I have a class A that I overload its operator=. However it is required that I need to do something like this:
volatile A x;
A y;
x = y;
which raised an error while compiling
error: no operator "=" matches these operands
operand types are: volatile A = A
If I removed volatile, it's compilable. Is there anyway to have this compiled without removing the "volatile" (and still keep the behavior of volatile) ?
Basically this is a CUDA program in which 'x' is a shared memory ( all threads can access and modify its value ). I want it to be "volatile" in order to avoid the compiler optimization and re-use the value instead of accessing the memory address.
More on the problem: at the beginning A is just a primitive type e.g integer, volatile worked as expected and doesn't cause any problem, now I want it to be a custom class ( integer 128-bit for example ). I'm not sure why C++ complain in this case but not with primitive data type.
Thanks in advance.
Assuming the volatile qualification is necessary, you'll have to add a volatile assignment operator to A (A& A::operator=(const A&) volatile).
const_cast<A&>(x) = y will make it compile, but will technically cause undefined behaviour, and will certainly remove the guarantees that volatile gives.
The "volatile isn't a lot of use in C++ threading" comment is irrelevant to the question, which is CUDA-specific. volatile is needed for warp synchronous coding in CUDA.
volatile isn't a lot of use in C++ threading (see Dave Butenhof's explanation at http://www.lambdacs.com/cpt/FAQ.html#Q56). It's not sufficient to ensure your program flushes the data written out of core-local cache to a point where other programs can see the updates in shared memory, and given almost everyone's multi-core these days, that's a serious problem. I suggest you use proper threading synchronisation methods, such as boost's if your portability needs match it, or perhaps POSIX mutexes and condition variables, failing that more architecture dependent techniques like memory barriers or atomic operations that implicitly sync memory between cores.
I'm sure you want it to be fast, but fast and unstable isn't generally as useful as slow and reliable, especially if you ship a product that's only unstable on your customer's hardware.
Declaring a copy constructor
volatile A& operator=(volatile A&) volatile;
worked for me with nvcc. Note that you may have to pass around the non-primitive type by reference only. Else you'll need more copy-constructors that convert volatile instances to non-volatile whenever the non-primitive type is passed by value to a non-volatile parameter.
It really boils down to establishing volatile-correctness (much like const-correctness).
Related
Consider this function:
void f(void* loc)
{
auto p = new(loc) volatile int{42};
*p = 0;
}
I have check the generated code by clang, gcc and CL, none of them elide the initialization. (The answer may be seen by the hardwer:).
Is it an extension provided by compilers to the standard? Does the standard allow compilers not to perform the write 42?
Actualy for objects of class type, it is specfied that constructor of an object is executed without consideration for the volatile qualifier [class.ctor]:
A constructor can be invoked for a const, volatile or const volatile object. const and volatile
semantics (10.1.7.1) are not applied on an object under construction. They come into effect when the
constructor for the most derived object (4.5) ends.
[intro.execution]/8 lists the minimum requirements for a conforming implementation; these are also known as “observable behavior”. The first requirement is that “Access to volatile objects are evaluated strictly according to the rules of the abstract machine.” The compiler is required to produce all observable behavior. In particular, it is not allowed to remove accesses to volatile objects. And note that “object” here is used in the compiler-writer’s sense: it includes built-in types.
This is not a coherent question because what it means for a compiler to perform a write is platform-specific. There is no platform-independent notion of performing a write other than perhaps seeing the effects of a write in a subsequent read.
As you see, typical compilers on x86 will emit a write instruction but no memory barrier. The CPU may reorder the write, coalesce it, or even avoid doing any write to main memory because of the way the platform's cache coherence works.
The reason they made this implementation choice is that it makes volatile work for a broad range of applications, including those where the standard requires it to work, and because it has acceptable performance consequences. The standard, being platform-neutral, doesn't dictate platform-specific decisions like this and compiler writers do not understand it to do that.
They could have forced every volatile access to be uncoalsecable, un-reorderable, and pushed through the cache subsystem to main memory. But that would provide terrible performance and, on this platform, no significant benefits. So they don't do it, and they don't understand the C++ standard to suggest that there's some mythical observer on the memory bus who must see specific things. The very existence of a memory bus is platform-specific. The standard is not platform-specific.
You will sometimes see people argue, for example, that the standard somehow requires the compiler to issue instructions to do volatile writes in order but that it doesn't matter if the CPU coalesces or re-orders the writes. This is, frankly, silly. The C++ standard doesn't impose requirements on the instructions compilers generate but rather on what those instructions must actually do when executed. It doesn't distinguish between optimizations done by a CPU and optimizations done by a compiler and any such distinctions would be platform-specific anyway.
If the standard allows a CPU to re-order two writes, then it allows the compiler to re-order them. It does not, and cannot, make that kind of distinction. Of course, compiler writers may still decide that they will issues the writes in order even though the CPU can re-order them because that may make the most sense on their platform.
I know when reading from a location of memory which is written to by several threads or processes the volatile keyword should be used for that location like some cases below but I want to know more about what restrictions does it really make for compiler and basically what rules does compiler have to follow when dealing with such case and is there any exceptional case where despite simultaneous access to a memory location the volatile keyword can be ignored by programmer.
volatile SomeType * ptr = someAddress;
void someFunc(volatile const SomeType & input){
//function body
}
What you know is false. Volatile is not used to synchronize memory access between threads, apply any kind of memory fences, or anything of the sort. Operations on volatile memory are not atomic, and they are not guaranteed to be in any particular order. volatile is one of the most misunderstood facilities in the entire language. "Volatile is almost useless for multi-threadded programming."
What volatile is used for is interfacing with memory-mapped hardware, signal handlers and the setjmp machine code instruction.
It can also be used in a similar way that const is used, and this is how Alexandrescu uses it in this article. But make no mistake. volatile doesn't make your code magically thread safe. Used in this specific way, it is simply a tool that can help the compiler tell you where you might have messed up. It is still up to you to fix your mistakes, and volatile plays no role in fixing those mistakes.
EDIT: I'll try to elaborate a little bit on what I just said.
Suppose you have a class that has a pointer to something that cannot change. You might naturally make the pointer const:
class MyGizmo
{
public:
const Foo* foo_;
};
What does const really do for you here? It doesn't do anything to the memory. It's not like the write-protect tab on an old floppy disc. The memory itself it still writable. You just can't write to it through the foo_ pointer. So const is really just a way to give the compiler another way to let you know when you might be messing up. If you were to write this code:
gizmo.foo_->bar_ = 42;
...the compiler won't allow it, because it's marked const. Obviously you can get around this by using const_cast to cast away the const-ness, but if you need to be convinced this is a bad idea then there is no help for you. :)
Alexandrescu's use of volatile is exactly the same. It doesn't do anything to make the memory somehow "thread safe" in any way whatsoever. What it does is it gives the compiler another way to let you know when you may have screwed up. You mark things that you have made truly "thread safe" (through the use of actual synchronization objects, like Mutexes or Semaphores) as being volatile. Then the compiler won't let you use them in a non-volatile context. It throws a compiler error you then have to think about and fix. You could again get around it by casting away the volatile-ness using const_cast, but this is just as Evil as casting away const-ness.
My advice to you is to completely abandon volatile as a tool in writing multithreadded applications (edit:) until you really know what you're doing and why. It has some benefit but not in the way that most people think, and if you use it incorrectly, you could write dangerously unsafe applications.
It's not as well defined as you probably want it to be. Most of the relevant standardese from C++98 is in section 1.9, "Program Execution":
The observable behavior of the abstract machine is its sequence of reads and writes to volatile data and calls to library I/O functions.
Accessing an object designated by a volatile lvalue (3.10), modifying an object, calling a library I/O function, or calling a function that does any of those operations are all side effects, which are changes in the state of the execution environment. Evaluation of an expression might produce side effects. At certain specified points in the execution sequence called sequence points, all side effects of previous evaluations shall be complete and no side effects of subsequent evaluations shall have taken place.
Once the execution of a function begins, no expressions from the calling function are evaluated until execution of the called function has completed.
When the processing of the abstract machine is interrupted by receipt of a signal, the values of objects with type other than volatile sig_atomic_t are unspecified, and the value of any object not of volatile sig_atomic_t that is modified by the handler becomes undefined.
An instance of each object with automatic storage duration (3.7.2) is associated with each entry into its block. Such an object exists and retains its last-stored value during the execution of the block and while the block is suspended (by a call of a function or receipt of a signal).
The least requirements on a conforming implementation are:
At sequence points, volatile objects are stable in the sense that previous evaluations are complete and subsequent evaluations have not yet occurred.
At program termination, all data written into files shall be identical to one of the possible results that execution of the program according to the abstract semantics would have produced.
The input and output dynamics of interactive devices shall take place in such a fashion that prompting messages actually appear prior to a program waiting for input. What constitutes an interactive device is implementation-defined.
So what that boils down to is:
The compiler cannot optimize away reads or writes to volatile objects. For simple cases like the one casablanca mentioned, that works the way you might think. However, in cases like
volatile int a;
int b;
b = a = 42;
people can and do argue about whether the compiler has to generate code as if the last line had read
a = 42; b = a;
or if it can, as it normally would (in the absence of volatile), generate
a = 42; b = 42;
(C++0x may have addressed this point, I haven't read the whole thing.)
The compiler may not reorder operations on two different volatile objects that occur in separate statements (every semicolon is a sequence point) but it is totally allowed to rearrange accesses to non-volatile objects relative to volatile ones. This is one of the many reasons why you should not try to write your own spinlocks, and is the primary reason why John Dibling is warning you not to treat volatile as a panacea for multithreaded programming.
Speaking of threads, you will have noticed the complete absence of any mention of threads in the standards text. That is because C++98 has no concept of threads. (C++0x does, and may well specify their interaction with volatile, but I wouldn't be assuming anyone implements those rules yet if I were you.) Therefore, there is no guarantee that accesses to volatile objects from one thread are visible to another thread. This is the other major reason volatile is not especially useful for multithreaded programming.
There is no guarantee that volatile objects are accessed in one piece, or that modifications to volatile objects avoid touching other things right next to them in memory. This is not explicit in what I quoted but is implied by the stuff about volatile sig_atomic_t -- the sig_atomic_t part would be unnecessary otherwise. This makes volatile substantially less useful for access to I/O devices than it was probably intended to be, and compilers marketed for embedded programming often offer stronger guarantees, but it's not something you can count on.
Lots of people try to make specific accesses to objects have volatile semantics, e.g. doing
T x;
*(volatile T *)&x = foo();
This is legit (because it says "object designated by a volatile lvalue" and not "object with a volatile type") but has to be done with great care, because remember what I said about the compiler being totally allowed to reorder non-volatile accesses relative to volatile ones? That goes even if it's the same object (as far as I know anyway).
If you are worried about reordering of accesses to more than one volatile value, you need to understand the sequence point rules, which are long and complicated and I'm not going to quote them here because this answer is already too long, but here's a good explanation which is only a little simplified. If you find yourself needing to worry about the differences in the sequence point rules between C and C++ you have already screwed up somewhere (for instance, as a rule of thumb, never overload &&).
A particular and very common optimization that is ruled out by volatile is to cache a value from memory into a register, and use the register for repeated access (because this is much faster than going back to memory every time).
Instead the compiler must fetch the value from memory every time (taking a hint from Zach, I should say that "every time" is bounded by sequence points).
Nor can a sequence of writes make use of a register and only write the final value back later on: every write must be pushed out to memory.
Why is this useful? On some architectures certain IO devices map their inputs or outputs to a memory location (i.e. a byte written to that location actually goes out on the serial line). If the compiler redirects some of those writes to a register that is only flushed occasionally then most of the bytes won't go onto the serial line. Not good. Using volatile prevents this situation.
Declaring a variable as volatile means the compiler can't make any assumptions about the value that it could have done otherwise, and hence prevents the compiler from applying various optimizations. Essentially it forces the compiler to re-read the value from memory on each access, even if the normal flow of code doesn't change the value. For example:
int *i = ...;
cout << *i; // line A
// ... (some code that doesn't use i)
cout << *i; // line B
In this case, the compiler would normally assume that since the value at i wasn't modified in between, it's okay to retain the value from line A (say in a register) and print the same value in B. However, if you mark i as volatile, you're telling the compiler that some external source could have possibly modified the value at i between line A and B, so the compiler must re-fetch the current value from memory.
The compiler is not allowed to optimize away reads of a volatile object in a loop, which otherwise it'd normally do (i.e. strlen()).
It's commonly used in embedded programming when reading a hardware registry at a fixed address, and that value may change unexpectedly. (In contrast with "normal" memory, that doesn't change unless written to by the program itself...)
That is it's main purpose.
It could also be used to make sure one thread see the change in a value written by another, but it in no way guarantees atomicity when reading/writing to said object.
Here's the problem: your program temporarily uses some sensitive data and wants to erase it when it's no longer needed. Using std::fill() on itself won't always help - the compiler might decide that the memory block is not accessed later, so erasing it is a waste of time and eliminate erasing code.
User ybungalobill suggests using volatile keyword:
{
char buffer[size];
//obtain and use password
std::fill_n( (volatile char*)buffer, size, 0);
}
The intent is that upon seeing the volatile keyword the compiler will not try to eliminate the call to std::fill_n().
Will volatile keyword always prevent the compiler from such memory modifying code elimination?
The compiler is free to optimize your code out because buffer is not a volatile object.
The Standard only requires a compiler to strictly adhere to semantics for volatile objects. Here is what C++03 says
The least requirements on a conforming implementation are:
At sequence points, volatile objects are stable in the sense that previous evaluations are complete and
subsequent evaluations have not yet occurred.
[...]
and
The observable behavior of the abstract machine is its sequence of reads and writes to volatile data and
calls to library I/O functions
In your example, what you have are reads and writes using volatile lvalues to non-volatile objects. C++0x removed the second text I quoted above, because it's redundant. C++0x just says
The least requirements on a conforming implementation are:
Access to volatile objects are evaluated strictly according to the rules of the abstract machine.[...]
These collectively are referred to as the observable behavior of the program.
While one may argue that "volatile data" could maybe mean "data accessed by volatile lvalues", which would still be quite a stretch, the C++0x wording removed all doubts about your code and clearly allows implementations to optimize it away.
But as people pointed out to me, It probably does not matter in practice. A compiler that optimizes such a thing will most probably go against the programmers intention (why would someone have a pointer to volatile otherwise) and so would probably contain a bug. Still, I have experienced compiler vendors that cited these paragraphs when they were faced with bugreports about their over-aggressive optimizations. In the end, volatile is inherent platform specific and you are supposed to double check the result anyway.
From the last C++0x draft [intro.execution]:
8 The least requirements on a
conforming implementation are:
— Access to volatile objects are
evaluated strictly according to the
rules of the abstract machine.
[...]
12 Accessing an object designated by a
volatile glvalue (3.10), modifying an
object, calling a library I/O
function, or calling a function that
does any of those operations are all
side effects, [...]
So even the code you provided must not be optimized.
The memory content you wish to remove may have already been flushed out from your CPU/core's inner cache to RAM, where other CPUs can continue to see it. After overwriting it, you need to use a mutex / memory barrier instruction / atomic operation or something to trigger a sync with other cores. In practice, your compiler will probably do this before calling any external functions (google Dave Butenhof's post on volatile's dubious utility in multi-threading), so if you thread does that soon afterwards anyway then it's not a major issue. Summarily: volatile isn't needed.
A conforming implementation may, at its leisure, defer the actual performance of any volatile reads and writes until the result of a volatile read would affect the execution of a volatile write or I/O operation.
For example, given something like:
volatile unsigned char vol1,vol2;
extern unsigned char res[1000];
void test(int scale)
{
unsigned char ch;
for (int 0=0; i<10000; i++)
{
res[i] = i*vol1*scale;
vol2 = res[i];
}
}
a conforming compiler could, at its option, check whether scale is a multiple of 128 and--if so--clear out all even-indexed values of res before doing any reads from vol1 or writes to vol2. Even though the compiler would need to do each reads from vol1 before it could do the following write to vol2, a compiler may be able to defer both operations until after it has run an essentially unlimited amount of code.
[edit] For background reading, and to be clear, this is what I am talking about: Introduction to the volatile keyword
When reviewing embedded systems code, one of the most common errors I see is the omission of volatile for thread/interrupt shared data. However my question is whether it is 'safe' not to use volatile when a variable is accessed via an access function or member function?
A simple example; in the following code...
volatile bool flag = false ;
void ThreadA()
{
...
while (!flag)
{
// Wait
}
...
}
interrupt void InterruptB()
{
flag = true ;
}
... the variable flag must be volatile to ensure that the read in ThreadA is not optimised out, however if the flag were read via a function thus...
volatile bool flag = false ;
bool ReadFlag() { return flag }
void ThreadA()
{
...
while ( !ReadFlag() )
{
// Wait
}
...
}
... does flag still need to be volatile? I realise that there is no harm in it being volatile, but my concern is for when it is omitted and the omission is not spotted; will this be safe?
The above example is trivial; in the real case (and the reason for my asking), I have a class library that wraps an RTOS such that there is an abstract class cTask that task objects are derived from. Such "active" objects typically have member functions that access data than may be modified in the object's task context but accessed from other contexts; is it critical then that such data is declared volatile?
I am really interested in what is guaranteed about such data rather than what a practical compiler might do. I may test a number of compilers and find that they never optimise out a read through an accessor, but then one day find a compiler or a compiler setting that makes this assumption untrue. I could imagine for example that if the function were in-lined, such an optimisation would be trivial for a compiler because it would be no different than a direct read.
My reading of C99 is that unless you specify volatile, how and when the variable is actually accessed is implementation defined. If you specify volatile qualifier then code must work according to the rules of an abstract machine.
Relevant parts in the standard are: 6.7.3 Type qualifiers (volatile description) and 5.1.2.3 Program execution (the abstract machine definition).
For some time now I know that many compilers actually have heuristics to detect cases when a variable should be reread again and when it is okay to use a cached copy. Volatile makes it clear to the compiler that every access to the variable should be actually an access to the memory. Without volatile it seems compiler is free to never reread the variable.
And BTW wrapping the access in a function doesn't change that since a function even without inline might be still inlined by the compiler within the current compilation unit.
P.S. For C++ probably it is worth checking the C89 which the former is based on. I do not have the C89 at hand.
Yes it is critical.
Like you said volatile prevents code breaking optimization on shared memory [C++98 7.1.5p8].
Since you never know what kind of optimization a given compiler may do now or in the future, you should explicitly specify that your variable is volatile.
Of course, in the second example, writing/modifying variable 'flag' is omitted. If it is never written to, there is no need for it being volatile.
Concerning the main question
The variable has still to be flagged volatile even if every thread accesses/modifies it through the same function.
A function can be "active" simultaneously in several threads. Imagine that the function code is just a blueprint that gets taken by a thread and executed. If thread B interrupts the execution of ReadFlag in thread A, it simply executes a different copy of ReadFlag (with a different context, e.g. a different stack, different register contents). And by doing so, it could mess up the execution of ReadFlag in thread A.
In C, the volatile keyword is not required here (in the general sense).
From the ANSI C spec (C89), section A8.2 "Type Specifiers":
There are no
implementation-independent semantics
for volatile objects.
Kernighan and Ritchie comment on this section (referring to the const and volatile specifiers):
Except that it should diagnose
explicit attempts to change const
objects, a compiler may ignore these
qualifiers.
Given these details, you can't be guaranteed how a particular compiler interprets the volatile keyword, or if it ignores it altogether. A keyword that is completely implementation dependent shouldn't be considered "required" in any situation.
That being said, K&R also state that:
The purpose of volatile is to force
an implementation to suppress
optimization that could otherwise
occur.
In practice, this is how practically every compiler I have seen interprets volatile. Declare a variable as volatile and the compiler will not attempt to optimize accesses to it in any way.
Most of the time, modern compilers are pretty good about judging whether or not a variable can be safely cached or not. If you find that your particular compiler is optimizing away something that it shouldn't, then adding a volatile keyword might be appropriate. Be aware, though, that this can limit the amount of optimization that the compiler can do on the rest of the code in the function that uses the volatile variable. Some compilers are better about this than others; one embedded C compiler I used would turn off all optimizations for a function that accesses a volatile, but others like gcc seem to be able to still perform some limited optimizations.
Accessing the variable through an accessor function should prevent the function from caching the value. Even if the function is auto-inlined, each call to the function should re-call the function and re-fetch a new value. I have never seen a compiler that would auto-inline the accessor function and then optimize away the data re-fetch. I'm not saying it can't happen (since this is implementation-dependent behavior), but I wouldn't write any code that expects that to happen. Your second example is essentially placing a wrapper API around the variable, and libraries do this without using volatile all the time.
All in all, the treatment of volatile objects in C is implementation-dependent. There is nothing "guaranteed" about them according to the ANSI C89 spec.
Your code is sharing the volatile object between a thread and an interrupt routine. No compiler implementation (that I have ever seen) gives volatile enough power to be sufficient for handling parallel access. You should use some sort of locking mechanism to guarantee that the two threads (in your first example) don't step on each other's toes (even though one is an interrupt handler, you can still have parallel access on a multi-CPU or multi-core system).
Edit: I didn't read the code very closely and so I thought this was a question about thread synchronization, for which volatile should never be used, however this usage looks like it might be OK (Depending on how else the variable in question is used, and if the interrupt is always running such that it's view of memory is (cache-)coherent with the one that the thread sees. In the case of 'can you remove the volatile qualifier if you wrap it in a function call?' the accepted answer is correct, you cannot. I'm going to leave my original answer because it's important for people reading this question to know that volatile is almost useless outside of certain very special cases.
More Edit: Your RTOS use case may require additional protection above and beyond volatile, you may need to use memory barriers in some cases or make them atomic... I can't really tell you for sure, it's just something you need to be careful of (I'd suggest looking at the Linux kernel documentation link I have below though, Linux doesn't use volatile for that kind of thing, very probably with a good reason). Part of when you do and do not need volatile depends very strongly on the memory model of the CPU you're running on, and often volatile is not good enough.
volatile is the WRONG way to do this, it does NOT guarantee that this code will work, it wasn't meant for this kind of use.
volatile was intended for reading/writing to memory mapped device registers, and as such it is sufficient for that purpose, however it DOES NOT help when you're talking about stuff going between threads. (In particular the compiler is still aloud to re-order some reads and writes, as is the CPU while it's executing (this one's REALLY important since volatile doesn't tell the CPU to do anything special (sometimes it means bypass cache, but that's compiler/CPU dependent))
see http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2016.html, Intel developer article, CERT, Linux kernel documentation
Short version of those articles, volatile used the way you want to is both BAD and WRONG. Bad because it will make your code slower, wrong because it doesn't actually do what you want.
In practice, on x86 your code will function correctly with or without volatile, however it will be non-portable.
EDIT: Note to self actually read the code... this is the sort of thing volatile is meant to do.
On the heels of a specific problem, a self-answer and comments to it, I'd like to understand if it is a proper solution, workaround/hack or just plain wrong.
Specifically, I rewrote code:
T x = ...;
if (*reinterpret_cast <int*> (&x) == 0)
...
As:
T x = ...;
if (*reinterpret_cast <volatile int*> (&x) == 0)
...
with a volatile qualifier to the pointer.
Let's just assume that treating T as int in my situation makes sense. Does this accessing through a volatile reference solve pointer aliasing problem?
For a reference, from specification:
[ Note: volatile is a hint to the implementation to avoid aggressive
optimization involving the object because the value of the object might
be changed by means undetectable by an implementation. See 1.9 for
detailed semantics. In general, the semantics of volatile are intended
to be the same in C++ as they are in C. — end note ]
EDIT:
The above code did solve my problem at least on GCC 4.5.
Volatile can't help you avoid undefined behaviour here. So, if it works for you with GCC it's luck.
Let's assume T is a POD. Then, the proper way to do this is
T x = …;
int i;
memcpy(&i,&x,sizeof i);
if (i==0)
…
There! No strict aliasing problem and no memory alignment problem. GCC even handles memcpy as an intrinsic function (no function call is inserted in this case).
Volatile can't help you avoid undefined behaviour here.
Well, anything regarding volatile is somewhat unclear in the standard. I mostly agreed with your answer, but now I would like to slightly disagree.
In order to understand what volatile means, the standard is not clear for most people, notably some compiler writers. It is better to think:
when using volatile (and only when), C/C++ is pretty much high level assembly.
When writing to a volatile lvalue, the compiler will issue a STORE, or multiple STORE if one is not enough (volatile does not imply atomic).
When writing to a volatile lvalue, the compiler will issue a LOAD, or multiple LOAD if one is not enough.
Of course, where there is no explicit LOAD or STORE, the compiler will just issue instructions which imply a LOAD or STORE.
sellibitze gave the best solution: use memcpy for bit reinterpretations.
But if all accesses to a memory region are done with volatile lvalues, it is perfectly clear that the strict aliasing rules do not apply. This is the answer to your question.