how to get median value from sorted map - c++

I am using a std::map. Sometimes I will do an operation like: finding the median value of all items. e.g
if I add
1 "s"
2 "sdf"
3 "sdfb"
4 "njw"
5 "loo"
then the median is 3.
Is there some solution without iterating over half the items in the map?

I think you can solve the problem by using two std::map. One for smaller half of items (mapL) and second for the other half (mapU). When you have insert operation. It will be either case:
add item to mapU and move smallest element to mapL
add item to mapL and move greatest element to mapU
In case the maps have different size and you insert element to the one with smaller number of
elements you skip the move section.
The basic idea is that you keep your maps balanced so the maximum size difference is 1 element.
As far as I know STL all operations should work in O(ln(n)) time. Accessing smallest and greatest element in map can be done by using iterator.
When you have n_th position query just check map sizes and return greatest element in mapL or smallest element in mapR.
The above usage scenario is for inserting only but you can extend it to deleting items as well but you have to keep track of which map holds item or try to delete from both.
Here is my code with sample usage:
#include <iostream>
#include <string>
#include <map>
using namespace std;
typedef pair<int,string> pis;
typedef map<int,string>::iterator itis;
map<int,string>Left;
map<int,string>Right;
itis get_last(map<int,string> &m){
return (--m.end());
}
int add_element(int key, string val){
if (Left.empty()){
Left.insert(make_pair(key,val));
return 1;
}
pis maxl = *get_last(Left);
if (key <= maxl.first){
Left.insert(make_pair(key,val));
if (Left.size() > Right.size() + 1){
itis to_rem = get_last(Left);
pis cpy = *to_rem;
Left.erase(to_rem);
Right.insert(cpy);
}
return 1;
} else {
Right.insert(make_pair(key,val));
if (Right.size() > Left.size()){
itis to_rem = Right.begin();
pis cpy = *to_rem;
Right.erase(to_rem);
Left.insert(*to_rem);
}
return 2;
}
}
pis get_mid(){
int size = Left.size() + Right.size();
if (Left.size() >= size / 2){
return *(get_last(Left));
}
return *(Right.begin());
}
int main(){
Left.clear();
Right.clear();
int key;
string val;
while (!cin.eof()){
cin >> key >> val;
add_element(key,val);
pis mid = get_mid();
cout << "mid " << mid.first << " " << mid.second << endl;
}
}

I think the answer is no. You cannot just jump to the N / 2 item past the beginning because a std::map uses bidirectional iterators. You must iterate through half of the items in the map. If you had access to the underlying Red/Black tree implementation that is typically used for the std::map, you might be able to get close like in Dani's answer. However, you don't have access to that as it is encapsulated as an implementation detail.

Try:
typedef std::map<int,std::string> Data;
Data data;
Data::iterator median = std::advance(data.begin(), data.size() / 2);
Works if the size() is odd. I'll let you work out how to do it when size() is even.

In self balancing binary tree(std::map is one I think) a good approximation would be the root.
For exact value just cache it with a balance indicator, and each time an item added below the median decrease the indicator and increase when item is added above. When indicator is equal to 2/-2 move the median upwards/downwards one step and reset the indicator.

If you can switch data structures, store the items in a std::vector and sort it. That will enable accessing the middle item positionally without iterating. (It can be surprising but a sorted vector often out-performs a map, due to locality. For lookups by the sort key you can use binary search and it will have much the same performance as a map anyway. See Scott Meyer's Effective STL.)

If you know the map will be sorted, then get the element at floor(length / 2). If you're in a bit twiddly mood, try (length >> 1).

I know no way to get the median from a pure STL map quickly for big maps. If your map is small or you need the median rarely you should use the linear advance to n/2 anyway I think - for the sake of simplicity and being standard.
You can use the map to build a new container that offers median: Jethro suggested using two maps, based on this perhaps better would be a single map and a continuously updated median iterator. These methods suffer from the drawback that you have to reimplement every modifiying operation and in jethro's case even the reading operations.
A custom written container will also do what you what, probably most efficiently but for the price of custom code. You could try, as was suggested to modify an existing stl map implementation. You can also look for existing implementations.
There is a super efficient C implementation that offers most map functionality and also random access called Judy Arrays. These work for integer, string and byte array keys.

Since it sounds like insert and find are your two common operations while median is rare, the simplest approach is to use the map and std::advance( m.begin(), m.size()/2 ); as originally suggested by David RodrΓ­guez. This is linear time, but easy to understand so I'd only consider another approach if profiling shows that the median calls are too expensive relative to the work your app is doing.

The nth_element() method is there for you for this :) It implements the partition part of the quick sort and you don't need your vector (or array) to be sorted.
And also the time complexity is O(n) (while for sorting you need to pay O(nlogn)).

For a sortet list, here it is in java code, but i assume, its very easy to port to c++:
if (input.length % 2 != 0) {
return input[((input.length + 1) / 2 - 1)];
} else {
return 0.5d * (input[(input.length / 2 - 1)] + input[(input.length / 2 + 1) - 1]);
}

Related

Is a heapsort/Priority queue better than a map (ordered map in STL) in C++ in terms of time complexity?

This is a question that has been bugging for me a long time.
I have a huge dataset and I want to sort that dataset using a number that is generated each time a for loop is run throughout that dataset. So, I decided to bind that number to the index of a row in a map. This way, I have indirectly sorted the the dataset (which is a 2D vector of strings). Now I have been told there is a better way for me to do this, preferably by the heap data structure. But I do not know how a heap, like a priority queue would be helpful in this situation (except for being able to print out the smallest element in the heap which would take O(n) time). And I am strictly talking about time complexity here. I'll show you the code that I have:
` for(i = 0; i < final_dataset.size(); i+=2){
string str1 = final_dataset[i][0];
string str2 = final_dataset[i][3];
string str3 = final_dataset[i+1][3];
istringstream(str2) >> num2;
istringstream(str3) >> num3;
total_date_diff = date_calc(str1, numeric_year, numeric_month); //Calculate the difference in input date and the dates in the final_dataset
num2 = d2 - num2; //Calculate the difference in supplies
num3 = d3 - num3; //Calculate the difference in exports
euclid_result = euclid_distance_result(total_date_diff,num2, num3); //Calculate the euclidian distance for every row in the final_dataset
results.insert(pair<double, int>(euclid_result, i)); //Bind the respective euclidian distances to the row index of every row in the final_dataset
}
int k_counter = 0;
cout<<"The "<<k<<" nearest neighbors of entered data point are: \n\n";
//iterate through the map, results(key:euclidian distance, value: corresponding row index) to output the datapoints, in terms of increasing order of euclidian distances.
//Since maps are sorted automatically in ascending order, display the datapoints(taken from the rows of the final_dataset) corresponding to the first k values in the map.
for(auto itr = results.begin(); itr != results.end(); itr++){
cout<<"("<<final_dataset[itr->second][0]<<","<<final_dataset[itr->second][3]<<","
<<final_dataset[itr->second+1][3]<<")"<<" with the label: "
<<final_dataset[itr->second][1]<<"\t"<<" and Euclidian distance="<<itr->first<<"\n";
k_counter++;
if(k_counter == k) break; //once k is reached, stop iterating
}
How could a priority queue possible make it faster than what I did?
The documentation on C++ maps says:
Maps are typically implemented as binary search trees.
This implies that insertion of one key/value pair has a time complexity of O(log𝑛), where 𝑛 is the size of the map at the time of insertion.
To insert all key/value pairs you will thus have a total time complexity of O(log1 + log2 + log3 + ... + log𝑛) = O(log(𝑛!)) = O(𝑛log𝑛)
This is the same time complexity you get from storing the key/value pairs in a vector and sorting it by key calling std::sort.
Heap
A heap-based algorithm can have an advantage when you don't really need to sort the whole input, but are only interested in the least π‘˜ elements, or maybe even only the least π‘˜th element.
Inserting into a heap has also a time complexity of O(log𝑛), where 𝑛 is the size of the heap at the time of insertion.
However, a well designed heap-based algorithm will not need the heap to have more than π‘˜ elements: once that size is reached, values are exchanged -- also with O(logπ‘˜) time complexity. So the overall time complexity will then be O(𝑛logπ‘˜). This is definitely an improvement on O(𝑛log𝑛) when π‘˜ β‰ͺ 𝑛.

Find uncommon elements using hashing

I think this is a fairly common question but I didn't find any answer for this using hashing in C++.
I have two arrays, both of the same lengths, which contain some elements, for example:
A={5,3,5,4,2}
B={3,4,1,2,1}
Here, the uncommon elements are: {5,5,1,1}
I have tried this approach- iterating a while loop on both the arrays after sorting:
while(i<n && j<n) {
if(a[i]<b[j])
uncommon[k++]=a[i++];
else if (a[i] > b[j])
uncommon[k++]=b[j++];
else {
i++;
j++;
}
}
while(i<n && a[i]!=b[j-1])
uncommon[k++]=a[i++];
while(j < n && b[j]!=a[i-1])
uncommon[k++]=b[j++];
and I am getting the correct answer with this. However, I want a better approach in terms of time complexity since sorting both arrays every time might be computationally expensive.
I tried to do hashing but couldn't figure it out entirely.
To insert elements from arr1[]:
set<int> uncommon;
for (int i=0;i<n1;i++)
uncommon.insert(arr1[i]);
To compare arr2[] elements:
for (int i = 0; i < n2; i++)
if (uncommon.find(arr2[i]) != uncommon.end())
Now, what I am unable to do is to send only those elements to the uncommon array[] which are uncommon to both of them.
Thank you!
First of all, std::set does not have anything to do with hashing. Sets and maps are ordered containers. Implementations may differ, but most likely it is a binary search tree. Whatever you do, you wont get faster that nlogn with them - the same complexity as sorting.
If you're fine with nlogn and sorting, I'd strongly advice just using set_symmetric_difference algorithm https://en.cppreference.com/w/cpp/algorithm/set_symmetric_difference , it requires two sorted containers.
But if you insist on an implementation relying on hashing, you should use std::unordered_set or std::unordered_map. This way you can be faster than nlogn. You can get your answer in nm time, where n = a.size() and m = b.size(). You should create two unordered_set`s: hashed_a, hashed_b and in two loops check what elements from hashed_a are not in hashed_b, and what elements in hashed_b are not in hashed_a. Here a pseudocode:
create hashed_a and hashed_b
create set_result // for the result
for (a_v : hashed_a)
if (a_v not in hashed_b)
set_result.insert(a_v)
for (b_v : hashed_b)
if (b_v not in hashed_a)
set_result.insert(b_v)
return set_result // it holds the symmetric diference, which you need
UPDATE: as noted in the comments, my answer doesn't count for duplicates. The easiest way to modify it for duplicates would be to use unordered_map<int, int> with the keys for elements in the set and values for number of encounters.
First, you need to find a way to distinguish between the same values contained in the same array (for ex. 5 and 5 in the first array, and 1 and 1 in the second array). This is the key to reducing the overall complexity, otherwise you can't do better than O(nlogn). A good possible algorithm for this task is to create a wrapper object to hold your actual values, and put in your arrays pointers to those wrapper objects with actual data, so your pointer addresses will serve as a unique identifier for objects. This wrapping will cost you just O(n1+n2) operations, but also an additional O(n1+n2) space.
Now your problem is that you have in both arrays only elements unique to each of those arrays, and you want to find the uncommon elements. This means the (Union of both array elements) - (Intersection of both array elements). Therefore, all you need to do is to push all the elements of the first array into a hash-map (complexity O(n1)), and then start pushing all the elements of the second array into the same hash-map (complexity O(n2)), by detecting the collisions (equality of an element from first array with an element from the second array). This comparison step will require O(n2) comparisons in the worst case. So for the maximum performance optimization you could have checked the size of the arrays before starting pushing the elements into the hash-map, and swap the arrays so that the first push will take place with the longest array. Your overall algorithm complexity would be O(n1+n2) pushes (hashings) and O(n2) comparisons.
The implementation is the most boring stuff, so I let it to you ;)
A solution without sorting (and without hashing but you seem to care more about complexity then the hashing itself) is to notice the following : an uncommon element e is an element that is in exactly one multiset.
This means that the multiset of all uncommon elements is the union between 2 multisets:
S1 = The element in A that are not in B
S2 = The element in B that are not in A
Using the std::set_difference, you get:
#include <set>
#include <vector>
#include <iostream>
#include <algorithm>
int main() {
std::multiset<int> ms1{5,3,5,4,2};
std::multiset<int> ms2{3,4,1,2,1};
std::vector<int> v;
std::set_difference( ms1.begin(), ms1.end(), ms2.begin(), ms2.end(), std::back_inserter(v));
std::set_difference( ms2.begin(), ms2.end(), ms1.begin(), ms1.end(), std::back_inserter(v));
for(int e : v)
std::cout << e << ' ';
return 0;
}
Output:
5 5 1 1
The complexity of this code is 4.(N1+N2 -1) where N1 and N2 are the size of the multisets.
Links:
set_difference: https://en.cppreference.com/w/cpp/algorithm/set_difference
compiler explorer: https://godbolt.org/z/o3KGbf
The Question can Be solved in O(nlogn) time-complexity.
ALGORITHM
Sort both array with merge sort in O(nlogn) complexity. You can also use sort-function. For example sort(array1.begin(),array1.end()).
Now use two pointer method to remove all common elements on both arrays.
Program of above Method
int i = 0, j = 0;
while (i < array1.size() && j < array2.size()) {
// If not common, print smaller
if (array1[i] < array2[j]) {
cout << array1[i] << " ";
i++;
}
else if (array2[j] < array1[i]) {
cout << array2[j] << " ";
j++;
}
// Skip common element
else {
i++;
j++;
}
}
Complexity of above program is O(array1.size() + array2.size()). In worst case say O(2n)
The above program gives the uncommon elements as output. If you want to store them , just create a vector and push them into vector.
Original Problem LINK

Create a function that checks whether an array has two opposite elements or not for less than n^2 complexity. (C++)

Create a function that checks whether an array has two opposite elements or not for less than n^2 complexity. Let's work with numbers.
Obviously the easiest way would be:
bool opposite(int* arr, int n) // n - array length
{
for(int i = 0; i < n; ++i)
{
for(int j = 0; j < n; ++j)
{
if(arr[i] == - arr[j])
return true;
}
}
return false;
}
I would like to ask if any of you guys can think of an algorithm that has a complexity less than n^2.
My first idea was the following:
1) sort array ( algorithm with worst case complexity: n.log(n) )
2) create two new arrays, filled with negative and positive numbers from the original array
( so far we've got -> n.log(n) + n + n = n.log(n))
3) ... compare somehow the two new arrays to determine if they have opposite numbers
I'm not pretty sure my ideas are correct, but I'm opened to suggestions.
An important alternative solution is as follows. Sort the array. Create two pointers, one initially pointing to the front (smallest), one initially pointing to the back (largest). If the sum of the two pointed-to elements is zero, you're done. If it is larger than zero, then decrement the back pointer. If it is smaller than zero, then increment the front pointer. Continue until the two pointers meet.
This solution is often the one people are looking for; often they'll explicitly rule out hash tables and trees by saying you only have O(1) extra space.
I would use an std::unordered_set and check to see if the opposite of the number already exist in the set. if not insert it into the set and check the next element.
std::vector<int> foo = {-10,12,13,14,10,-20,5,6,7,20,30,1,2,3,4,9,-30};
std::unordered_set<int> res;
for (auto e : foo)
{
if(res.count(-e) > 0)
std::cout << -e << " already exist\n";
else
res.insert(e);
}
Output:
opposite of 10 alrready exist
opposite of 20 alrready exist
opposite of -30 alrready exist
Live Example
Let's see that you can simply add all of elements to the unordered_set and when you are adding x check if you are in this set -x. The complexity of this solution is O(n). (as #Hurkyl said, thanks)
UPDATE: Second idea is: Sort the elements and then for all of the elements check (using binary search algorithm) if the opposite element exists.
You can do this in O(n log n) with a Red Black tree.
t := empty tree
for each e in A[1..n]
if (-e) is in t:
return true
insert e into t
return false
In C++, you wouldn't implement a Red Black tree for this purpose however. You'd use std::set, because it guarantees O(log n) search and insertion.
std::set<int> s;
for (auto e : A) {
if (s.count(-e) > 0) {
return true;
}
s.insert(e);
}
return false;
As Hurkyl mentioned, you could do better by just using std::unordered_set, which is a hashtable. This gives you O(1) search and insertion in the average case, but O(n) for both operations in the worst case. The total complexity of the solution in the average case would be O(n).

Given an array of integers, find the first integer that is unique

Given an array of integers, find the first integer that is unique.
my solution: use std::map
put integer (number as key, its index as value) to it one by one (O(n^2 lgn)), if have duplicate, remove the entry from the map (O(lg n)), after putting all numbers into the map, iterate the map and find the key with smallest index O(n).
O(n^2 lgn) because map needs to do sorting.
It is not efficient.
other better solutions?
I believe that the following would be the optimal solution, at least based on time / space complexity:
Step 1:
Store the integers in a hash map, which holds the integer as a key and the count of the number of times it appears as the value. This is generally an O(n) operation and the insertion / updating of elements in the hash table should be constant time, on the average. If an integer is found to appear more than twice, you really don't have to increment the usage count further (if you don't want to).
Step 2:
Perform a second pass over the integers. Look each up in the hash map and the first one with an appearance count of one is the one you were looking for (i.e., the first single appearing integer). This is also O(n), making the entire process O(n).
Some possible optimizations for special cases:
Optimization A: It may be possible to use a simple array instead of a hash table. This guarantees O(1) even in the worst case for counting the number of occurrences of a particular integer as well as the lookup of its appearance count. Also, this enhances real time performance, since the hash algorithm does not need to be executed. There may be a hit due to potentially poorer locality of reference (i.e., a larger sparse table vs. the hash table implementation with a reasonable load factor). However, this would be for very special cases of integer orderings and may be mitigated by the hash table's hash function producing pseudorandom bucket placements based on the incoming integers (i.e., poor locality of reference to begin with).
Each byte in the array would represent the count (up to 255) for the integer represented by the index of that byte. This would only be possible if the difference between the lowest integer and the highest (i.e., the cardinality of the domain of valid integers) was small enough such that this array would fit into memory. The index in the array of a particular integer would be its value minus the smallest integer present in the data set.
For example on modern hardware with a 64-bit OS, it is quite conceivable that a 4GB array can be allocated which can handle the entire domain of 32-bit integers. Even larger arrays are conceivable with sufficient memory.
The smallest and largest integers would have to be known before processing, or another linear pass through the data using the minmax algorithm to find out this information would be required.
Optimization B: You could optimize Optimization A further, by using at most 2 bits per integer (One bit indicates presence and the other indicates multiplicity). This would allow for the representation of four integers per byte, extending the array implementation to handle a larger domain of integers for a given amount of available memory. More bit games could be played here to compress the representation further, but they would only support special cases of data coming in and therefore cannot be recommended for the still mostly general case.
All this for no reason. Just using 2 for-loops & a variable would give you a simple O(n^2) algo.
If you are taking all the trouble of using a hash map, then it might as well be what #Micheal Goldshteyn suggests
UPDATE: I know this question is 1 year old. But was looking through the questions I answered and came across this. Thought there is a better solution than using a hashtable.
When we say unique, we will have a pattern. Eg: [5, 5, 66, 66, 7, 1, 1, 77]. In this lets have moving window of 3. first consider (5,5,66). we can easily estab. that there is duplicate here. So move the window by 1 element so we get (5,66,66). Same here. move to next (66,66,7). Again dups here. next (66,7,1). No dups here! take the middle element as this has to be the first unique in the set. The left element belongs to the dup so could 1. Hence 7 is the first unique element.
space: O(1)
time: O(n) * O(m^2) = O(n) * 9 β‰ˆ O(n)
Inserting to a map is O(log n) not O(n log n) so inserting n keys will be n log n. also its better to use set.
Although it's O(n^2), the following has small coefficients, isn't too bad on the cache, and uses memmem() which is fast.
for(int x=0;x<len-1;x++)
if(memmem(&array[x+1], sizeof(int)*(len-(x+1)), array[x], sizeof(int))==NULL &&
memmem(&array[x+1], sizeof(int)*(x-1), array[x], sizeof(int))==NULL)
return array[x];
public static string firstUnique(int[] input)
{
int size = input.Length;
bool[] dupIndex = new bool[size];
for (int i = 0; i < size; ++i)
{
if (dupIndex[i])
{
continue;
}
else if (i == size - 1)
{
return input[i].ToString();
}
for (int j = i + 1; j < size; ++j)
{
if (input[i]==input[j])
{
dupIndex[j] = true;
break;
}
else if (j == size - 1)
{
return input[i].ToString();
}
}
}
return "No unique element";
}
#user3612419
Solution given you is good with some what close to O(N*N2) but further optimization in same code is possible I just added two-3 lines that you missed.
public static string firstUnique(int[] input)
{
int size = input.Length;
bool[] dupIndex = new bool[size];
for (int i = 0; i < size; ++i)
{
if (dupIndex[i])
{
continue;
}
else if (i == size - 1)
{
return input[i].ToString();
}
for (int j = i + 1; j < size; ++j)
{
if(dupIndex[j]==true)
{
continue;
}
if (input[i]==input[j])
{
dupIndex[j] = true;
dupIndex[i] = true;
break;
}
else if (j == size - 1)
{
return input[i].ToString();
}
}
}
return "No unique element";
}

Generate a new element different from 1000 elements of an array

I was asked this questions in an interview. Consider the scenario of punched cards, where each punched card has 64 bit pattern. I was suggested each card as an int since each int is a collection of bits.
Also, to be considered that I have an array which already contains 1000 such cards. I have to generate a new element everytime which is different from the previous 1000 cards. The integers(aka cards) in the array are not necessarily sorted.
Even more, how would that be possible the question was for C++, where does the 64 bit int comes from and how can I generate this new card from the array where the element to be generated is different from all the elements already present in the array?
There are 264 64 bit integers, a number that is so much
larger than 1000 that the simplest solution would be to just generate a
random 64 bit number, and then verify that it isn't in the table of
already generated numbers. (The probability that it is is
infinitesimal, but you might as well be sure.)
Since most random number generators do not generate 64 bit values, you
are left with either writing your own, or (much simpler), combining the
values, say by generating 8 random bytes, and memcpying them into a
uint64_t.
As for verifying that the number isn't already present, std::find is
just fine for one or two new numbers; if you have to do a lot of
lookups, sorting the table and using a binary search would be
worthwhile. Or some sort of a hash table.
I may be missing something, but most of the other answers appear to me as overly complicated.
Just sort the original array and then start counting from zero: if the current count is in the array skip it, otherwise you have your next number. This algorithm is O(n), where n is the number of newly generated numbers: both sorting the array and skipping existing numbers are constants. Here's an example:
#include <algorithm>
#include <iostream>
unsigned array[] = { 98, 1, 24, 66, 20, 70, 6, 33, 5, 41 };
unsigned count = 0;
unsigned index = 0;
int main() {
std::sort(array, array + 10);
while ( count < 100 ) {
if ( count > array[index] )
++index;
else {
if ( count < array[index] )
std::cout << count << std::endl;
++count;
}
}
}
Here's an O(n) algorithm:
int64 generateNewValue(list_of_cards)
{
return find_max(list_of_cards)+1;
}
Note: As #amit points out below, this will fail if INT64_MAX is already in the list.
As far as I'm aware, this is the only way you're going to get O(n). If you want to deal with that (fairly important) edge case, then you're going to have to do some kind of proper sort or search, which will take you to O(n log n).
#arne is almost there. What you need is a self-balancing interval tree, which can be built in O(n lg n) time.
Then take the top node, which will store some interval [i, j]. By the properties of an interval tree, both i-1 and j+1 are valid candidates for a new key, unless i = UINT64_MIN or j = UINT64_MAX. If both are true, then you've stored 2^64 elements and you can't possibly generate a new element. Store the new element, which takes O(lg n) worst-case time.
I.e.: init takes O(n lg n), generate takes O(lg n). Both are worst-case figures. The greatest thing about this approach is that the top node will keep "growing" (storing larger intervals) and merging with its successor or predecessor, so the tree will actually shrink in terms of memory use and eventually the time per operation decays to O(1). You also won't waste any numbers, so you can keep generating until you've got 2^64 of them.
This algorithm has O(N lg N) initialisation, O(1) query and O(N) memory usage. I assume you have some integer type which I will refer to as int64 and that it can represent the integers [0, int64_max].
Sort the numbers
Create a linked list containing intervals [u, v]
Insert [1, first number - 1]
For each of the remaining numbers, insert [prev number + 1, current number - 1]
Insert [last number + 1, int64_max]
You now have a list representing the numbers which are not used. You can simply iterate over them to generate new numbers.
I think the way to go is to use some kind of hashing. So you store your cards in some buckets based on lets say on MOD operation. Until you create some sort of indexing you are stucked with looping over the whole array.
IF you have a look on HashSet implementation in java you might get a clue.
Edit: I assume you wanted them to be random numbers, if you don't mind sequence MAX+1 below is good solution :)
You could build a binary tree of the already existing elements and traverse it until you find a node whose depth is not 64 and which has less than two child nodes. You can then construct a "missing" child node and have a new element. The should be fairly quick, in the order of about O(n) if I'm not mistaken.
bool seen[1001] = { false };
for each element of the original array
if the element is in the range 0..1000
seen[element] = true
find the index for the first false value in seen
Initialization:
Don't sort the list.
Create a new array 1000 long containing 0..999.
Iterate the list and, if any number is in the range 0..999, invalidate it in the new array by replacing the value in the new array with the value of the first item in the list.
Insertion:
Use an incrementing index to the new array. If the value in the new array at this index is not the value of the first element in the list, add it to the list, else check the value from the next position in the new array.
When the new array is used up, refill it using 1000..1999 and invalidating existing values as above. Yes, this is looping over the list, but it doesn't have to be done for each insertion.
Near O(1) until the list gets so large that occasionally iterating it for invalidation of the 'new' new array becomes significant. Maybe you could mitigate this by using a new array that grows, maybee always the size of the list?
Rgds,
Martin
Put them all into a hash table of size > 1000, and find the empty cell (this is the parking problem). Generate a key for that. This will of course work better for bigger table size. The table needs only 1-bit entries.
EDIT: this is the pigeonhole principle.
This needs "modulo tablesize" (or some other "semi-invertible" function) for a hash function.
unsigned hashtab[1001] = {0,};
unsigned long long long long numbers[1000] = { ... };
void init (void)
{
unsigned idx;
for (idx=0; idx < 1000; idx++) {
hashtab [ numbers[idx] % 1001 ] += 1; }
}
unsigned long long long long generate(void)
{
unsigned idx;
for (idx = 0; idx < 1001; idx++) {
if ( !hashtab [ idx] ) break; }
return idx + rand() * 1001;
}
Based on the solution here: question on array and number
Since there are 1000 numbers, if we consider their remainders with 1001, at least one remainder will be missing. We can pick that as our missing number.
So we maintain an array of counts: C[1001], which will maintain the number of integers with remainder r (upon dividing by 1001) in C[r].
We also maintain a set of numbers for which C[j] is 0 (say using a linked list).
When we move the window over, we decrement the count of the first element (say remainder i), i.e. decrement C[i]. If C[i] becomes zero we add i to the set of numbers. We update the C array with the new number we add.
If we need one number, we just pick a random element from the set of j for which C[j] is 0.
This is O(1) for new numbers and O(n) initially.
This is similar to other solutions but not quite.
How about something simple like this:
1) Partition the array into numbers equal and below 1000 and above
2) If all the numbers fit within the lower partition then choose 1001 (or any number greater than 1000) and we're done.
3) Otherwise we know that there must exist a number between 1 and 1000 that doesn't exist within the lower partition.
4) Create a 1000 element array of bools, or a 1000-element long bitfield, or whatnot and initialize the array to all 0's
5) For each integer in the lower partition, use its value as an index into the array/bitfield and set the corresponding bool to true (ie: do a radix sort)
6) Go over the array/bitfield and pick any unset value's index as the solution
This works in O(n) time, or since we've bounded everything by 1000, technically it's O(1), but O(n) time and space in general. There are three passes over the data, which isn't necessarily the most elegant approach, but the complexity remains O(n).
you can create a new array with the numbers that are not in the original array, then just pick one from this new array.
ΒΏO(1)?