Is there a data structure with these characteristics? - c++

I'm looking for a data structure that would allow me to store an M-by-N 2D matrix of values contiguously in memory, such that the distance in memory between any two points approximates the Euclidean distance between those points in the matrix. That is, in a typical row-major representation as a one-dimensional array of M * N elements, the memory distance differs between adjacent cells in the same row (1) and adjacent cells in neighbouring rows (N).
I'd like a data structure that reduces or removes this difference. Really, the name of such a structure is sufficient—I can implement it myself. If answers happen to refer to libraries for this sort of thing, that's also acceptable, but they should be usable with C++.
I have an application that needs to perform fast image convolutions without hardware acceleration, and though I'm aware of the usual optimisation techniques for this sort of thing, I feel a specialised data structure or data ordering could improve performance.

Given the requirement that you want to store the values contiguously in memory, I'd strongly suggest you research space-filling curves, especially Hilbert curves.
To give a bit of context, such curves are sometimes used in database indexes to improve the locality of multidimensional range queries (e.g., "find all items with x/y coordinates in this rectangle"), thereby aiming to reduce the number of distinct pages accessed. A bit similar to the R-trees that have been suggested here already.
Either way, it looks that you're bound to an M*N array of values in memory, so the whole question is about how to arrange the values in that array, I figure. (Unless I misunderstood the question.)
So in fact, such orderings would probably still only change the characteristics of distance distribution.. average distance for any two randomly chosen points from the matrix should not change, so I have to agree with Oli there. Potential benefit depends largely on your specific use case, I suppose.

I would guess "no"! And if the answer happens to be "yes", then it's almost certainly so irregular that it'll be way slower for a convolution-type operation.
EDIT
To qualify my guess, take an example. Let's say we store a[0][0] first. We want a[k][0] and a[0][k] to be similar distances, and proportional to k, so we might choose to interleave the storage of first row and first column (i.e. a[0][0], a[1][0], a[0][1], a[2][0], a[0][2], etc.) But how do we now do the same for e.g. a[1][0]? All the locations near it in memory are now taken up by stuff that's near a[0][0].
Whilst there are other possibilities than my example, I'd wager that you always end up with this kind of problem.
EDIT
If your data is sparse, then there may be scope to do something clever (re Cubbi's suggestion of R-trees). However, it'll still require irregular access and pointer chasing, so will be significantly slower than straightforward convolution for any given number of points.

You might look at space-filling curves, in particular the Z-order curve, which (mostly) preserves spatial locality. It might be computationally expensive to look up indices, however.
If you are using this to try and improve cache performance, you might try a technique called "bricking", which is a little bit like one or two levels of the space filling curve. Essentially, you subdivide your matrix into nxn tiles, (where nxn fits neatly in your L1 cache). You can also store another level of tiles to fit into a higher level cache. The advantage this has over a space-filling curve is that indices can be fairly quick to compute. One reference is included in the paper here: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.30.8959

This sounds like something that could be helped by an R-tree. or one of its variants. There is nothing like that in the C++ Standard Library, but looks like there is an R-tree in the boost candidate library Boost.Geometry (not a part of boost yet). I'd take a look at that before writing my own.

It is not possible to "linearize" a 2D structure into an 1D structure and keep the relation of proximity unchanged in both directions. This is one of the fundamental topological properties of the world.
Having that that, it is true that the standard row-wise or column-wise storage order normally used for 2D array representation is not the best one when you need to preserve the proximity (as much as possible). You can get better result by using various discrete approximations of fractal curves (space-filling curves).
Z-order curve is a popular one for this application: http://en.wikipedia.org/wiki/Z-order_(curve)
Keep in mind though that regardless of which approach you use, there will always be elements that violate your distance requirement.

You could think of your 2D matrix as a big spiral, starting at the center and progressing to the outside. Unwind the spiral, and store the data in that order, and distance between addresses at least vaguely approximates Euclidean distance between the points they represent. While it won't be very exact, I'm pretty sure you can't do a whole lot better either. At the same time, I think even at very best, it's going to be of minimal help to your convolution code.

The answer is no. Think about it - memory is 1D. Your matrix is 2D. You want to squash that extra dimension in - with no loss? It's not going to happen.
What's more important is that once you get a certain distance away, it takes the same time to load into cache. If you have a cache miss, it doesn't matter if it's 100 away or 100000. Fundamentally, you cannot get more contiguous/better performance than a simple array, unless you want to get an LRU for your array.

I think you're forgetting that distance in computer memory is not accessed by a computer cpu operating on foot :) so the distance is pretty much irrelevant.
It's random access memory, so really you have to figure out what operations you need to do, and optimize the accesses for that.

You need to reconvert the addresses from memory space to the original array space to accomplish this. Also, you've stressed distance only, which may still cause you some problems (no direction)
If I have an array of R x C, and two cells at locations [r,c] and [c,r], the distance from some arbitrary point, say [0,0] is identical. And there's no way you're going to make one memory address hold two things, unless you've got one of those fancy new qubit machines.
However, you can take into account that in a row major array of R x C that each row is C * sizeof(yourdata) bytes long. Conversely, you can say that the original coordinates of any memory address within the bounds of the array are
r = (address / C)
c = (address % C)
so
r1 = (address1 / C)
r2 = (address2 / C)
c1 = (address1 % C)
c2 = (address2 % C)
dx = r1 - r2
dy = c1 - c2
dist = sqrt(dx^2 + dy^2)
(this is assuming you're using zero based arrays)
(crush all this together to make it run more optimally)
For a lot more ideas here, go look for any 2D image manipulation code that uses a calculated value called 'stride', which is basically an indicator that they're jumping back and forth between memory addresses and array addresses

This is not exactly related to closeness but might help. It certainly helps for minimation of disk accesses.
one way to get better "closness" is to tile the image. If your convolution kernel is less than the size of a tile you typical touch at most 4 tiles at worst. You can recursively tile in bigger sections so that localization improves. A Stokes-like (At least I thinks its Stokes) argument (or some calculus of variations ) can show that for rectangles the best (meaning for examination of arbitrary sub rectangles) shape is a smaller rectangle of the same aspect ratio.
Quick intuition - think about a square - if you tile the larger square with smaller squares the fact that a square encloses maximal area for a given perimeter means that square tiles have minimal boarder length. when you transform the large square I think you can show you should the transform the tile the same way. (might also be able to do a simple multivariate differentiation)
The classic example is zooming in on spy satellite data images and convolving it for enhancement. The extra computation to tile is really worth it if you keep the data around and you go back to it.
Its also really worth it for the different compression schemes such as cosine transforms. (That's why when you download an image it frequently comes up as it does in smaller and smaller squares until the final resolution is reached.
There are a lot of books on this area and they are helpful.

Related

What is the fastest algorithm to find the point from a set of points, which is closest to a line?

I have:
- a set of points of known size (in my case, only 6 points)
- a line characterized by x = s + t * r, where x, s and r are 3D vectors
I need to find the point closest to the given line. The actual distance does not matter to me.
I had a look at several different questions that seem related (including this one) and know how to solve this on paper from my highschool math classes. But I cannot find a solution without calculating every distance, and I am sure there has to be a better/faster way. Performance is absolutely crucial in my application.
One more thing: All numbers are integers (coordinates of points and elements of s and r vectors). Again, for performance reasons I would like to keep the floating-point math to a minimum.
You have to process every point at least once to know their distance. Unless you want to repeat the process many times with different lines, simply computing the distance of every point is unavoidable. So the algorithm has to be O(n).
Since you don't care about the actual distance, we can make some simplification to the point-distance computation. The exact distance is computed by (source):
d^2 = |r⨯(p-s)|^2 / |r|^2
where ⨯ is the cross product and |r|^2 is the squared length of vector r. Since |r|^2 is constant for all points, we can omit it from the distance computation without changing result:
d^2 = |r⨯(p-s)|^2
Compare the approximated square distances and keep the minimum. The advantage of this formula is that you can do everything with integers since you mentioned that all coordinates are integers.
I'm afraid you can't get away with computing less than 6 distances (if you could, at least one point would be left out -- including the nearest one).
See if it makes sense to preprocess: Is the line fixed and the points vary? Consider rotating coordinates to make the line horizontal.
As there are few points, it is doubtful that this is your bottleneck. Measure where the hot spots are, redesign algorithms/data representation, spice up compiler optimization, compile to assembly and bum that. Strictly in that order.
Jon Bentley's "Writing Efficient Programs" (sadly long out of print) and "Programming Pearls" (2nd edition) are full of advise on practical programming.

parallel quadtree construction from morton ordered points

I have a collection of points [(x1,y1),(x2,y2), ..., (xn,yn)] which are Morton sorted. I wish to construct a quadtree from these points in parallel. My intuition is to construct a subtree on each core and merge all subtrees to form a complete quadtree. Can anyone provide some high level insights or pseudocode how may I do this efficiently?
First some thought on your plan:
Are you sure that parallelizing construction will help? I think there is a risk that you won't a much speedup. Quadtree construction is rather cheap on the CPU, so it will be partly bound by your memory bandwidth. Parallelization may not help much, unless you have separate memory buses, for example separate machines.
If you want to parallelize construction on parallel machines, it may be cheapest to simply create separate quadtrees by splitting your point collection in evenly sized chunks. This has one big advantage over other solution: When you want insert more points, or want to look up points, the morton order allows you to pretty efficiently determine which tree contains the point (or should contain it, for insertion). For window queries you can do a similar optimization, if the morton-codes of the 'min/min' and the 'max/max' corners of the query-window lie in the same 'chunk' (sub-tree), then you only need to query this one tree. More optimizations are possible.
If you really want to create a single quadtree on a single machine, there are several ways to split your dataset efficiently:
Walk through all points and identify global min/max. Then walk through all points and assign them (assuming 4 cores) to each core, where each core represents a quadrant. These steps are well parallelizable by splitting the dataset into 4 evenly sized chunks, and it results in a quadtree that exactly fits your dataset. You will have to synchronize insertion, into the trees, but since the dataset is morton ordered, there should be relatively few lock collisions.
You can completely avoid lock collisions during insertion by aligning the quadtrants with Morton coordinates, such that the morton-curve (a z-curve) crosses the quadrant borders only once. Disadvantage: the tree will be imbalanced, i.e. it is unlikely that all quadrants contain the same amount of data. This means your CPUs may have considerably different workloads, unless you split the sub-tree into sub-sub-trees, and so on, to distribute the load better. The split-planes for avoiding the z-curve to cross quadrant borders can be identified on the morton-code/z-code of your coordinates. Split the z-code in chunks of two bits, each to bits tell you which (sub-)quadrant to choose, i.e. 00 is lower/left, 01 is lower/right, 10 is upper/left and 11 is upper/right. Since your points a morton ordered, you can simply use binary search to find the chunks for each quadrant. I realize this maybe sound rather cryptic without more explanation. So maybe you can have a look at the PH-Tree, it is essentially are Z-Ordered (morton-ordered) quadtree (more a 'trie' than a 'tree'). There are also some in-depth explanations here and here (shameless self advertisement). The PH-Tree has some nice properties, such as inherently limiting depth to 64 levels (for 64bit numbers) while guaranteeing small nodes (4 entries max for 2 dimensions); it also guarantees, like the quadtree, that any insert/removal will never affect more than one node, plus possibly adding or removing a second node. There is also a C++ implementation here.

3D-Grid of bins: nested std::vector vs std::unordered_map

pros, I need some performance-opinions with the following:
1st Question:
I want to store objects in a 3D-Grid-Structure, overall it will be ~33% filled, i.e. 2 out of 3 gridpoints will be empty.
Short image to illustrate:
Maybe Option A)
vector<vector<vector<deque<Obj>> grid;// (SizeX, SizeY, SizeZ);
grid[x][y][z].push_back(someObj);
This way I'd have a lot of empty deques, but accessing one of them would be fast, wouldn't it?
The Other Option B) would be
std::unordered_map<Pos3D, deque<Obj>, Pos3DHash, Pos3DEqual> Pos3DMap;
where I add&delete deques when data is added/deleted. Probably less memory used, but maybe less fast? What do you think?
2nd Question (follow up)
What if I had multiple containers at each position? Say 3 buckets for 3 different entities, say object types ObjA, ObjB, ObjC per grid point, then my data essentially becomes 4D?
Another illustration:
Using Option 1B I could just extend Pos3D to include the bucket number to account for even more sparse data.
Possible queries I want to optimize for:
Give me all Objects out of ObjA-buckets from the entire structure
Give me all Objects out of ObjB-buckets for a set of
grid-positions
Which is the nearest non-empty ObjC-bucket to
position x,y,z?
PS:
I had also thought about a tree based data-structure before, reading about nearest neighbour approaches. Since my data is so regular I had thought I'd save all the tree-building dividing of the cells into smaller pieces and just make a static 3D-grid of the final leafs. Thats how I came to ask about the best way to store this grid here.
Question associated with this, if I have a map<int, Obj> is there a fast way to ask for "all objects with keys between 780 and 790"? Or is the fastest way the building of the above mentioned tree?
EDIT
I ended up going with a 3D boost::multi_array that has fortran-ordering. It's a little bit like the chunks games like minecraft use. Which is a little like using a kd-tree with fixed leaf-size and fixed amount of leaves? Works pretty fast now so I'm happy with this approach.
Answer to 1st question
As #Joachim pointed out, this depends on whether you prefer fast access or small data. Roughly, this corresponds to your options A and B.
A) If you want fast access, go with a multidimensional std::vector or an array if you will. std::vector brings easier maintenance at a minimal overhead, so I'd prefer that. In terms of space it consumes O(N^3) space, where N is the number of grid points along one dimension. In order to get the best performance when iterating over the data, remember to resolve the indices in the reverse order as you defined it: innermost first, outermost last.
B) If you instead wish to keep things as small as possible, use a hash map, and use one which is optimized for space. That would result in space O(N), with N being the number of elements. Here is a benchmark comparing several hash maps. I made good experiences with google::sparse_hash_map, which has the smallest constant overhead I have seen so far. Plus, it is easy to add it to your build system.
If you need a mixture of speed and small data or don't know the size of each dimension in advance, use a hash map as well.
Answer to 2nd question
I'd say you data is 4D if you have a variable number of elements a long the 4th dimension, or a fixed large number of elements. With option 1B) you'd indeed add the bucket index, for 1A) you'd add another vector.
Which is the nearest non-empty ObjC-bucket to position x,y,z?
This operation is commonly called nearest neighbor search. You want a KDTree for that. There is libkdtree++, if you prefer small libraries. Otherwise, FLANN might be an option. It is a part of the Point Cloud Library which accomplishes a lot of tasks on multidimensional data and could be worth a look as well.

Performance question: Inverting an array of pointers in-place vs array of values

The background for asking this question is that I am solving a linearized equation system (Ax=b), where A is a matrix (typically of dimension less than 100x100) and x and b are vectors. I am using a direct method, meaning that I first invert A, then find the solution by x=A^(-1)b. This step is repated in an iterative process until convergence.
The way I'm doing it now, using a matrix library (MTL4):
For every iteration I copy all coeffiecients of A (values) in to the matrix object, then invert. This the easiest and safest option.
Using an array of pointers instead:
For my particular case, the coefficients of A happen to be updated between each iteration. These coefficients are stored in different variables (some are arrays, some are not). Would there be a potential for performance gain if I set up A as an array containing pointers to these coefficient variables, then inverting A in-place?
The nice thing about the last option is that once I have set up the pointers in A before the first iteration, I would not need to copy any values between successive iterations. The values which are pointed to in A would automatically be updated between iterations.
So the performance question boils down to this, as I see it:
- The matrix inversion process takes roughly the same amount of time, assuming de-referencing of pointers is non-expensive.
- The array of pointers does not need the extra memory for matrix A containing values.
- The array of pointers option does not have to copy all NxN values of A between each iteration.
- The values that are pointed to the array of pointers option are generally NOT ordered in memory. Hopefully, all values lie relatively close in memory, but *A[0][1] is generally not next to *A[0][0] etc.
Any comments to this? Will the last remark affect performance negatively, thus weighing up for the positive performance effects?
Test, test, test.
Especially in the field of Numerical Linear Algebra. There are many effects in play, which is why there is a number of optimized libraries that have solved that burden for you.
Some effects to consider:
Memory locality and cache effects
Multithreading effects (some algorithms that are optimal while running single-core, cause memory collision/cache eviction when more than one core is utilized).
There is no substitute for testing.
Here are some comments:
Is the function you use for the inversion capable of handling a matrix of pointers instead of values? If it does not realise it has to do an indirection, all kinds of strange effects could happen.
When doing an in-place matrix inversion (meaning the inverted matrix overwrites the input matrix), all input coefficients will get overwritten with new values, because matrix inversion can not be done by re-ordering the elements of the matrix.
During the inversion process, none of the input coefficients may be changed by an outside process. All such updates have to be performed between iterations.
So, you get the following set of trade-offs when you chose the pointer solution:
The coefficients making up matrix A can no longer be calculated asynchronously with the matrix inversion.
Either all coefficients must be recalculated for each iteration (when you use in-place inversion, meaning the inverted matrix uses the same memory as the input matrix), or you still have to use a matrix of N x N values to hold the result of the inversion.
You're getting good answers here. The only thing I would add is some general experience with performance.
You are thinking about performance a-priori. That's reasonable, but the real payoff is a-posteriori. In other words, you don't know for certain where the real optimization opportunities are, until the running code tells you.
You don't know if the bulk of the time will be spent in matrix inversion, multiplication, copying the matrix, dereferencing, or what. People can guess. If I had to guess, it would be matrix inversion, because it's 100x100.
However, something else I can't guess might be even bigger.
Guessing has a very poor track record, especially when you can just find out.
Here's an example of what I mean.

All k nearest neighbors in 2D, C++

I need to find for each point of the data set all its nearest neighbors. The data set contains approx. 10 million 2D points. The data are close to the grid, but do not form a precise grid...
This option excludes (in my opinion) the use of KD Trees, where the basic assumption is no points have same x coordinate and y coordinate.
I need a fast algorithm O(n) or better (but not too difficult for implementation :-)) ) to solve this problem ... Due to the fact that boost is not standardized, I do not want to use it ...
Thanks for your answers or code samples...
I would do the following:
Create a larger grid on top of the points.
Go through the points linearly, and for each one of them, figure out which large "cell" it belongs to (and add the points to a list associated with that cell).
(This can be done in constant time for each point, just do an integer division of the coordinates of the points.)
Now go through the points linearly again. To find the 10 nearest neighbors you only need to look at the points in the adjacent, larger, cells.
Since your points are fairly evenly scattered, you can do this in time proportional to the number of points in each (large) cell.
Here is an (ugly) pic describing the situation:
The cells must be large enough for (the center) and the adjacent cells to contain the closest 10 points, but small enough to speed up the computation. You could see it as a "hash-function" where you'll find the closest points in the same bucket.
(Note that strictly speaking it's not O(n) but by tweaking the size of the larger cells, you should get close enough. :-)
I have used a library called ANN (Approximate Nearest Neighbour) with great success. It does use a Kd-tree approach, although there was more than one algorithm to try. I used it for point location on a triangulated surface. You might have some luck with it. It is minimal and was easy to include in my library just by dropping in its source.
Good luck with this interesting task!