equivalent class i might use?
example of what i need to do:
struct NonPointerResource
{
NonPointerResource(int a) : rec(a) {}
int rec;
}
int createResource ()
{
data BasicResource("get/resource");
boost::shared_resource< MonPointerResource > r( BasicResource.getId() ,
boost::function< BasicResource::RemoveId >() );
TypicalUsage( r );
}
//when r goes out of scope, it will call BasicResource::RemoveId( NonPointerResource& ) or something similar
int TypicalUsage( boost::shared_resource< NonPointerResource > r )
{
data* d = access_object( r );
// do something with d
}
Allocate NonPointerResource on the heap and just give it a destructor as normal.
Maybe boost::intrusive_ptr could fit the bill. Here's a RefCounted base class and ancillary functions that I'm using in some of my code. Instead of delete ptr you can specify whatever operation you need.
struct RefCounted {
int refCount;
RefCounted() : refCount(0) {}
virtual ~RefCounted() { assert(refCount==0); }
};
// boost::intrusive_ptr expects the following functions to be defined:
inline
void intrusive_ptr_add_ref(RefCounted* ptr) { ++ptr->refCount; }
inline
void intrusive_ptr_release(RefCounted* ptr) { if (!--ptr->refCount) delete ptr; }
With that in place you can then have
boost::intrusive_ptr<DerivedFromRefCounted> myResource = ...
Here
is a small example about the use of shared_ptr<void> as a counted handle.
Preparing proper create/delete functions enables us to use
shared_ptr<void> as any resource handle in a sense.
However, as you can see, since this is weakly typed, the use of it causes us
inconvenience in some degree...
I just got burned by a bug that is partially due to my lack of understanding, and partially due to what I think is suboptimal design in our codebase. I'm curious as to how my 5-minute solution can be improved.
We're using ref-counted objects, where we have AddRef() and Release() on objects of these classes. One particular object is derived from the ref-count object, but a common function to get an instance of these objects (GetExisting) hides an AddRef() within itself without advertising that it is doing so. This necessitates doing a Release at the end of the functional block to free the hidden ref, but a developer who didn't inspect the implementation of GetExisting() wouldn't know that, and someone who forgets to add a Release at the end of the function (say, during a mad dash of bug-fixing crunch time) leaks objects. This, of course, was my burn.
void SomeFunction(ProgramStateInfo *P)
{
ThreadClass *thread = ThreadClass::GetExisting( P );
// some code goes here
bool result = UseThreadSomehow(thread);
// some code goes here
thread->Release(); // Need to do this because GetExisting() calls AddRef()
}
So I wrote up a little class to avoid the need for the Release() at the end of these functions.
class ThreadContainer
{
private:
ThreadClass *m_T;
public:
ThreadContainer(Thread *T){ m_T = T; }
~ThreadContainer() { if(m_T) m_T->Release(); }
ThreadClass * Thread() const { return m_T; }
};
So that now I can just do this:
void SomeFunction(ProgramStateInfo *P)
{
ThreadContainer ThreadC(ThreadClass::GetExisting( P ));
// some code goes here
bool result = UseThreadSomehow(ThreadC.Thread());
// some code goes here
// Automagic Release() in ThreadC Destructor!!!
}
What I don't like is that to access the thread pointer, I have to call a member function of ThreadContainer, Thread(). Is there some clever way that I can clean that up so that it's syntactically prettier, or would anything like that obscure the meaning of the container and introduce new problems for developers unfamiliar with the code?
Thanks.
use boost::shared_ptr
it is possible to define your own destructor function, such us in next example: http://www.boost.org/doc/libs/1_38_0/libs/smart_ptr/sp_techniques.html#com
Yes, you can implement operator ->() for the class, which will recursively call operator ->() on whatever you return:
class ThreadContainer
{
private:
ThreadClass *m_T;
public:
ThreadContainer(Thread *T){ m_T = T; }
~ThreadContainer() { if(m_T) m_T->Release(); }
ThreadClass * operator -> () const { return m_T; }
};
It's effectively using smart pointer semantics for your wrapper class:
Thread *t = new Thread();
...
ThreadContainer tc(t);
...
tc->SomeThreadFunction(); // invokes tc->t->SomeThreadFunction() behind the scenes...
You could also write a conversion function to enable your UseThreadSomehow(ThreadContainer tc) type calls in a similar way.
If Boost is an option, I think you can set up a shared_ptr to act as a smart reference as well.
Take a look at ScopeGuard. It allows syntax like this (shamelessly stolen from that link):
{
FILE* topSecret = fopen("cia.txt");
ON_BLOCK_EXIT(std::fclose, topSecret);
... use topSecret ...
} // topSecret automagically closed
Or you could try Boost::ScopeExit:
void World::addPerson(Person const& aPerson) {
bool commit = false;
m_persons.push_back(aPerson); // (1) direct action
BOOST_SCOPE_EXIT( (&commit)(&m_persons) )
{
if(!commit)
m_persons.pop_back(); // (2) rollback action
} BOOST_SCOPE_EXIT_END
// ... // (3) other operations
commit = true; // (4) turn all rollback actions into no-op
}
I would recommend following bb advice and using boost::shared_ptr<>. If boost is not an option, you can take a look at std::auto_ptr<>, which is simple and probably addresses most of your needs. Take into consideration that the std::auto_ptr has special move semantics that you probably don't want to mimic.
The approach is providing both the * and -> operators together with a getter (for the raw pointer) and a release operation in case you want to release control of the inner object.
You can add an automatic type-cast operator to return your raw pointer. This approach is used by Microsoft's CString class to give easy access to the underlying character buffer, and I've always found it handy. There might be some unpleasant surprises to be discovered with this method, as in any time you have an implicit conversion, but I haven't run across any.
class ThreadContainer
{
private:
ThreadClass *m_T;
public:
ThreadContainer(Thread *T){ m_T = T; }
~ThreadContainer() { if(m_T) m_T->Release(); }
operator ThreadClass *() const { return m_T; }
};
void SomeFunction(ProgramStateInfo *P)
{
ThreadContainer ThreadC(ThreadClass::GetExisting( P ));
// some code goes here
bool result = UseThreadSomehow(ThreadC);
// some code goes here
// Automagic Release() in ThreadC Destructor!!!
}