Serial Port communication with Arduino and C++ - c++

I am having a problem with a Serial Port communication between Arduino Nano and C++, even though the problem is in C++ side. Basically I want to send integers (or long,...) from the Arduino to a C++ program to be processed.
First I did a test sending information from the Arduino to the computer using Matlab. The Arduino code is pretty simple:
int i = 0;
void setup() {
// start serial port at 9600 bps:
Serial.begin(9600);
establishContact();
}
void loop() {
Serial.println(i);
i=i+1;
delay(10);
}
void establishContact() {
while (Serial.available() <= 0) {
Serial.println('A', BYTE);
delay(10);
}
}
The Matlab side is also simple:
clc;
clear all;
numSec=2;
t=[];
v=[];
s1 = serial('COM3'); % define serial port
s1.BaudRate=9600; % define baud rate
set(s1, 'terminator', 'LF'); % define the terminator for println
fopen(s1);
try % use try catch to ensure fclose
% signal the arduino to start collection
w=fscanf(s1,'%s'); % must define the input % d or %s, etc.
if (w=='A')
display(['Collecting data']);
fprintf(s1,'%s\n','A'); % establishContact just wants
% something in the buffer
end
i=0;
t0=tic;
while (toc(t0)<=numSec)
i=i+1;
t(i)=toc(t0);
t(i)=t(i)-t(1);
v(i)=fscanf(s1,'%d');
end
fclose(s1);
plot(t,v,'*r')
catch me
fclose(s1);
end
My goal is, with C++, do the same that is done in Matlab using fscanf(s1, '%d').
Here is the current code that I am using (C++ code):
void main()
{
HANDLE hSerial;
hSerial = CreateFile(TEXT("COM3"),
GENERIC_READ | GENERIC_WRITE,
0,
NULL,
OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL,//FILE_FLAG_OVERLAPPED,
NULL);
if ( hSerial == INVALID_HANDLE_VALUE)
{
printf("Error initializing handler");
}
else
{
// Set the parameters of the handler to the serial port.
DCB dcb = {0};
dcb.DCBlength = sizeof(dcb);
if ( !GetCommState(hSerial, &dcb) )
{
printf("Error setting parameters");
}
FillMemory(&dcb, sizeof(dcb), 0);
dcb.BaudRate = CBR_9600;
dcb.ByteSize = 8;
dcb.StopBits = ONESTOPBIT;
dcb.Parity = NOPARITY;
if ( !SetCommState(hSerial, &dcb) )
{
// error setting serial port state.
}
// Tell the program not to wait for data to show up
COMMTIMEOUTS timeouts = {0};
timeouts.ReadIntervalTimeout = 0;//20;
timeouts.ReadTotalTimeoutConstant = 0;//20;
timeouts.ReadTotalTimeoutMultiplier = 0;//50;
timeouts.WriteTotalTimeoutConstant = 0;//100;
timeouts.WriteTotalTimeoutMultiplier = 0;//100;
if ( !SetCommTimeouts(hSerial, &timeouts) )
{
printf("Error setting the timeouts");
}
char szBuff[5] = "";
DWORD dwBytesRead = 0;
int i = 0;
char test[] = "B\n";
int maxSamples = 10;
DWORD dwCommStatus;
WriteFile(hSerial, test, 2, &dwBytesRead, NULL);
SetCommMask(hSerial,EV_RXCHAR);
while (i < maxSamples)
{
WaitCommEvent (hSerial, &dwCommStatus, 0);
if (dwCommStatus & EV_RXCHAR)
{
memset(szBuff,0,sizeof(szBuff));
ReadFile(hSerial, LPVOID(szBuff), 4, &dwBytesRead, NULL);
cout<<szBuff;
printf(" - %d - \n", atoi(szBuff));
}
i++;
}
scanf("%d", &i);
CloseHandle(hSerial);
}
}
The goal of my code would be something like num = ReadSerialCOM(hSerial, "%d");
My current C++ code reads the information from the buffer, but there is not an accepted end of line, which implies that my numbers (integers) are received cut.
Eg:
I send 8889 from the Arduino, which places it in the COM port. And the command ReadFile saves '88' into szBuff. At the next iteration '89\n' is saved into sZBuff. Basically I want to avoid to post-process sZBuff to concat '88' and '89\n'.
Anyone?
Thanks!

If I understand your question correctly, one way to avoid having to 'post-process' is to move the pointer passed to ReadFile to the end of the available data, so the ReadFile call is appending to the buffer, instead of overwriting.
Essentially, you would have two pointers. One to the buffer, the other to the end of the data in the buffer. So when your program starts, both pointers will be the same. Now, you read the first 2 bytes. You increment the end-of-data pointer by 2. You do another read, but instead of szBuff, you pass a pointer to the end of the previously read data. You read the next three bytes and you have the complete entry in szBuff.
If you need to wait until some delimiter to mark the end of an entry is received, you could just search the received data for it. If it's not there, you keep reading until you find it. If it is there, you can just return.
// Fill the buffer with 0
char szBuff[256] = {0};
// We have no data in the buffer, so the end of data points to the beginning
// of the buffer.
char* szEndOfData = szBuff;
while (i < maxSamples)
{
WaitCommEvent (hSerial, &dwCommStatus, 0);
if (dwCommStatus & EV_RXCHAR)
{
// Append up to 4 bytes from the serial port to the buffer
ReadFile(hSerial, LPVOID(szEndOfData), 4, &dwBytesRead, NULL);
// Increment the end of data pointer, so it points to the end of the
// data available in the buffer.
szEndOfData += dwBytesRead;
cout<<szBuff;
printf(" - %d - \n", atoi(szBuff));
}
i++;
}
// Output, assuming what you mentioned happens:
// - 88 -
// - 8889 -
If this approach is acceptable to you, it will require a bit more work. For example, you would have to ensure you don't overflow your buffer. When you remove data from the buffer, you'll have to move all of the data after the removed segment to the beginning, and fix the end of data pointer. Alternatively, you could use a circular buffer.

As Hans Passant and dauphic pointed, it doesn't seem to be a general solution for my question. I am writing, though, the code that I was trying to avoid, just in case somebody finds it useful or face the same problem that I had:
int i = 0;
DWORD dwBytesRead = 0;
DWORD dwCommStatus = 0;
char szBuff[2] = "";
int maxRead = 20;
int sizeNum = 1;
int *num = (int*)malloc(maxRead*sizeof(int));
char *currNum;
char *pastNum;
// Write something into the Serial Port to start receive
// information from the Arduino
WriteFile(hSerial, (LPCVOID)"A\0", 1, &dwBytesRead, NULL);
SetCommMask(hSerial, EV_RXCHAR);
// Start reading from the Serial Port
while ( i < maxRead )
{
WaitCommEvent (hSerial, &dwCommStatus, 0);
if (dwCommStatus & EV_RXCHAR) // if a char is received in the serial port
{
ReadFile(hSerial, LPVOID(szBuff), 1, &dwBytesRead, NULL);
if ( szBuff[0] > 47 && szBuff[0] < 58 )
{
sizeNum++;
if (sizeNum ==2)
{
currNum = (char*)malloc(sizeNum*sizeof(char));
strcpy(currNum, szBuff);
} else
{
if (pastNum != NULL)
free(pastNum);
pastNum = currNum;
currNum = (char*)malloc(sizeNum*sizeof(char));
strcpy(currNum, pastNum);
strcpy(currNum+(sizeNum-2)*sizeof(char), szBuff);
}
cout << szBuff<<endl;
} else if (szBuff[0] == '\n' && sizeNum > 1) // end of number
{
num[i] = atoi(currNum);
i++;
sizeNum = 1;
if (currNum!=NULL)
free(currNum);
}
}
}

Related

parsing complete messages from serial port

I am trying to read complete messages from my GPS via serial port.
The message I am looking for starts with:
0xB5 0x62 0x02 0x13
So I read from the serial port like so
while (running !=0)
{
int n = read (fd, input_buffer, sizeof input_buffer);
for (int i=0; i<BUFFER_SIZE; i++)
{
if (input_buffer[i]==0xB5 && input_buffer[i+1]== 0x62 && input_buffer[i+2]== 0x02 && input_buffer[i+3]== 0x13 && i<(BUFFER_SIZE-1) )
{
// process the message.
}
}
The problem I am having is that I need to get a complete message. Half of a message could be in the buffer one iteration. And the other half could come into the message the next iteration.
Somebody suggested that free the buffer up from the complete message. And then I move the rest of data in the buffer to the beginning of the buffer.
How do I do that or any other way that make sure I get every complete selected message that comes in?
edit//
I want a particular class and ID. But I can also read in the length
To minimize the overhead of making many read() syscalls of small byte counts, use an intermediate buffer in your code.
The read()s should be in blocking mode to avoid a return code of zero bytes.
#define BLEN 1024
unsigned char rbuf[BLEN];
unsigned char *rp = &rbuf[BLEN];
int bufcnt = 0;
static unsigned char getbyte(void)
{
if ((rp - rbuf) >= bufcnt) {
/* buffer needs refill */
bufcnt = read(fd, rbuf, BLEN);
if (bufcnt <= 0) {
/* report error, then abort */
}
rp = rbuf;
}
return *rp++;
}
For proper termios initialization code for the serial terminal, see this answer. You should increase the VMIN parameter to something closer to the BLEN value.
Now you can conveniently access the received data a byte at a time with minimal performance penalty.
#define MLEN 1024 /* choose appropriate value for message protocol */
unsigned char mesg[MLEN];
while (1) {
while (getbyte() != 0xB5)
/* hunt for 1st sync */ ;
retry_sync:
if ((sync = getbyte()) != 0x62) {
if (sync == 0xB5)
goto retry_sync;
else
continue; /* restart sync hunt */
}
class = getbyte();
id = getbyte();
length = getbyte();
length += getbyte() << 8;
if (length > MLEN) {
/* report error, then restart sync hunt */
continue;
}
for (i = 0; i < length; i++) {
mesg[i] = getbyte();
/* accumulate checksum */
}
chka = getbyte();
chkb = getbyte();
if ( /* valid checksum */ )
break; /* verified message */
/* report error, and restart sync hunt */
}
/* process the message */
switch (class) {
case 0x02:
if (id == 0x13) {
...
...
You can break the read into three parts. Find the start of a message. Then get the LENGTH. Then read the rest of the message.
// Should probably clear these in case data left over from a previous read
input_buffer[0] = input_buffer[1] = 0;
// First make sure first char is 0xB5
do {
n = read(fd, input_buffer, 1);
} while (0xB5 != input_buffer[0]);
// Check for 2nd sync char
n = read(fd, &input_buffer[1], 1);
if (input_buffer[1] != 0x62) {
// Error
return;
}
// Read up to LENGTH
n = read(fd, &input_buffer[2], 4);
// Parse length
//int length = *((int *)&input_buffer[4]);
// Since I don't know what size an int is on your system, this way is better
int length = input_buffer[4] | (input_buffer[5] << 8);
// Read rest of message
n = read(fd, &input_buffer[6], length);
// input_buffer should now have a complete message
You should add error checking...

multithread list shared performance

I am developing an application that reads data from a named pipe on Windows 7 at around 800 Mbps. I have to develop it with several threads since the FIFO at the other side of the pipe overflows if I am not able to read at the given speed. The performance though is really pitifull and I cannot understand why. I already read several things I tried to split the memory to avoid bad memory sharing.
At the beginning I has thinking I could be a problem with contiguous memory possitions, but the memory sections are queued in a list the main thread is not using them any more after queue it. The amount of memory are huge so I don't thing they lay on same pages or so.
This is the threaded function:
void splitMessage(){
char* bufferMSEO;
char* bufferMDO;
std::list<struct msgBufferStr*> localBufferList;
while(1)
{
long bytesProcessed = 0;
{
std::unique_lock<std::mutex> lk(bufferMutex);
while(bufferList.empty())
{
// Wait until the map has data
listReady.wait(lk);
}
//Extract the data from the list and copy to the local list
localBufferList.splice(localBufferList.end(),bufferList);
//Unlock the mutex and notify
// Manual unlocking is done before notifying, to avoid waking up
// the waiting thread only to block again (see notify_one for details)
lk.unlock();
//listReady.notify_one();
}
for(auto nextBuffer = localBufferList.begin(); nextBuffer != localBufferList.end(); nextBuffer++)
{
//nextBuffer = it->second();
bufferMDO = (*nextBuffer)->MDO;
bufferMSEO = (*nextBuffer)->MSEO;
bytesProcessed += (*nextBuffer)->size;
//Process the data Stream
for(int k=0; k<(*nextBuffer)->size; k++)
{
}
//localBufferList.remove(*nextBuffer);
free(bufferMDO);
free(bufferMSEO);
free(*nextBuffer);
}
localBufferList.clear();
}
}
And here the thread that reads the data and queue them:
DWORD WINAPI InstanceThread(LPVOID lpvParam)
// This routine is a thread processing function to read from and reply to a client
// via the open pipe connection passed from the main loop. Note this allows
// the main loop to continue executing, potentially creating more threads of
// of this procedure to run concurrently, depending on the number of incoming
// client connections.
{
HANDLE hHeap = GetProcessHeap();
TCHAR* pchRequest = (TCHAR*)HeapAlloc(hHeap, 0, BUFSIZE*sizeof(TCHAR));
DWORD cbBytesRead = 0, cbReplyBytes = 0, cbWritten = 0;
BOOL fSuccess = FALSE;
HANDLE hPipe = NULL;
double totalRxData = 0;
char* bufferPnt;
char* bufferMDO;
char* bufferMSEO;
char* destPnt;
// Do some extra error checking since the app will keep running even if this
// thread fails.
if (lpvParam == NULL)
{
printf( "\nERROR - Pipe Server Failure:\n");
printf( " InstanceThread got an unexpected NULL value in lpvParam.\n");
printf( " InstanceThread exitting.\n");
if (pchRequest != NULL) HeapFree(hHeap, 0, pchRequest);
return (DWORD)-1;
}
if (pchRequest == NULL)
{
printf( "\nERROR - Pipe Server Failure:\n");
printf( " InstanceThread got an unexpected NULL heap allocation.\n");
printf( " InstanceThread exitting.\n");
return (DWORD)-1;
}
// Print verbose messages. In production code, this should be for debugging only.
printf("InstanceThread created, receiving and processing messages.\n");
// The thread's parameter is a handle to a pipe object instance.
hPipe = (HANDLE) lpvParam;
try
{
msgSplitter = std::thread(&splitMessage);
//msgSplitter.detach();
}
catch(...)
{
_tprintf(TEXT("CreateThread failed, GLE=%d.\n"), GetLastError());
return -1;
}
while (1)
{
struct msgBufferStr *newBuffer = (struct msgBufferStr* )malloc(sizeof(struct msgBufferStr));
// Read client requests from the pipe. This simplistic code only allows messages
// up to BUFSIZE characters in length.
fSuccess = ReadFile(
hPipe, // handle to pipe
pchRequest, // buffer to receive data
BUFSIZE*sizeof(TCHAR), // size of buffer
&cbBytesRead, // number of bytes read
NULL); // not overlapped I/O
if (!fSuccess || cbBytesRead == 0)
{
if (GetLastError() == ERROR_BROKEN_PIPE)
{
_tprintf(TEXT("InstanceThread: client disconnected.\n"), GetLastError());
break;
}
else if (GetLastError() == ERROR_MORE_DATA)
{
}
else
{
_tprintf(TEXT("InstanceThread ReadFile failed, GLE=%d.\n"), GetLastError());
}
}
//timeStart = omp_get_wtime();
bufferPnt = (char*)pchRequest;
totalRxData += ((double)cbBytesRead)/1000000;
bufferMDO = (char*) malloc(cbBytesRead);
bufferMSEO = (char*) malloc(cbBytesRead/3);
destPnt = bufferMDO;
//#pragma omp parallel for
for(int i = 0; i < cbBytesRead/12; i++)
{
msgCounter++;
if(*(bufferPnt + (i * 12)) == 0) continue;
if(*(bufferPnt + (i * 12)) == 8)
{
errorCounter++;
continue;
}
//Use 64 bits variables in order to make less operations
unsigned long long *sourceAddrLong = (unsigned long long*) (bufferPnt + (i * 12));
unsigned long long *destPntLong = (unsigned long long*) (destPnt + (i * 8));
//Copy the data bytes from source to destination
*destPntLong = *sourceAddrLong;
//Copy and prepare the MSEO lines for the data processing
bufferMSEO[i*4]=(bufferPnt[(i * 12) + 8] & 0x03);
bufferMSEO[i*4 + 1]=(bufferPnt[(i * 12) + 8] & 0x0C) >> 2;
bufferMSEO[i*4 + 2]=(bufferPnt[(i * 12) + 8] & 0x30) >> 4;
bufferMSEO[i*4 + 3]=(bufferPnt[(i * 12) + 8] & 0xC0) >> 6;
}
newBuffer->size = cbBytesRead/3;
newBuffer->MDO = bufferMDO;
newBuffer->MSEO = bufferMSEO;
{
//lock the mutex
std::lock_guard<std::mutex> lk(bufferMutex);
//add data to the list
bufferList.push_back(newBuffer);
} // bufferMutex is automatically released when lk goes out of scope
//Notify
listReady.notify_one();
}
// Flush the pipe to allow the client to read the pipe's contents
// before disconnecting. Then disconnect the pipe, and close the
// handle to this pipe instance.
FlushFileBuffers(hPipe);
DisconnectNamedPipe(hPipe);
CloseHandle(hPipe);
HeapFree(hHeap, 0, pchRequest);
//Show memory leak isues
_CrtDumpMemoryLeaks();
//TODO: Join thread
printf("InstanceThread exitting.\n");
return 1;
}
The think that really blows my mind is that I a let it like this the splitMessage thread takes minutes to read the data even though the first thread finished reading the data long ago. I mean the read thread reads like 1,5Gb or information in seconds and waits for more data from the pipe. This data are processed by the split thread (the only one really "doing" something in almost one minute or more). The CPU is moreover only to less than 20% percent used. (It is a i7 labtop with 16 Gb RAM and 8 cores!)
On the other hand, if I just comment the for loop in the process thread:
for(int k=0; k<(*nextBuffer)->size; k++)
Then the data are read slowly and the FIFO on the other side of the pipe overflows. With 8 processors and at more than 2 GHz should be fast enought to go throw the buffers without many problems, isn't it? I think it has to be a memory access issue or that the scheduler is sending the thread somehow to sleep but I cannot figure out why!!. Other possibility is that the iteration throw the linked list with the iterator is not optimal.
Any help would be geat because I am trying to understand it since a couple of days, I made several changes in the code and tried to simplified at the maximum and I am getting crazy :).
best regards,
Manuel

Detect USB hardware keylogger

I need to determine is there hardware keylogger that was plugged to PC with USB keyboard. It needs to be done via software method, from user-land. However wiki says that it is impossible to detect HKL using soft, there are several methods exists. The best and I think only one overiew that present in net relating that theme is "Detecting Hardware Keyloggers, by Fabian Mihailowitsch - youtube".
Using this overview I am developing a tool to detect USB hardware keyloggers. The sources for detecting PS/2 keyloggers was already shared by author and available here. So my task is to make it worked for USB only.
As suggested I am using libusb library to interfere with USB devices in system.
So, there are methods I had choosen in order to detect HKL:
Find USB keyboard that bugged by HKL. Note that HKL is usually
invisible from device list in system or returned by libusb.
Detect Keyghost HKL by: Interrupt read from USB HID device, send usb reset (libusb_reset_device), read interrupt again. If data returned on last read is not nulls then keylogger detected. It is described on page 45 of Mihailowitsch's presentation
Time measurement. The idea is measure time of send/receive packets using control transfer for original keyboard for thousands times. In case HKL has been plugged, program will measure time again and then compare the time with the original value. For HKL it have to be much(or not so much) greater.
Algorithm is:
Send an output report to Keyboard(as Control transfer) (HID_REPORT_TYPE_OUTPUT 0x02 )
Wait for ACKed packet
Repeat Loop (10.000 times)
Measure time
Below is my code according to steps of detection.
1. Find USB keyboard
libusb_device * UsbKeyboard::GetSpecifiedDevice(PredicateType pred)
{
if (_usbDevices == nullptr) return nullptr;
int i = 0;
libusb_device *dev = nullptr;
while ((dev = _usbDevices[i++]) != NULL)
{
struct libusb_device_descriptor desc;
int r = libusb_get_device_descriptor(dev, &desc);
if (r >= 0)
{
if (pred(desc))
return dev;
}
}
return nullptr;
}
libusb_device * UsbKeyboard::FindKeyboard()
{
return GetSpecifiedDevice([&](libusb_device_descriptor &desc) {
bool isKeyboard = false;
auto dev_handle = libusb_open_device_with_vid_pid(_context, desc.idVendor, desc.idProduct);
if (dev_handle != nullptr)
{
unsigned char buf[255] = "";
// product description contains 'Keyboard', usually string is 'USB Keyboard'
if (libusb_get_string_descriptor_ascii(dev_handle, desc.iProduct, buf, sizeof(buf)) >= 0)
isKeyboard = strstr((char*)buf, "Keyboard") != nullptr;
libusb_close(dev_handle);
}
return isKeyboard;
});
}
Here we're iterating through all USB devices in system and checks their Product string. In my system this string for keyboard is 'USB keyboard' (obviously).
Is it stable way to detect keyboard through Product string? Is there other ways?
2. Detect Keyghost HKL using Interrupt read
int UsbKeyboard::DetectKeyghost(libusb_device *kbdev)
{
int r, i;
int transferred;
unsigned char answer[PACKET_INT_LEN];
unsigned char question[PACKET_INT_LEN];
for (i = 0; i < PACKET_INT_LEN; i++) question[i] = 0x40 + i;
libusb_device_handle *devh = nullptr;
if ((r = libusb_open(kbdev, &devh)) < 0)
{
ShowError("Error open device", r);
return r;
}
r = libusb_set_configuration(devh, 1);
if (r < 0)
{
ShowError("libusb_set_configuration error ", r);
goto out;
}
printf("Successfully set usb configuration 1\n");
r = libusb_claim_interface(devh, 0);
if (r < 0)
{
ShowError("libusb_claim_interface error ", r);
goto out;
}
r = libusb_interrupt_transfer(devh, 0x81 , answer, PACKET_INT_LEN,
&transferred, TIMEOUT);
if (r < 0)
{
ShowError("Interrupt read error ", r);
goto out;
}
if (transferred < PACKET_INT_LEN)
{
ShowError("Interrupt transfer short read %", r);
goto out;
}
for (i = 0; i < PACKET_INT_LEN; i++) {
if (i % 8 == 0)
printf("\n");
printf("%02x, %02x; ", question[i], answer[i]);
}
printf("\n");
out:
libusb_close(devh);
return 0;
}
I've got such error on libusb_interrupt_transfer:
libusb: error [hid_submit_bulk_transfer] HID transfer failed: [5] Access denied
Interrupt read error - Input/Output Error (LIBUSB_ERROR_IO) (GetLastError() - 1168)
No clue why 'access denied', then IO error, and GetLastError() returns 1168, which means - Element not found (What element?). Looking for help here.
Time measurement. Send output report and wait for ACK packet.
int UsbKeyboard::SendOutputReport(libusb_device *kbdev)
{
const int PACKET_INT_LEN = 1;
int r, i;
unsigned char answer[PACKET_INT_LEN];
unsigned char question[PACKET_INT_LEN];
for (i = 0; i < PACKET_INT_LEN; i++) question[i] = 0x30 + i;
for (i = 1; i < PACKET_INT_LEN; i++) answer[i] = 0;
libusb_device_handle *devh = nullptr;
if ((r = libusb_open(kbdev, &devh)) < 0)
{
ShowError("Error open device", r);
return r;
}
r = libusb_set_configuration(devh, 1);
if (r < 0)
{
ShowError("libusb_set_configuration error ", r);
goto out;
}
printf("Successfully set usb configuration 1\n");
r = libusb_claim_interface(devh, 0);
if (r < 0)
{
ShowError("libusb_claim_interface error ", r);
goto out;
}
printf("Successfully claim interface\n");
r = libusb_control_transfer(devh, CTRL_OUT, HID_SET_REPORT, (HID_REPORT_TYPE_OUTPUT << 8) | 0x00, 0, question, PACKET_INT_LEN, TIMEOUT);
if (r < 0) {
ShowError("Control Out error ", r);
goto out;
}
r = libusb_control_transfer(devh, CTRL_IN, HID_GET_REPORT, (HID_REPORT_TYPE_INPUT << 8) | 0x00, 0, answer, PACKET_INT_LEN, TIMEOUT);
if (r < 0) {
ShowError("Control In error ", r);
goto out;
}
out:
libusb_close(devh);
return 0;
}
Error the same as for read interrupt:
Control Out error - Input/Output Error (LIBUSB_ERROR_IO) (GetLastError() - 1168
)
How to fix please? Also how to wait for ACK packet?
Thank you.
UPDATE:
I've spent a day on searching and debbuging. So currently my problem is only to
send Output report via libusb_control_transfer. The 2nd method with interrupt read is unnecessary to implement because of Windows denies access to read from USB device using ReadFile.
It is only libusb stuff left, here is the code I wanted to make work (from 3rd example):
// sending Output report (LED)
// ...
unsigned char buf[65];
buf[0] = 1; // First byte is report number
buf[1] = 0x80;
r = libusb_control_transfer(devh, CTRL_OUT,
HID_SET_REPORT/*0x9*/, (HID_REPORT_TYPE_OUTPUT/*0x2*/ << 8) | 0x00,
0, buf, (uint16_t)2, 1000);
...
The error I've got:
[ 0.309018] [00001c0c] libusb: debug [_hid_set_report] Failed to Write HID Output Report: [1] Incorrect function
Control Out error - Input/Output Error (LIBUSB_ERROR_IO) (GetLastError() - 1168)
This error occures right after DeviceIoControl call in libusb internals.
What means "Incorrect function" there?

IOCP and overwritten buffer

Well i make a IOCP for handling client connections with the following details:
- Threads = (CPU cores * 2)
- Assigning an completion port to each socket
- Accessing the socket context by Client Index or overlapped struct (either way is the same)
So i am trying to debug the incoming packets, its works like a charm, except for a little but nasty detail... I set a break point on WorkersThread function (where i recv the packet) i am watching the buffer with the packet i recv, when suddenly the buffer gets overwritten with a new packet that i got from client.
Why is that? according to what i read, IOCP should wait till i process the packet, send a response to client before recv any other packet. So i set a flag on my socket context called "Processing" and still got the overwritten buffer with an incoming packet. So it doesn't let me debug at all and its driving me crazy
Is ollydbg (debugger) fault that let the other threads running while i set a break point? Or is some error in my IOCP implementation?
Here is how my WorkerThread is coded:
DWORD WINAPI WorkerThread(void* argument)
{
int BytesTransfer;
int BytesRecv;
int ClientID;
int result;
OVERLAPPED* overlapped = 0;
ClientInfo* clientinfo = 0;
WSABUF wsabuf;
int flags;
//Exit only when shutdown signal is recv
while (WaitForSingleObject(IOCPBase::internaldata->sockcontext.ShutDownSignal, NULL) != WAIT_OBJECT_0)
{
flags = 0; BytesTransfer = 0; BytesRecv = 0; ClientID = 0;
//Get from queued list
if (GetQueuedCompletionStatus(IOCPBase::internaldata->sockcontext.CompletionPort, (LPDWORD)&BytesTransfer, (PULONG_PTR)&ClientID, &overlapped, INFINITE) == TRUE)
{
if (overlapped == 0)
{
//Fatal error
break;
}
clientinfo = (ClientInfo*)overlapped;
if (BytesTransfer != 0)
{
//Assign the buffer pointer and buffer len to WSABUF local
clientinfo->RecvContext.RecvBytes = BytesTransfer;
wsabuf.buf = (char*)clientinfo->RecvContext.Buffer;
wsabuf.len = clientinfo->RecvContext.Len;
//Switch for OperationCode
//switch (IOCPBase::internaldata->ClientContext[ClientID].OperationCode)
switch (clientinfo->OperationCode)
{
case FD_READ:
// Check if we have send all data to the client from a previous send
if (clientinfo->SendContext.SendBytes < clientinfo->SendContext.TotalBytes)
{
clientinfo->OperationCode = FD_READ; //We set FD_READ caused on the next send, there could still be bytes left to send
wsabuf.buf += clientinfo->SendContext.SendBytes; //The buffer position is + sended bytes
wsabuf.len = clientinfo->SendContext.TotalBytes - clientinfo->SendContext.SendBytes; //the buffer len is total - sended bytes
//Send the remain bytes
result = WSASend(clientinfo->sock, &wsabuf, 1, (LPDWORD)&BytesRecv, flags, &clientinfo->overlapped, NULL);
if (result == SOCKET_ERROR && (WSAGetLastError() != WSA_IO_PENDING))
{
CloseClient(ClientID);
}
clientinfo->SendContext.SendBytes += BytesRecv;
}
else
{
if (clientinfo->Processing == 0)
{
clientinfo->OperationCode = FD_WRITE; //If no more bytes left to send now we can set the operation code to write (in fact is read)
memset(clientinfo->RecvContext.Buffer, NULL, MAX_DATA_BUFFER_SIZE); //Clean the buffer for recv new data
//Recv data from our client
clientinfo->RecvContext.RecvBytes = WSARecv(clientinfo->sock, &wsabuf, 1, (LPDWORD)&BytesRecv, (LPDWORD)&flags, &clientinfo->overlapped, NULL);
if (clientinfo->RecvContext.RecvBytes == SOCKET_ERROR && WSAGetLastError() != WSA_IO_PENDING)
{
CloseClient(ClientID);
break;
}
}
}
break;
case FD_WRITE:
//Send data to the RecvProtocol
clientinfo->Processing = 1;
IOCPBase::internaldata->callback.RecvProtocol(clientinfo->RecvContext.Buffer, clientinfo->RecvContext.Len, ClientID);
clientinfo->Processing = 0;
default:
break;
}
}
}
}
return false;
}
The problem appears when looking at clientinfo->RecvContext.Buffer. I am watching the packet, past a few seconds and boom the buffer is overwritten with a new packet.
Thanks !
Never mind i fix the debug problem by copy the packet to the stack frame of the function i use to analyze the packet, this way i have no overwritten problem.

C++(Serial Communicatio using the <windows.h>) - How can i find out before hand, how many characters will be read by the ReadFile() method

ReadFile( hSerial , buffer , 25, &dwBytesRead , 0);
Hey ppl
My question is how do i find out how many characters my ReadFile statement will return before calling the ReadFile?. The device i am communicating with, returns different data based on what was sent. Concerning the above ReadFile, in that instance i knew that the returned data would be 25 characters long, but what if i dont know the answer, how can i substitute 25 with a variable that will be enough for any amount of data received.
In my code you will see i have 2 Readfile statements, in both cases i knew the amount of data i would receive, to i sent a fixed number, what happens when i dont know that amount?
#include "stdafx.h"
#include "windows.h"
BOOL SetCommDefaults(HANDLE hSerial);
void StripCRLFandPrint(char *command);
char buffer[1000];
HANDLE hSerial;
DWORD dwBytesRead = 0;
DWORD dwBytesWritten = 0;
char trash;
int main(int argc, char* argv[])
{
hSerial = CreateFile("COM1", GENERIC_READ | GENERIC_WRITE, 0 , 0 , OPEN_EXISTING , 0 , 0);
if (hSerial == INVALID_HANDLE_VALUE) return GetLastError();
SetCommDefaults(hSerial);//Initializing the Device Control Block
COMMTIMEOUTS timeouts={0};
timeouts.ReadIntervalTimeout=50;
timeouts.ReadTotalTimeoutConstant=50;
timeouts.ReadTotalTimeoutMultiplier=10;
timeouts.WriteTotalTimeoutConstant=50;
timeouts.WriteTotalTimeoutMultiplier=10;
char szRxChar[3];//varialble holds characters that will be sent
szRxChar[0] = '?';
DWORD y =0, z =0;
char buf[327];// will hold the data received
memset(buf,0,327);//initializing the buf[]
memset(buffer,0,10000);
WriteFile( hSerial , &szRxChar , 1, &dwBytesWritten ,0);
ReadFile( hSerial , buf , sizeof(buf), &dwBytesRead , 0);
printf("Retrieving data...\n\n");
//Displaying the buffer
printf( "%s",buf);
printf("\nData Read: %i\n",dwBytesRead);
printf("Enter an option:");
scanf("%c%c",&szRxChar,&trash);//Reading the next command to be sent
while(szRxChar[0] != '1')//Press one to exit
{
memset(buffer,0,10000);
//StripCRLFandPrint(szRxChar);
WriteFile( hSerial , &szRxChar, 1, &dwBytesWritten ,0);
ReadFile( hSerial , buffer , 25, &dwBytesRead , 0);
printf("%s",buffer);
printf("\nData Read: %i\n",dwBytesRead);
printf("\n");
printf("Enter an Option:");
scanf("%c%c",&szRxChar,&trash);
}
CloseHandle(hSerial);// Closing the handle
return 0;
}
You can't know what you are asking for, because no software can make predictions regarding the behaviour of a remote end. For this reason, the reading should take place in a different thread. In the reading thread you can instruct ReadFile to read one byte at a time. You can choose to read more bytes at the same time, but then you are running the risk of having received a full message from the other part and still do not get a notification, because ReadFile is blocked waiting for more data.
It may be challenging to create the threading code yourself. I recommend that you search for a library that already handles this for you.
You won't ever know exactly what was sent, but instead of putting 25, use sizeof(buffer) instead.
Keep in mind that ReadFile() isn't perfect. I have experienced issues on slower hardware whereas ReadFile() does not always read in the complete message sent over the COM port. Therefore, it may be beneficial to read in byte-by-byte, albeit slower, to ensure you get the entire message:
int c;
DWORD dwBytesRead = 0;
if (!(pcState[readerPort] & PORT_OPEN)) {
RecvIndex = 0;
Sleep(1000);
return;
}
ReadFile(hComm[readerPort], buff, 1, &dwBytesRead, NULL); // array of handles used here
c = buff[0];
if (dwBytesRead == 0) { // possible end of transmission
if (RecvTimer++ > 3) {
RecvTimer = 0;
if (RecvIndex) { // have receive some data prior
keyBuf[RecvIndex] = 0;
RecvIndex = 0;
processBuffer(keyBuf);
memset(keyBuf, 0, sizeof(keyBuf));
}
}
} else {
RecvTimer = 0; //Restart timer
if (RecvIndex == 0) { // first character
memset(keyBuf, 0, sizeof(keyBuf));
keyBuf[0] = (unsigned char)c;
RecvIndex = 1;
} else { // get remaining characters
if (RecvIndex < sizeof(keyBuf))
keyBuf[RecvIndex++] = (unsigned char)c;
}
}
in the example above, keyBuf is a private class variable and the above code is part of a function that is called in a while loop.