What does "BUS_ADRALN - Invalid address alignment" error means? - c++

We are on HPUX and my code is in C++.
We are getting
BUS_ADRALN - Invalid address alignment
in our executable on a function call. What does this error means?
Same function is working many times then suddenly its giving core dump.
in GDB when I try to print the object values it says not in context.
Any clue where to check?

You are having a data alignment problem. This is likely caused by trying to read or write through a bad pointer of some kind.
A data alignment problem is when the address a pointer is pointing at isn't 'aligned' properly. For example, some architectures (the old Cray 2 for example) require that any attempt to read anything other than a single character from memory only occur through a pointer in which the last 3 bits of the pointer's value are 0. If any of the last 3 bits are 1, the hardware will generate an alignment fault which will result in the kind of problem you're seeing.
Most architectures are not nearly so strict, and frequently the required alignment depends on the exact type being accessed. For example, a 32 bit integer might require only the last 2 bits of the pointer to be 0, but a 64 bit float might require the last 3 bits to be 0.
Alignment problems are usually caused by the same kinds of problems that would cause a SEGFAULT or segmentation fault. Usually a pointer that isn't initialized. But it could be caused by a bad memory allocator that isn't returning pointers with the proper alignment, or by the result of pointer arithmetic on the pointer when it isn't of the correct type.
The system implementation of malloc and/or operator new are almost certainly correct or your program would be crashing way before it currently does. So I think the bad memory allocator is the least likely tree to go barking up. I would check first for an uninitialized pointer and then bad pointer arithmetic.
As a side note, the x86 and x86_64 architectures don't have any alignment requirements. But, because of how cache lines work, and for various other reasons, it's often a good idea for performance to align your data on a boundary that's as big as the datatype being stored (i.e. a 4 byte boundary for a 32 bit int).

Most processors (not x86 and friends.. the blacksheep of the family lol) require accesses to certain elements to be aligned on multiples of bytes. I.e. if you read an integer from address 0x04 that is okay, but if you try to do the same from 0x03 you will cause an interrupt to be thrown.
This is because it's easier to implement the load/store hardware if it's always on a multiple of the data size with which you're working.
Since HP-UX runs only on RISC processors, which typically have such constraints, you should see here -> http://en.wikipedia.org/wiki/Data_structure_alignment#RISC.

Actually HP-UX has its own great forum on ITRC and some HP staff members are very helpful. I just took a look at the same topic you are asking and here are some results. For example the similar problem was caused actually by a bad input parameter. I strongly advise you first to read answers to similar question and if necessary to post your question there.
By the way it is likely that you will be asked to post results of these gdb commands:
(gdb) bt
(gdb) info reg
(gdb) disas $pc-16*8 $pc+16*4

Most of these issues are caused by multiple upstream dependencies linking to different versions of the same library.
For example, both the gnustl and stlport provide distinct implementations of the C++ standard library. If you compile and link against gnustl, while one of your dependencies was compiled and linked against stlport, then you will each have a different implementation of standard functions and classes. When your program is launched, the dynamic linker will attempt to resolve all of the exported symbols, and will discover known symbols at incorrect offsets, resulting in the BUS_ADRALN signal.

Related

C++ Question about memory pretty basic but this is confusing me

Not really too c++ related I guess but say I have a signed int
int a =50;
This sets aside like 32 bits memory for this right it'll get some bit patternand a memory address, now my question is basically well we created this variable but the computer ITSELF doesn't know what the type is it just sees some bit pattern and memory address it doesn't know this is an int, but my question is how? Does the computer know that those 4 bytes are all connected to a? And also how does the computer not know the type? It set aside 4 bytes for one variable I get that that doesn't automatically make it an int but does the computer really know nothing? The value was 50 the number and that gets turned into binary and stored in the bit pattern how does the computer know nothing
Type information is used by the compiler. It knows the size in bytes of each type and will create an executable that at runtime will correctly access memory for each variable.
C++ is a compiled language and is not run directly by the computer. The computer itself runs machine code. Since machine code is all binary, we will often look at what is called assembly language. This language uses human readable symbols to represent the machine code but also corresponds to it on a line by line basis
When the compiler sees int a = 50; It might (depending on architecture and compiler)
mov r1 #50 // move the literal 50 into the register r1
Registers are placeholders in the CPU that the cpu can use to manipulate memory. In the above statement the compiler will remember that whenever it wants to translate a statement that uses a into machine code, it needs to fetch the value from r1
In the above case, the computer decided to map a to a register, it may well use memory instead.
The type itself is not translated into machine code, it is rather used as a hint as to what types of assembly operations subsequence c++ statements will be translated into. The CPU itself does not understand types. Size is used when loading and storing values from memory to registers. With a char type one 1 byte is read, with a short 2 and an int, typically 4.
When it comes to signedness, the cpu has different instructions for signed and unsigned comparisons.
Lastly float either have to simulated using integer maths or special floating point assembler instructions need to be used.
So once translated into assembler, there is no easy way to know what the original C++ code was.

size of pointers and architecture

By conducting a basic test by running a simple C++ program on a normal desktop PC it seems plausible to suppose that sizes of pointers of any type (including pointers to functions) are equal to the target architecture bits ?
For example: in 32 bits architectures -> 4 bytes and in 64 bits architectures -> 8 bytes.
However I remember reading that, it is not like that in general!
So I was wondering what would be such circumstances?
For equality of size of pointers to data types compared with size of pointers
to other data types
For equality of size of pointers to data types compared with size of pointers
to functions
For equality of size of pointers to target architecture
No, it is not reasonable to assume. Making this assumption can cause bugs.
The sizes of pointers (and of integer types) in C or C++ are ultimately determined by the C or C++ implementation. Normal C or C++ implementations are heavily influenced by the architectures and the operating systems they target, but they may choose the sizes of their types for reasons other than execution speed, such as goals of supporting lower memory use (smaller pointers means less memory used in programs with lots of pointers), supporting code that was not written to be fully portable to any type sizes, or supporting easier use of big integers.
I have seen a compiler targeted for a 64-bit system but providing 32-bit pointers, for the purpose of building programs with smaller memory use. (It had been observed that the sizes of pointers were a considerable factor in memory consumption, due to the use of many structures with many connections and references using pointers.) Source code written with the assumption that the pointer size equalled the 64-bit register size would break.
It is reasonable to assume that in general sizes of pointers of any type (including pointers to functions) are equal to the target architecture bits?
Depends. If you're aiming for a quick estimate of memory consumption it can be good enough. But not if your programs correctness depends on it.
(including pointers to functions)
But here is one important remark. Although most pointers will have the same size, function pointers may differ. It is not guaranteed that a void* will be able to hold a function pointer. At least, this is true for C. I don't know about C++.
So I was wondering what would be such circumstances if any?
It can be tons of reasons why it differs. If your programs correctness depends on this size it is NEVER ok to do such an assumption. Check it up instead. It shouldn't be hard at all.
You can use this macro to check such things at compile time in C:
#include <assert.h>
static_assert(sizeof(void*) == 4, "Pointers are assumed to be exactly 4 bytes");
When compiling, this gives an error message:
$ gcc main.c
In file included from main.c:1:
main.c:2:1: error: static assertion failed: "Pointers are assumed to be exactly 4 bytes"
static_assert(sizeof(void*) == 4, "Pointers are assumed to be exactly 4 bytes");
^~~~~~~~~~~~~
If you're using C++, you can skip #include <assert.h> because static_assert is a keyword in C++. (And you can use the keyword _Static_assert in C, but it looks ugly, so use the include and the macro instead.)
Since these two lines are so extremely easy to include in your code, there's NO excuse not to do so if your program would not work correctly with the wrong pointer size.
It is reasonable to assume that in general sizes of pointers of any type (including pointers to functions) are equal to the target architecture bits?
It might be reasonable, but it isn't reliably correct. So I guess the answer is "no, except when you already know the answer is yes (and aren't worried about portability)".
Potentially:
systems can have different register sizes, and use different underlying widths for data and addressing: it's not apparent what "target architecture bits" even means for such a system, so you have to choose a specific ABI (and once you've done that you know the answer, for that ABI).
systems may support different pointer models, such as the old near, far and huge pointers; in that case you need to know what mode your code is being compiled in (and then you know the answer, for that mode)
systems may support different pointer sizes, such as the X32 ABI already mentioned, or either of the other popular 64-bit data models described here
Finally, there's no obvious benefit to this assumption, since you can just use sizeof(T) directly for whatever T you're interested in.
If you want to convert between integers and pointers, use intptr_t. If you want to store integers and pointers in the same space, just use a union.
Target architecture "bits" says about registers size. Ex. Intel 8051 is 8-bit and operates on 8-bit registers, but (external)RAM and (external)ROM is accessed with 16-bit values.
For correctness, you cannot assume anything. You have to check and be prepared to deal with weird situations.
As a general rule of thumb, it is a reasonable default assumption.
It's not universally true though. See the X32 ABI, for example, which uses 32bit pointers on 64bit architectures to save a bit of memory and cache footprint. Same for the ILP32 ABI on AArch64.
So, for guesstimating memory use, you can use your assumption and it will often be right.
It is reasonable to assume that in general sizes of pointers of any type (including pointers to functions) are equal to the target architecture bits?
If you look at all types of CPUs (including microcontrollers) currently being produced, I would say no.
Extreme counterexamples would be architectures where two different pointer sizes are used in the same program:
x86, 16-bit
In MS-DOS and 16-bit Windows, a "normal" program used both 16- and 32-bit pointers.
x86, 32-bit segmented
There were only a few, less known operating systems using this memory model.
Programs typically used both 32- and 48-bit pointers.
STM8A
This modern automotive 8-bit CPU uses 16- and 24-bit pointers. Both in the same program, of course.
AVR tiny series
RAM is addressed using 8-bit pointers, Flash is addressed using 16-bit pointers.
(However, AVR tiny cannot be programmed with C++, as far as I know.)
It's not correct, for example DOS pointers (16 bit) can be far (seg+ofs).
However, for the usual targets (Windows, OSX, Linux, Android, iOS) then it's correct. Because they all use the flat programming model which relies on paging.
In theory, you can also have systems which uses only the lower 32 bits when in x64. An example is a Windows executable linked without LARGEADDRESSAWARE. However this is to help the programmer avoid bugs when switching to x64. The pointers are truncated to 32 bits, but they are still 64 bit.
In x64 operating systems then this assumption is always true, because the flat mode is the only valid one. Long mode in CPU forces GDT entries to be 64 bit flat.
One also mentions a x32 ABI, I believe it is based on the same paging technology, forcing all pointers to be mapped to the lower 4gb. However this must be based to the same theory as in Windows. In x64 you can only have flat mode.
In 32 bit protected mode you could have pointers up to 48 bits. (Segmented mode). You can also have callgates. But, no operating system uses that mode.
Historically, on microcomputers and microcontrollers, pointers were often wider than general-purpose registers so that the CPU could address enough memory and still fit within the transistor budget. Most 8-bit CPUs (such as the 8080, Z80 or 6502) had 16-bit addresses.
Today, a mismatch is more likely to be because an app doesn’t need multiple gigabytes of data, so saving four bytes of memory on every pointer is a win.
Both C and C++ provide separate size_t, uintptr_t and off_t types, representing the largest possible object size (which might be smaller than the size of a pointer if the memory model is not flat), an integral type wide enough to hold a pointer, and a file offset (often wider than the largest object allowed in memory), respectively. A size_t (unsigned) or ptrdiff_t (signed) is the most portable way to get the native word size. Additionally, POSIX guarantees that the system compiler has some flag that means a long can hold any of these, but you cannot always assume so.
Generally pointers will be size 2 on a 16-bit system, 3 on a 24-bit system, 4 on a 32-bit system, and 8 on a 64-bit system. It depends on the ABI and C implementation. AMD has long and legacy modes, and there are differences between AMD64 and Intel64 for Assembly language programmers but these are hidden for higher level languages.
Any problems with C/C++ code is likely to be due to poor programming practices and ignoring compiler warnings. See: "20 issues of porting C++ code to the 64-bit platform".
See also: "Can pointers be of different sizes?" and LRiO's answer:
... you are asking about C++ and its compliant implementations, not some specific physical machine. I'd have to quote the entire standard in order to prove it, but the simple fact is that it makes no guarantees on the result of sizeof(T*) for any T, and (as a corollary) no guarantees that sizeof(T1*) == sizeof(T2*) for any T1 and T2).
Note: Where is answered by JeremyP, C99 section 6.3.2.3, subsection 8:
A pointer to a function of one type may be converted to a pointer to a function of another type and back again; the result shall compare equal to the original pointer. If a converted pointer is used to call a function whose type is not compatible with the pointed-to type, the behavior is undefined.
In GCC you can avoid incorrect assumptions by using built-in functions: "Object Size Checking Built-in Functions":
Built-in Function: size_t __builtin_object_size (const void * ptr, int type)
is a built-in construct that returns a constant number of bytes from ptr to the end of the object ptr pointer points to (if known at compile time). To determine the sizes of dynamically allocated objects the function relies on the allocation functions called to obtain the storage to be declared with the alloc_size attribute (see Common Function Attributes). __builtin_object_size never evaluates its arguments for side effects. If there are any side effects in them, it returns (size_t) -1 for type 0 or 1 and (size_t) 0 for type 2 or 3. If there are multiple objects ptr can point to and all of them are known at compile time, the returned number is the maximum of remaining byte counts in those objects if type & 2 is 0 and minimum if nonzero. If it is not possible to determine which objects ptr points to at compile time, __builtin_object_size should return (size_t) -1 for type 0 or 1 and (size_t) 0 for type 2 or 3.

Access voilation reading location

I am trying to debugg the project on MSVS 2010.
Implementation - c++; when i am degubbing the source code, i get the following failure reported by MSVS.
Failure reported:
"First chance exception at 0x00000013fb5b9ee in unit.exe: 0xc00000005 access voilation reading location 0x00000000000000c."
the problem lies in obtaining address.
int base = (*(abc::g_runc1.m_paulsenderpin.m_lastchunk_p)).xcpp::cxcppoutput::m_baseaddress;
my project is very big to include the source code,
In short it can be described as:
- paul is a module with sender pin connected to c1.
- xcpp is the interface
this source code and the project is correct and works without failure on ARM compiler, but on MSVS it gives access violation error.
On msdn there are some posts about permission set by assembly, and which avoids to read the addressed location. if so, how to change it... ?
or is there any better option to find the problem...?
Any help is appreciated.
Your code is trying to access location that actually isn't owned by it's process. No data of user applications can be located at addresses so close to zero. As your expressions is too long to simply find where is the member containing zero reference, my tip is m_last chunk_p, and the m_baseaddress seems to be member at offset 12.
There is one simple explanation why does your code work fine when it's compiled by something that works with ARM: ARM uses aligned memory access, so class and structure members are aligned to full blocks, although they don't always use whole space allocated for them. Therefore you use bigger pointer or wrong memset parameters somewhere in your code and your pointer gets overwritten.
Problem may also disappear when you compile it with another version of (possibly another) compiler (or non machine with different processor architecture 32/64), as the size of fundamental types isn't always the same.
You should try to check what pointed is actually zero (or possibly 12) in your expression and try to set a watch on it. Be sure you use sizeof properly everywhere.
The Problem lies with the memory addressing, in ARM debugger 32 bits and MSVS10 48 bits of addressing, because of it the MSB byte is lost and so cannot find the correct memory address...!!!

On Linux, in C/C++, will a pointer ever have the MSB set?

I want to use a long integer that will be interpreted as a number when the MSB is set otherwise it will be interpreted as a pointer. So would this work or would I run into problems in either C or C++?
This is on a 64-bit system.
Edited for clarity and a better description.
On x86-64, you WILL have a pointer that is over 47 bits in address have the 63rd bit set, since all the bits above "max number of bits supported by the architecture" (which is currently 48) must all have the same value as the most significant bit of the value itself. (That is any address above 0007 FFFF FFFF FFFF will be FFF8 0000 0000 0000 - everything in between is "invalid" as a pointer)
That may well be addresses ONLY used by the kernel, but I'm not sure it's guaranteed to be.
However, I would try to avoid using tricks like this - it's likely to come back and haunt you at some point.
People have tried tricks like this before.
It never works out well in the long run.
Simply don't do it.
Edit: better link - see reference to 'bit31', which was previously never returned as set. Once it could be set (over 2 gigs of RAM, gasp!) it would break naughty programs and therefore programs needed to opt into this option once this much memory became the norm as people had used trickery like this (amongst other things). And now my lovely, short and to the point answer has become too long :-)
So would this work or would I run into problems in either C or C++?
Do you have 64 bits? Do you want your code to be portable to 32 bit systems? long does not necessarily have 64 bits. Big-endian v. little-endian? (Do you know which your system is?)
Plus, hopeless confusion. Please just use an extra variable to store this information or you will have many many bugs surrounding this.
It depends on the architecture. x86_64 architecture, for example, is currently using 48-bit addressing. It means that you could use 16 bits for your own needs (a trick that sometimes referred to as "pointer packing"). However, even the x86_64 architecture definition allows this limit to be raised in future implementations to the full 64 bits. If that happens, you may run into a situation where a lot of your code might need to be changed. So if you really must go that way, make sure your pointer packing is kept in one place that is easy to change in the future. For other architectures you have to check for yourself.
Unless you really need the space, or you're keeping alot of these things around, I would just use a plain union, and add a tag field. If you're going to go down that route, make sure that your memory is aligned to fit your needs.
Take a look at boost::lockfree::detail::tagged_ptr from boost.lockfree
This is a class that was introduced in latest 1_53 boost. It stores pointer and additional 16 bites in 64 bites variable.
Don't do such tricks. If you need to distinguish integers from pointers inside some container, consider using separate bit set to indicate such flag. In C++ std::bitset could be good enough.
Reasons:
Actually nobody guarantees pointers are long unsigned or long long unsigned. If you need
to store them, always apply sizeof() and void * type (if you need
to remove information about pointed object).
Even on one system addresses are highly dependent on architecture.
Kernel modules could seriously change mapping logics for process so you never know what addresses you will need.
Remember that the virtual address returned to your program does may necessarily line up to the actual physical address in memory. Infact, unless you are directly manipulating pretty special memory [e.g. some forms of graphics memory] then this is absolutely the case.
In this case, its the maximum value of the MMU which defines the values of the pointers your program sees. In which case, for x64 I'm pretty sure its (currently) 48bits, but as Mats specifies above once you've got the top bit set in the 48, you get the 63'd bit says aswell.
So taking his answer and mine - its entirely possible to get a pointer with the 47th bit set even with a small amount of RAM, and once you do you get the 63rd bit set.
If the "64-bit system" in question is x86_64, then yes, it will work.

How to write convertible code, 32 bit/64 bit?

A c++ specific question. So i read a question about what makes a program 32 bit/64 bit, and the anwser it got was something like this (sorry i cant find the question, was somedays ago i looked at it and i cant find it again:( ): As long as you dont make any "pointer assumptions", you only need to recompile it. So my question is, what are pointer assumtions ? To my understanding there is 32 bit pointer and 64 bit pointers so i figure it is something to do with that . Please show the diffrence in code between them. Any other good habits to keep in mind while writing code, that helps it making it easy to convert between the to are also welcome :) tho please share examples with them
Ps. I know there is this post:
How do you write code that is both 32 bit and 64 bit compatible?
but i tougth it was kind of to generall with no good examples, for new programmers like myself. Like what is a 32 bit storage unit ect. Kinda hopping to break it down a bit more (no pun intended ^^ ) ds.
In general it means that your program behavior should never depend on the sizeof() of any types (that are not made to be of some exact size), neither explicitly nor implicitly (this includes possible struct alignments as well).
Pointers are just a subset of them, and it probably also means that you should not try to rely on being able to convert between unrelated pointer types and/or integers, unless they are specifically made for this (e.g. intptr_t).
In the same way you need to take care of things written to disk, where you should also never rely on the size of e.g. built in types, being the same everywhere.
Whenever you have to (because of e.g. external data formats) use explicitly sized types like uint32_t.
For a well-formed program (that is, a program written according to syntax and semantic rules of C++ with no undefined behaviour), the C++ standard guarantees that your program will have one of a set of observable behaviours. The observable behaviours vary due to unspecified behaviour (including implementation-defined behaviour) within your program. If you avoid unspecified behaviour or resolve it, your program will be guaranteed to have a specific and certain output. If you write your program in this way, you will witness no differences between your program on a 32-bit or 64-bit machine.
A simple (forced) example of a program that will have different possible outputs is as follows:
int main()
{
std::cout << sizeof(void*) << std::endl;
return 0;
}
This program will likely have different output on 32- and 64-bit machines (but not necessarily). The result of sizeof(void*) is implementation-defined. However, it is certainly possible to have a program that contains implementation-defined behaviour but is resolved to be well-defined:
int main()
{
int size = sizeof(void*);
if (size != 4) {
size = 4;
}
std::cout << size << std::endl;
return 0;
}
This program will always print out 4, despite the fact it uses implementation-defined behaviour. This is a silly example because we could have just done int size = 4;, but there are cases when this does appear in writing platform-independent code.
So the rule for writing portable code is: aim to avoid or resolve unspecified behaviour.
Here are some tips for avoiding unspecified behaviour:
Do not assume anything about the size of the fundamental types beyond that which the C++ standard specifies. That is, a char is at least 8 bit, both short and int are at least 16 bits, and so on.
Don't try to do pointer magic (casting between pointer types or storing pointers in integral types).
Don't use a unsigned char* to read the value representation of a non-char object (for serialisation or related tasks).
Avoid reinterpret_cast.
Be careful when performing operations that may over or underflow. Think carefully when doing bit-shift operations.
Be careful when doing arithmetic on pointer types.
Don't use void*.
There are many more occurrences of unspecified or undefined behaviour in the standard. It's well worth looking them up. There are some great articles online that cover some of the more common differences that you'll experience between 32- and 64-bit platforms.
"Pointer assumptions" is when you write code that relies on pointers fitting in other data types, e.g. int copy_of_pointer = ptr; - if int is a 32-bit type, then this code will break on 64-bit machines, because only part of the pointer will be stored.
So long as pointers are only stored in pointer types, it should be no problem at all.
Typically, pointers are the size of the "machine word", so on a 32-bit architecture, 32 bits, and on a 64-bit architecture, all pointers are 64-bit. However, there are SOME architectures where this is not true. I have never worked on such machines myself [other than x86 with it's "far" and "near" pointers - but lets ignore that for now].
Most compilers will tell you when you convert pointers to integers that the pointer doesn't fit into, so if you enable warnings, MOST of the problems will become apparent - fix the warnings, and chances are pretty decent that your code will work straight away.
There will be no difference between 32bit code and 64bit code, the goal of C/C++ and other programming languages are their portability, instead of the assembly language.
The only difference will be the distrib you'll compile your code on, all the work is automatically done by your compiler/linker, so just don't think about that.
But: if you are programming on a 64bit distrib, and you need to use an external library for example SDL, the external library will have to also be compiled in 64bit if you want your code to compile.
One thing to know is that your ELF file will be bigger on a 64bit distrib than on a 32bit one, it's just logic.
What's the point with pointer? when you increment/change a pointer, the compiler will increment your pointer from the size of the pointing type.
The contained type size is defined by your processor's register size/the distrib your working on.
But you just don't have to care about this, the compilation will do everything for you.
Sum: That's why you can't execute a 64bit ELF file on a 32bit distrib.
Typical pitfalls for 32bit/64bit porting are:
The implicit assumption by the programmer that sizeof(void*) == 4 * sizeof(char).
If you're making this assumption and e.g. allocate arrays that way ("I need 20 pointers so I allocate 80 bytes"), your code breaks on 64bit because it'll cause buffer overruns.
The "kitten-killer" , int x = (int)&something; (and the reverse, void* ptr = (void*)some_int). Again an assumption of sizeof(int) == sizeof(void*). This doesn't cause overflows but looses data - the higher 32bit of the pointer, namely.
Both of these issues are of a class called type aliasing (assuming identity / interchangability / equivalence on a binary representation level between two types), and such assumptions are common; like on UN*X, assuming time_t, size_t, off_t being int, or on Windows, HANDLE, void* and long being interchangeable, etc...
Assumptions about data structure / stack space usage (See 5. below as well). In C/C++ code, local variables are allocated on the stack, and the space used there is different between 32bit and 64bit mode due to the point below, and due to the different rules for passing arguments (32bit x86 usually on the stack, 64bit x86 in part in registers). Code that just about gets away with the default stacksize on 32bit might cause stack overflow crashes on 64bit.
This is relatively easy to spot as a cause of the crash but depending on the configurability of the application possibly hard to fix.
Timing differences between 32bit and 64bit code (due to different code sizes / cache footprints, or different memory access characteristics / patterns, or different calling conventions ) might break "calibrations". Say, for (int i = 0; i < 1000000; ++i) sleep(0); is likely going to have different timings for 32bit and 64bit ...
Finally, the ABI (Application Binary Interface). There's usually bigger differences between 64bit and 32bit environments than the size of pointers...
Currently, two main "branches" of 64bit environments exist, IL32P64 (what Win64 uses - int and long are int32_t, only uintptr_t/void* is uint64_t, talking in terms of the sized integers from ) and LP64 (what UN*X uses - int is int32_t, long is int64_t and uintptr_t/void* is uint64_t), but there's the "subdivisions" of different alignment rules as well - some environments assume long, float or double align at their respective sizes, while others assume they align at multiples of four bytes. In 32bit Linux, they align all at four bytes, while in 64bit Linux, float aligns at four, long and double at eight-byte multiples.
The consequence of these rules is that in many cases, bith sizeof(struct { ...}) and the offset of structure/class members are different between 32bit and 64bit environments even if the data type declaration is completely identical.
Beyond impacting array/vector allocations, these issues also affect data in/output e.g. through files - if a 32bit app writes e.g. struct { char a; int b; char c, long d; double e } to a file that the same app recompiled for 64bit reads in, the result will not be quite what's hoped for.
The examples just given are only about language primitives (char, int, long etc.) but of course affect all sorts of platform-dependent / runtime library data types, whether size_t, off_t, time_t, HANDLE, essentially any nontrivial struct/union/class ... - so the space for error here is large,
And then there's the lower-level differences, which come into play e.g. for hand-optimized assembly (SSE/SSE2/...); 32bit and 64bit have different (numbers of) registers, different argument passing rules; all of this affects strongly how such optimizations perform and it's very likely that e.g. SSE2 code which gives best performance in 32bit mode will need to be rewritten / needs to be enhanced to give best performance 64bit mode.
There's also code design constraints which are very different for 32bit and 64bit, particularly around memory allocation / management; an application that's been carefully coded to "maximize the hell out of the mem it can get in 32bit" will have complex logic on how / when to allocate/free memory, memory-mapped file usage, internal caching, etc - much of which will be detrimental in 64bit where you could "simply" take advantage of the huge available address space. Such an app might recompile for 64bit just fine, but perform worse there than some "ancient simple deprecated version" which didn't have all the maximize-32bit peephole optimizations.
So, ultimately, it's also about enhancements / gains, and that's where more work, partly in programming, partly in design/requirements comes in. Even if your app cleanly recompiles both on 32bit and 64bit environments and is verified on both, is it actually benefitting from 64bit ? Are there changes that can/should be done to the code logic to make it do more / run faster in 64bit ? Can you do those changes without breaking 32bit backward compatibility ? Without negative impacts on the 32bit target ? Where will the enhancements be, and how much can you gain ?
For a large commercial project, answers to these questions are often important markers on the roadmap because your starting point is some existing "money maker"...