Rhino Mocking and TDD with legacy code - unit-testing

First of all let me say I am working from legacy code. So some changes can be made but not drastic ones.
My problem is I have a "Vehicle" object, it is pretty simple but has no interfaces or anything on it. This project was created before TDD really started to become more main stream. Anyway, I need to add a new method to change the starting mileage of the vehicle. I thought this would be a good start to try TDD and Mocking as I am new it all. My problem is I need to create a vehicle do some checks which involve going to the database. Sorry if my question is not 100% clear, is why I am posting as I am a bit confused where Rhino Mocks fits in (and if I need it!).

The problem is dependencies. Your vehicle class depends on the database. Hopefully all the interactions with the database have been encapsulated into a nice class we will get back to that in a second. When you fire off your unit test you want to be able to test the vehicle class without having to care about the database. For example you want to check that your SpeedUp(int x) method really increases the total speed by x. In this method the first thing it does is it asks the DB for its current speed. That means that you have to have a DB to test! Dam, that doesn't sound like a very fast test nor repeatable. Also a lot of setup to just run a test.
Wouldn't it be great if we could have a pretend DB? That is where mocking comes in. We create a Mock of the class that has all the DB interaction encapsulated. We then setup the mock to respond with a prepgrammed value. So for example when we ask the DB for current speed you return 100.
So now when we test the mock returns a 100 and we can assert that SpeedUp(int x) takes 100 and adds x to it.

Rhino mocks can only create mocks from interfaces or abstract classes, which do not exist your legacy code.
TypeMock can mock anything but isn't free.
You could use Microsoft Moles to mock these out.
You should however take into account that Moles should be your last resort solution, it's better to refactor your code and make it testable by abstracting your datalayer from your business layer.
HTH

Is it easy to create an instance of the Vehicle type (an object) and then invoke your method for a test ? If yes, then chances are you don't need a mock.
However if your Vehicle type has dependencies (like a Database access object) that it needs to perform the action that you want to test, then you would like to use a mock database access object that returns canned values for the test since you want your unit tests to run fast.
Vehicle [depends On>] OwnerRepository [satisfied By] SQLOwnerRepository
So you introduce an interface (an OwnerRepository to get details of the owner, let's say) to separate the DB Interaction (define a contract) between the two. Make your real dependency (here SQLOwnerRepository) implement this interface. Also design your code such that dependencies can be injected e.g.
public Vehicle (OwnerRepository ownerRepository)
{ _ownerRepository = ownerRepository; // cache in member variable }
Now in the test code,
Vehicle [depends On >] OwnerRepository [satisifed By] MockOwnerRepository
You have frameworks that given an interface would create a mock implementation of it (See Rhino/Moq frameworks). So you no longer need an actual DB connection to test your Vehicle class. Mocks are used to abstract away time consuming / uncontrollable dependencies in order to keep your unit tests fast / predictable.
I'd recommend reading up on "Dependency Injection" to have a better understanding of when and why to use mocks.

Not a direct answer to your question. However it is worth to take a look at the following.
Gabriel Schenker has posted about applying TDD in legacy systems. PTOM – Brownfield development – Making your dependencies explicit
This article explains about making dependencies explicit and using Dependency Injection. It also tell s about Poor Man’s Dependency Injection. This is needed when there is only default constructor.
Something like
public OrderService() : this(
new OrderRepository(),
new EmailSender(ConfigurationManager.AppSettings["SMTPServer"])
)
The article also deals with creating a wrapper for ConfigurationManager for making it testable.

Related

Hard-Coded Mock Objects vs Mocking Framework

I'm curious as to what method people like to use for mocking and why. The two methods that I know of are using hard coded mock objects and a mocking framework. To demonstrate, I'll outline an example using C#.
Suppose we have an IEmployeeRepository interface with a method called GetEmployeeById.
public interface IEmployeeRepository
{
Employee GetEmployeeById(long id);
}
We can easily create a mock of this:
public class MockEmployeeRepository : IEmployeeRepository
{
public Employee GetEmployeeById(long id)
{
Employee employee = new Employee();
employee.FirstName = "First";
employee.LastName = "Last";
...
return employee;
}
}
Then, in our tests we can explicitly tell our services to use the MockEmployeeRepository, either using a setter or dependency injection. I'm new to mocking frameworks so I'm curious as to why we use them, if we can just do the above?
That's not a Mock, it's a Stub. For stubbing, your example is perfectly acceptable.
From Martin Fowler:
Mocks are what we are talking about here: objects pre-programmed with expectations which form a specification of the calls they are expected to receive.
When you're mocking something, you usually call a "Verify" method.
Look at this for the diff between Mocks and Stubs
http://martinfowler.com/articles/mocksArentStubs.html
I think the choice between writing dummy objects by hand or by using a framework depends a lot upon the types of components that you are testing.
If it is part of the contract for the component under test to communicate with its collaborators following a precise protocol, then instrumented dummy objects ("Mocks") are just the thing to use. It is frequently much easier to test such protocols using a mocking framework than by hand-coding. Consider a component that is required to open a repository, perform some reads and writes in a prescribed order, and then close the repository -- even in the face of an exception. A mocking framework would make it easier to set up all of the necessary tests. Applications related to telecommunications and process control (to pick a couple of random examples) are full of components that need to be tested in this fashion.
On the other hand, many components in general business applications have no particular constraints on how they communicate with their collaborators. Consider a component that performs some kind of analysis of, say, university course loads. The component needs to retrieve instructor, student and course information from a repository. But it does not matter what order it retrieves the data: instructor-student-course, student-course-instructor, all-at-once, or whatever. There is no need to test for and enforce a data access pattern. Indeed, it would likely be harmful to test that pattern as it would be demanding a particular implementation unnecessarily. In this context, simple uninstrumented dummy objects ("Stubs") are adequate and a mocking framework is probably overkill.
I should point out that even when stubbing, a framework can still make your life a lot easier. One doesn't always have the luxury of dictating the signatures of one's collaborators. Imagine unit-testing a component that is required to process data retrieved from a thick interface like IDataReader or ResultSet. Hand-stubbing such interfaces is unpleasant at best -- especially if the component under test only actually uses three of the umpteen methods in the interface.
For me, the projects that have required mocking frameworks were almost invariably of a systems-programming nature (e.g. database or web infrastructure projects, or low-level plumbing in a business application). For applications-programming projects, my experience has been that there were few mocks in sight.
Given that we always strive to hide the messy low-level infrastructure details as much as possible, it would seem that we should aim to have the simple stubs far outnumber the mocks.
Some distinguish between mocks and stubs. A mock object may verify that it has been interacted with in the expected way. A mocking framework can make it easy to generate mocks and stubs.
In your example, you've stubbed out a single method in an interface. Consider an interface with n methods, where n can change over time. A hand-stubbed implementation may require more code and more maintenance.
A mocked interface can have different outputs per test - One test you may have a method return null, another test has the method return an object, another test has the method throw an exception. This is all configured in the unit test, whereas your version would require several hand-written objects.
Psuedocode:
//Unit Test One
MockObject.Expect(m => m.GetData()).Return(null);
//Unit Test Two
MockObject.Expect(m => m.GetData()).Return(new MyClass());
//Unit Test Three
MockObject.Expect(m => m.GetData()).ThrowException();
I tend to write stubs and mocks by hand, first. Then if it can be easily expressed using a mock object framework, I rewrite it so that I have less code to maintain.
I have been writing them by hand. I was having trouble using Moq, but then I read TDD: Introduction to Moq, and I think I get what they say about classical vs. mockist approaches now. I'll be giving Moq another try this evening, and I think understanding the "mockist" approach will give me what I need to make Moq work better for me.

In few words, what can be said about Mocking process in TDD

I'd like to brush my brain to avoid confusions. In few words, what can be said about Mocking process in TDD
What's the GREAT idea behind MOCKING?
Mocking frameworks are meant to be used only to avoid accessing DB during tests or they can be used for something else?
For new comers (like me), are all the frameworks equal or I need to choose one for this or that reason?
In addition to eliminating databases and other slow or ancillary concerns from the unit being tested, mocking allows you to start writing tests for a class without having to implement any collaborating classes.
As you design some piece of functionality, you'll realize that you need some other class or service, in order to stick to the single responsibility principle, but then you'll have to implement those to get the first one working, which in turn will demonstrate the need for still more classes.
If you can mock or stub those dependencies, then you can create the interfaces upon which that first class will rely, without actually having to implement anything outside of that class -- just return canned results from stubs of the interfaces.
This is an essential component to a test-first approach.
The GREAT idea: LIMIT THE SCOPE OF YOUR TESTS. By removing dependencies you remove the risk of test failures because of dependencies. That way you can focus on the correctness of the code that USES those dependencies.
Mocking DB's is very common but you can mock any dependency with an interface. In a recent project we mocked a web service, for example. You might even want to mock another business object just to make sure that you aren't relying on the correctness of the logic in that object.
I'd choose whichever one seems easiest to use. Moq is really nice.
I suggest you start here:
Mocks are not Stubs
It probably is the article that got me thinking the right way about Mocks. Sure the mocked object is usually heavy (otherwise it may not be worth mocking) but it doesn't have to be heavy in the sense that has some strong reliance on an external system like a database. It can be just a complex piece that you need to isolate to effectively be testing only your class and not the dependency.

Why Create Mock Objects?

During a recent interview I was asked why one would want to create mock objects. My answer went something like, "Take a database--if you're writing test code, you may not want that test hooked up live to the production database where actual operations will be performed."
Judging by response, my answer clearly was not what the interviewer was looking for. What's a better answer?
I'd summarize like this:
Isolation - You can test only a method, independently on what it calls. Your test becomes a real unit test (most important IMHO)
Decrease test development time - it is usually faster to use a mock then to create a whole class just for help you test
It lets you test even when you don't have implemented all dependencies - You don't even need to create, for instance, your repository class, and you'll be able to test a class that would use this repository
Keeps you away from external resources - helps in the sense you don't need to access databases, or to call web services, or to read files, or to send emails, or to charge a credit card, and so on...
In an interview, I'd recommend including that mocking is even better when developers use dependency injection, once it allows you to have more control, and build tests more easily.
When unit testing, each test is designed to test a single object. However most objects in a system will have other objects that they interact with. Mock Objects are dummy implementations of these other objects, used to isolate the object under test.
The benefit of this is that any unit tests that fail generally isolate the problem to the object under test. In some cases the problem will be with the mock object, but those problems should be simpler to identify and fix.
It might be an idea to write some simple unit tests for the mock objects as well.
They are commonly used to create a mock data access layer so that unit tests can be run in isolation from the data store.
Other uses might be to mock the user interface when testing the controller object in the MVC pattern. This allows better automated testing of UI components that can somewhat simulate user interaction.
An example:
public interface IPersonDAO
{
Person FindById(int id);
int Count();
}
public class MockPersonDAO : IPersonDAO
{
// public so the set of people can be loaded by the unit test
public Dictionary<int, Person> _DataStore;
public MockPersonDAO()
{
_DataStore = new Dictionary<int, Person>();
}
public Person FindById(int id)
{
return _DataStore[id];
}
public int Count()
{
return _DataStore.Count;
}
}
Just to add on to the fine answers here, mock objects are used in top-down or bottom-up structural programming (OOP too). They are there to provide data to upper-level modules (GUI, logic processing) or to act as out mock output.
Consider top-down approach: you develop a GUI first, but a GUI ought to have data. So you create a mock database which just return a std::vector<> of data. You have defined the 'contract' of the relationship. Who cares what goes on inside the database object - as long as my GUI list get a std::vector<> I'm happy. This can go to provide mock user login information, whatever you need to get the GUI working.
Consider a bottom-up approach. You wrote a parser which reads in delimited text files. How do you know if it is working? You write a mock 'data-sink' for those object and route the data there to verify (though usually) that the data are read correctly. The module on the next level up may require 2 data sources, but you have only wrote one.
And while defining the mock objects, you have also define the contract of how the relationship. This is often used in test-driven programming. You write the test cases, use the mock objects to get it working, and often than not, the mock object's interface becomes the final interface (which is why at some point you may want to separate out the mock object's interface into pure abstract class).
Hope this helps
Mock objects/functions can also be useful when working in a team. If you're working on a part of the code base that depends on a different part of the code base that some else is responsible for - which is still being written or hasn't been written yet - a mock object/function is useful in giving you an expected output so that you can carry on with you're work without being held up waiting for the other person to finish their part.
Here are the a few situations where mocking is indispensable:
When you are testing GUI interaction
When you are testing Web App
When you are testing the code that interacts with hardware
When you are testing legacy apps
I will go a different direction here. Stubbing/Faking does all of the things mentioned above, but perhaps the interviewers were thinking of mocks as a fake object that causes the test to pass or fail. I am basing this on the xUnit terminology. This could have lead to some discussion about state testing verses behavior / interaction testing.
The answer they may have been looking for is: That a mock object is different than a stub. A stub emulates a dependency for the method under test. A stub shouldn't cause a test to fail. A mock does this and also checks how and when it is called. Mocks cause a test to pass or fail based on underlying behavior. This has the benefit of being less reliant on data during a test, but tying it more closely to the implementation of the method.
Of course this is speculation, it is more likely they just wanted you to describe the benefits of stubbing and DI.
To take a slightly different approach (as I think mocks have been nicely covered above):
"Take a database--if you're writing test code, you may not want that test hooked up live to the production database where actual operations will be performed."
IMO a bad way of stating the example use. You would never "hook it up to the prod database" during testing with or without mocks. Every developer should have a developer-local database to test against. And then you would move on test environments database then maybe UAT and finally prod. You are not mocking to avoid using the live database, you are mocking in order that classes that are not directly dependent on a database do not require you to set up a database.
Finally (and I accept I might get some comments on this) IMO the developer local database is a valid thing to hit during unit tests. You should only be hitting it while testing code that directly interacts with the database and using mocks when you are testing code that indirectly access the database.

unit test smell

I am trying to change my unit testing of ArcGIS, and start using mocks (I use rhino).
When I started to get into writing the tests, I noticed I have to start mocking a lot of objects, and stub a lot of methods for even a single test to pass.
For example - my controller first gets a RelationshipClass (so I need to stub the IWorkspace and the returned IRelationshipClass), then also gets an IFeature (A stub), and finally calls stubRelClass.GetRelatedObjects(stubFeature), to return an ISet of other IFeatures.
Is it normal to have to stub so many objects and methods just to make it pass? I also feel
like I really need to step over the code (yeah - I know I should have written the tests first, I am still trying this one), in order to figure out what to stub out next, and what I should return.
I am also having problem with mocking com classes which implement more than one interface. In the production code I QI them between the interfaces. How can I create a mock that implements both interfaces at runtime?
Depending on your injection chain, yes, sometimes you have to mock a lot of objects. If you're going multiple levels deep though, it may be indicative of a design fault - objects that are relying on data that is three layers down into your API may not be loosely coupled. You should be able to nip the chain in the bud by just returning a fake object of some kind at some point that has the necessary properties that the layer you're testing at needs.
You should also be able to do most of your mocking in a [SetUp] method and then have each test just change one or two things.
For mocking multiple interfaces, Rhino has the concept of a MultiMock. I believe the syntax you're after is:
var mock =
MockRepository.DynamicMultiMock<MyType>(
typeof(Interface1),
typeof(Interface2),
....);
It might be a sign of high coupling - which in turn implies a need to reduce dependencies (which will improve design and testability). As a rough guideline, an object should have around 4-6 collaborators max. Anything over that would set off my alarms.
How are Mocks meant to be used?
To me it sounds like untestable code, which is a smell :-(
I would recommend reading http://misko.hevery.com/code-reviewers-guide/. The author is coach responsible for teaching google developers in the testing area. In the article he shows how you can write testable and untestable code.
Further recommended reading:
Clean Code (Robert C. Martin) - main focus on how to write clean (which corresponds to testable) code.
Working effectively with legacy code (Michael Feather) - shows ways to get untested and untestable code under control.

Why would I write a fake class and unit test it?

I understand the need to test a class that has logic (for instance, one that can calculate discounts), where you can test the actual class.
But I just started writing unit tests for a project that will act as a repository (get objects from a database). I find myself writing a 'fake' repository that implements an ISomethingRepository interface. It uses a Dictionary<Guid, Something> for storage internally. It implements the Add(Something) and GetById(Guid) methods of the interface.
Why am I writing this? Nothing I'm writing will actually be used by the software when it's deployed, right? I don't really see the value of this exercise.
I also got the advice to use a mock object that I can setup in advance to meet certain expectations. That seems even more pointless to me: of course the test will succeed, I have mocked/faked it to succeed! And I'm still not sure the actual software will perform as it should when connecting to the database...
confused...
Can someone point me in the right direction to help me understand this?
Thank you!
You are not testing your mock object but some other class that is interacting with it. So you could for example test that a controller forwards a save method call to your fake repository. There is something wrong if you are "testing your fake objects"
Don't test the mock class. Do test the production class using the mock class.
The whole point of the test support class is to have something that you can predict its behavior. If you need to test the test support class in order to predict its behavior, there is a problem.
In the fake database article you linked in a comment, the author needs to unit test his fake database because it is his product (at least in the context of the article).
Edit: updated terms to be more consistent.
Mock - created by mocking framework
Fake - created manually, might actually function some.
Test Support - Mocks, Fakes, Stubs, and all the rest. Not production.
The purpose of the mock/stub object is not to be tested instead of the unit you're trying to test, it's to allow you to test that unit without needing other classes.
It's basically so that you can test classes one at a time without having to test all the classes they're also dependent on.
You should not be testing the mock class.
What you normally do is: you create mock classes for all the classes that the class you are testing interact with.
Let's say you are testing a class called Bicycle which takes in the constructor objects of classes Wheel, Saddle, HandleBar,etc.
And then within the class Bike you you want to test test its method GetWeight which probably iterates through each part and calls property/method Weight of them and then returns the total.
What you do:
you write a mock class for each part
(Wheel, saddle etc) which simply
implements the Weight bit
then you pass those mock classes to the Bicycle
test the GetWeight method on the Bicycle class
It that way you can focus on testing the GetWeight on the Bicycle class, in a manner that is independent on other classes (say they are not implemented yet, not deterministic etc.)
Who watches the watchers?
It is interesting for example if the mock implementation throws specific Exceptions for the corner cases, so you know that the classes that use or depend the IRepositorySomething can handle the exceptions that are thrown in real life. Some of these exceptions you can't generate easily with a test database.
You do not test the Mock object with a unit test, but you use it to test classes that depend on it.
Instead of writing a fake class by yourself, you can use a tool (like Rhino or Typemock) to mock it. It is much easier than writing all the mocks yourself. And like others said, there's no need to test fake code, which is no code if you use the tool.
I have actually found two uses for the mock classes that we use in repository implementation testing.
The first is to test the services that use an implementation of the "ISomethingRepository" equivalent that you mention. However, our repository implementations are created by a factory. This means that we do write tests against the "ISomethingRepository", but not against the "MockSomethingRepository" directly. By testing against the interface, we can easily assert that the code coverage for our tests cover 100% of the interface. Code reviews provide simple verification that new interface members are tested. Even if the developers are running against the mock that the factory returns, the build server has a different configuration that tests against the concrete implementation that the factory returns within the nightly builds. It provides the best of both worlds, in terms of test coverage and local performance.
The second use is one that I am surprised that no one else has mentioned. My team is responsible for the middle tier. Our web developers are responsible for the front end of the web products. By building out mock repository implementations, there is not the artificial obstacle of waiting for the database to be modeled and implemented prior to the front-end work starting. Views can be written that will be built off of the mock to provide a minimal amount of "real" data to meet the expectations of the web developers, as well. For example, data can be provided to contain minimum and maximum length string data to verify that neither break their implementation, etc.
Since the factories we use are wired as to which "ISomethingRepository" to return, we have local testing configurations, build testing configurations, production configurations, etc. We purposely are trying to make sure that no team on the project has unreasonable wait times because of another team's implementation time. The largest chunk of wait time is still provided by the development team, but we are able to crank out our domain objects, repositories, and services at a faster pace than the front-end development.
Of course, YMMV. ;-)
You write "fake" class called Stub or Mock object because you want to test an implementation in a simple way without testing the real concrete class. The purpose is to simplify the testing by testing only the Interface (or abstract class).
In your example, you are testing something that has a dictionnary. It might be fill up in real by the database or have a lot of logic behind it. In your "fake" object, you can simplify everything by having all data constant. This way you test only the behavior of the interface and not how the concrete object is built.
There is generally no need to run classical unit tests in the Data Access Layer.
Perhaps you can write integrational style unit test for your Data Acess Classes, that is, Integration Test (= integrating your Data Access Layer Code with the DB) using the features of Unit Testing Frameworks.
For example, in a Spring project you can use Spring Testcontext to start your Spring context inside a unit test, and then connect to a real database and test that the queries returns correct results. You need probably an own database for unit tests, or perhaps you can connect them with a developer DB.
Have a look at the following article for a good explanation of this:
https://web.archive.org/web/20110316193229/http://msdn.microsoft.com/en-us/magazine/cc163358.aspx
Basically, if you write a fake object and it turns out to be fairly complex, it is sometimes worth it to unit test the fake to make sure it works as expected.
Since a repository can be complex, writing unit tests for it often makes sense.