Arcball Rotation at 90 degrees - c++

I have successfully implemented Arcball rotation through quaternions, but am confused at what to do when the direction vector of the camera is parallel to up vector. Currently I am just restricting the rotation along the x-axis (the pitch) when the dot product of the direction vector and the up vector exceeds 0.99. In Maya (or Max, XSI where arcball rotation is used) for example, you can rotate around in a full circle very smoothly. I am hoping for a solution similar to that of Maya's rotation.
Thankyou

You need to adjust both the view normal vector (VNV) and the view up vector (VUV) and rotate both of them together so they always remain orthogonal to each other. It is sometimes useful to keep track of a "right" (or "left") vector as well which is just the cross product of the normal and up vectors.

Related

OpenGl rotations and translations

I am building a camera class to look arround a scene. At the moment I have 3 cubes just spread arround to have a good impression of what is going on. I have set my scroll button on a mouse to give me translation along z-axis and when I move my mouse left or right I detect this movement and rotate arround y-axis. This is just to see what happens and play arround a bit. So I succeeded in making the camera rotate by rotating the cubes arround the origin but after I rotate by some angle, lets say 90 degrees, and try to translate along z axis to my surprise I find out that my cubes are now going from left to right and not towards me or away from me. So what is going on here? It seems that z axis is rotated also. I guess the same goes for x axis. So it seems that nothing actually moved in regard to the origin, but the whole coordinate system with all the objects was just rotated. Can anyone help me here, what is going on? How coordinate system works in opengl?
You are most likely confusing local and global rotations. Usual cheap remedy is to change(reverse) order of some of your transformation. However doing this blindly is trial&error and can be frustrating. Its better to understand the math first...
Old API OpeGL uses MVP matrix which is:
MVP = Model * View * Projection
Where Model and View are already multiplied together. What you have is most likely the same. Now the problem is that Model is direct matrix, but View is Inverse.
So if you have some transform matrix representing your camera in oder to use it to transform back you need to use its inverse...
MVP = Model * Inverse(Camera) * Projection
Then you can use the same order of transformations for both Model and Camera and also use their geometric properties like basis vectors etc ... then stuff like camera local movements or camera follow are easy. Beware some tutorials use glTranspose instead of real matrix Inverse. That is correct only if the Matrix contains only unit (or equal sized) orthogonal basis vectors without any offset so no scale,skew,offset or projections just rotation and equal scale along all axises !!!
That means when you rotate Model and View in the same way the result is opposite. So in old code there is usual to have something like this:
// view part of matrix
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glRotate3f(view_c,0,0,1); // ugly euler angles
glRotate3f(view_b,0,1,0); // ugly euler angles
glRotate3f(view_a,1,0,0); // ugly euler angles
glTranslatef(view_pos); // set camera position
// model part of matrix
for (i=0;i<objs;i++)
{
glMatrixMode(GL_MODELVIEW);
glPushMatrix();
glTranslatef(obj_pos[i]); // set camera position
glRotate3f(obj_a[i],1,0,0); // ugly euler angles
glRotate3f(obj_b[i],0,1,0); // ugly euler angles
glRotate3f(obj_c[i],0,0,1); // ugly euler angles
//here render obj[i]
glMatrixMode(GL_MODELVIEW);
glPopMatrix();
}
note the order of transforms is opposite (I just wrote it here in editor so its not tested and can be opposite to native GL notation ... I do not use Euler angles) ... The order must match your convention... To know more about these (including examples) not using useless Euler angles see:
Understanding 4x4 homogenous transform matrices
Here is 4D version of what your 3D camera class should look like (just shrink the matrices to 4x4 and have just 3 rotations instead of 6):
reper4D
pay attention to difference between local lrot_?? and global grot_?? functions. Also note rotations are defined by plane not axis vector as axis vector is just human abstraction that does not really work except 2D and 3D ... planes work from 2D to ND
PS. its a good idea to have the distortions (scale,skew) separated from model and keep transform matrices representing coordinate systems orthonormal. It will ease up a lot of things latter on once you got to do advanced math on them. Resulting in:
MVP = Model * Model_distortion * Inverse(Camera) * Projection

Rotating plane such that it has a certain normal vector

I've got the following problem:
In 3D there's a vector from fixed the center of a plane to the origin. This plane has arbitrary coordinates around this center thus its normal vector is not necessarily the mentioned vector. Therefore I have to rotate the plane around this fixed center such that the mentioned vector is the plane's normal vector.
My first idea was to compute the angle between the vector and the normal vector, but the problem then is how to rotate the plane.
Any ideas?
A plane is a mathematical entity which satisfies the following equation:
Where n is the normal, and a is any point on the plane (in this case the center point as above). It makes no sense to "rotate" this equation - if you want the plane to face a certain direction, just make the normal equal to that direction (i.e. the "mentioned" vector).
You later mentioned in the comments that the "plane" is an OpenGL quad, in which case you can use Quaternions to compute the rotation.
This Stackoverflow post tells you how to compute the rotation quaternion from your current normal vector to the "mentioned" vector. This site tells you how to convert a quaternion into a rotation matrix (whose dimensions are 3x3).
Let's suppose the center point is called q, and that the rotation matrix you obtain has the following form:
This can only rotate geometry about the origin. A rotation about a general point requires a 4x4 matrix (what OpenGL uses), which can be constructed as follows:

Rotating object along all 3 axes to map to the player's camera LookAt vector

I have a simple 3D LookAt vector, and I wish to rotate the player model (a simple cube) to show where the player/cube is looking at.
For sideways camera movement I've managed to figure it out and do the following:
glTranslatef(position.x, position.y, position.z);
glRotatef(atan2(lookAt.z, lookAt.x) * 180 / PI, 0, 1, 0);
Now I know that to get up-down camera movement to map to the rendered cube model, I need to rotate the cube around it's x and z axes as well, but I can't seem to figure out what formula to use for those two.
OpenGL will rotate the whole coordinate system (whole space, not only a cube) so after first rotation you just need to rotate only around z axis.
// first rotation
glRotatef(-atan2(lookAt.z, lookAt.x) * 180 / PI, 0, 1, 0);
// second rotation
float d = sqrt(pow(lookAt.x,2) + pow(lookAt.z,2));
float pitch = atan2(lookAt.y, d);
glRotatef(pitch * 180 / PI, 0, 0, 1);
First and second rotation:
I assume your model is looking along x axis (red arrow). I also assume lookAt is given relative to the position of the model.
If you're familiar with matrix math, matrices are an easier way to think about it. If you're not familiar with matrices, this series explains how to use them to solve common game development problems: https://www.youtube.com/playlist?list=PLW3Zl3wyJwWNQjMz941uyOIq3Nw6bcDYC Getting good with matrices is a good idea if you want to be a 3D game programmer.
For your problem, you want to make a translation/rotation matrix which will transform the box to the proper place for you. You can make a translation matrix and a rotation matrix individually, and then at the end take the product of the two. I'll try to break that down.
The translation matrix is simple, if your position is then your matrix will be
To construct a rotation matrix, you need to rotate the standard basis vectors the way you want. Then when you create a matrix from those rotated basis vectors, the matrix will rotate other vectors in the same way. As an example of that, take the standard basis vectors:
Now I'm going to rotate and around by 90 degrees clockwise:
Now put them into a matrix:
and you have R is a matrix that rotates things around by 90 degrees.
In your case you want to rotate stuff such that it faces a vector that you provide. That makes things easy, we can calculate our basis vectors from that vector. If your vector is then and we can solve for the other two basis vectors using cross products. You know that the character won't ever roll their view (right?) so we can use the global up vector as well. I'll call the global up vector . In your case you're using y as the "up" dimension so the global up vector will be
Then:
In the first line you do a cross product between the view vector and the up vector to get a vector orthogonal to both - this will serve as the third basis vector after it is normalized, which is the second line. In the third line another cross product generates the second basis vector. These three vectors represent what happens when the standard basis vectors are rotated the way you want them to be. Use them as the columns in a matrix like so:
Now the last step in the math is to make a final matrix that will do both translation and rotation, and this step is easy:
Then load that matrix into OpenGL with glLoadMatrix:
glLoadMatrixf(&M);
All of this gets explained in the video series I linked as well :)

How to get maya like rotations?

I am trying to achieve the same rotational effect like Maya in my project.
I have some knowledge on quaternions and the trackball example.
Unfortunately I am still unable to wrap my head around the concept of using the quaternions to get the desired effect.
Basically I am still getting the same issue I had before with the 3d trackball. After flipping the object upside down, and then trying to rotate to the right, the object will rotate to the left. Well actually its my camera rotating around the focus point in the opposite direction.
The problem is that I am using the screen coordinates & trackball to get the old / new vectors and getting the angle of rotation from those two vectors. I will always get the wrong axis of rotation this way.
How should I go about solving this issue?
I don't know Maya so I can only guess that its rotation is like this: if you rotate left-right, it feels natural. Then if you rotate the object up-down 180 degrees, then rotate left-right again, it still feels natural.
If you are familiar with the concept of using a matrix to do transformations (like rotate, scale and translate), well a quaternion is just the same concept but it only allows rotations, so you might want to use it to constrain your transforms to just rotations. In practice, you can use either a matrix or a quaternion to do the same thing.
What you need to do is remember the current quaternion state for the object, then when the next frame of rotation occurs, multiply the new rotation with the old quaternion (in that order) to give you the next frame's quaternion. That will ensure that no matter what orientation the object is in, the next frame's rotation will be applied from the viewer's viewpoint. This is as opposed to some naive rotation where you just say "user is scrolling up/down, therefore alter the object's X-axis rotation", which causes that flipping.
Remember, like matrices, quaternions need to be multiplied in reverse order that the actions are actually applied, which is why I said to multiply the new operation by the existing quaternion.
To finish with an example. Let's say the user is going to perform 2 actions:
On frame 1, the user rotates the object 180 degrees about the X axis (up/down rotation).
On frame 2, the user rotates the object 90 degrees about the Y axis (left/right rotation).
Lets say the object has a quaternion Q. Every frame, you will reset the object to its default coordinates and apply the quaternion Q to rotate it. Now you might initialise it with the identity quaternion, but let's just say the initial quaternion is called Q0.
On frame 1, create a new quaternion R1 which is a "rotate 180 degrees about the X axis" quaternion (you can find some maths to compute such a quaternion). Pre-multiply the new operation by the existing quaternion: Q1 = R1 * Q0.
On frame 2, create a new quaternion R2 which is a "rotate 90 degrees about the Y axis" quaternion. Pre-multiply the new operation by the existing quaternion: Q2 = R2 * Q1.
On frame 1 you will use Q1 to display the object, and on frame 2 you will use Q2. You can simply keep applying any subsequent user actions to the quaternion and it will always be rotated in the viewer's frame of reference.
I think you have problems with changing coordinate system.
Suppose, you want to rotate object in X Axis, then in Y Axis, and then move it and scale. So, you should multiply your transformation maxtrix (at the beginning it equals to itentity matrix) to the rotation matrix (firstly to X, then to Y), then to translation matrix and at the end to scaling matrix. So, when your current matrix multiplies to the resulting matrix, your coordinate systems changes.
To avoid this problem you can use 2 methods:
1) to accumulate your resultig matrix as product of all previous matrices.
2) to use stack, where in the top will be the matrix, which equals to product of all matrices in the bottom of this matrix (in the stack).
P.S. I'm not sure, that it helps you. I never used quaternions in my projects.

How does zooming, panning and rotating work?

Using OpenGL I'm attempting to draw a primitive map of my campus.
Can anyone explain to me how panning, zooming and rotating is usually implemented?
For example, with panning and zooming, is that simply me adjusting my viewport? So I plot and draw all my lines that compose my map, and then as the user clicks and drags it adjusts my viewport?
For panning, does it shift the x/y values of my viewport and for zooming does it increase/decrease my viewport by some amount? What about for rotation?
For rotation, do I have to do affine transforms for each polyline that represents my campus map? Won't this be expensive to do on the fly on a decent sized map?
Or, is the viewport left the same and panning/zooming/rotation is done in some otherway?
For example, if you go to this link you'll see him describe panning and zooming exactly how I have above, by modifying the viewport.
Is this not correct?
They're achieved by applying a series of glTranslate, glRotate commands (that represent camera position and orientation) before drawing the scene. (technically, you're rotating the whole scene!)
There are utility functions like gluLookAt which sorta abstract some details about this.
To simplyify things, assume you have two vectors representing your camera: position and direction.
gluLookAt takes the position, destination, and up vector.
If you implement a vector class, destinaion = position + direction should give you a destination point.
Again to make things simple, you can assume the up vector to always be (0,1,0)
Then, before rendering anything in your scene, load the identity matrix and call gluLookAt
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
gluLookAt( source.x, source.y, source.z, destination.x, destination.y, destination.z, 0, 1, 0 );
Then start drawing your objects
You can let the user span by changing the position slightly to the right or to the left. Rotation is a bit more complicated as you have to rotate the direction vector. Assuming that what you're rotating is the camera, not some object in the scene.
One problem is, if you only have a direction vector "forward" how do you move it? where is the right and left?
My approach in this case is to just take the cross product of "direction" and (0,1,0).
Now you can move the camera to the left and to the right using something like:
position = position + right * amount; //amount < 0 moves to the left
You can move forward using the "direction vector", but IMO it's better to restrict movement to a horizontal plane, so get the forward vector the same way we got the right vector:
forward = cross( up, right )
To be honest, this is somewhat of a hackish approach.
The proper approach is to use a more "sophisticated" data structure to represent the "orientation" of the camera, not just the forward direction. However, since you're just starting out, it's good to take things one step at a time.
All of these "actions" can be achieved using model-view matrix transformation functions. You should read about glTranslatef (panning), glScalef (zoom), glRotatef (rotation). You also should need to read some basic tutorial about OpenGL, you might find this link useful.
Generally there are three steps that are applied whenever you reference any point in 3d space within opengl.
Given a Local point
Local -> World Transform
World -> Camera Transform
Camera -> Screen Transform (usually a projection. depends on if you're using perspective or orthogonal)
Each of these transforms is taking your 3d point, and multiplying by a matrix.
When you are rotating the camera, it is generally changing the world -> camera transform by multiplying the transform matrix by your rotation/pan/zoom affine transformation. Since all of your points are re-rendered each frame, the new matrix gets applied to your points, and it gives the appearance of a rotation.