Manipulating data in Memory instead of file - c++

consider the function below:
int Func(char* filename);
int Func(FILE* filepointer);
these two do the same, reads alot of data from the given file (by name or pointer), analyze he result, and returns it.
I wanna call this function with lots of different data. Therefore I should write data into file, then pass the new filename to Func. but data is huge and reading and writing in hard is very slow. actually the analyze time is much less than I/O.
can I get rid of save/load data all the time by any means?
for example by making a FILE* pointer which points somewhere in Memory?
Update: obviously I don't have the source code of Func! It's a DLL call.

You could use memory-mapped file technique or something like boost::iostreams with custom memory sinks / sources.
Actually, the second variant is a lot more flexible, but sometimes all that flexi- and versatibility is simply not needed.

In many operating systems you can use an in-memory filesystem such as tmpfs -- and in Windows "temporary files" (opened with the appropriate flags, then rewound rather than closed) behave similarly (i.e., can stay in memory).
However, there isn't all that much to be gained there compared to writing (with lots of buffering) and reading (ditto) sequentially from an un-fragmented disk, for large files -- tmpfs's performance advantages are mostly for small files. If your performance is very bad, either the disk is horribly fragmented, or (perhaps more likely these days of self-adjusting filesystems) you're not using buffering appropriately (possibly just not buffering enough). (of course, both factors could be in play). Modern devices and filesystems can have awesome performance when just streaming huge buffers to and from memory, after all.
For a given amount of RAM devoted to buffering, you can get better performance (for what from app level look like huge numbers of tiny writes and reads) if that RAM is in userland in your app's address space (rather than under kernel control e.g. in a tmpfs), simply because you'll need fewer context switches -- and switches from user to kernel mode and back tend to dominate runtime when the only other ops performed are copies of small amounts of memory back and forth. When you use very large buffers in your app's stdio library, your "I/O" amounts to userland memory-memory copies within your address space with very rare "streaming" ops that actually transfers those buffers back and forth.

Related

Do memory mapped files provide advantage for large buffers?

My program works with large data sets that need to be stored in contiguous memory (several Gigabytes). Allocating memory using std::allocator (i.e. malloc or new) causes system stalls as large portions of virtual memory are reserved and physical memory gets filled up.
Since the program will mostly only work on small portions at a time, my question is if using memory mapped files would provide an advantage (i.e. mmap or the Windows equivalent.) That is creating a large sparse temporary file and mapping it to virtual memory. Or is there another technique that would change the system's pagination strategy such that less pages are loaded into physical memory at a time.
I'm trying to avoid building a streaming mechanism that loads portions of a file at a time and instead rely on the system's vm pagination.
Yes, mmap has the potential to speed things up.
Things to consider:
Remember the VMM will page things in and out in page size blocked (4k on Linux)
If your memory access is well localised over time, this will work well. But if you do random access over your entire file, you will end up with a lot of seeking and thrashing (still). So, consider whether your 'small portions' correspond with localised bits of the file.
For large allocations, malloc and free will use mmap with MAP_ANON anyway. So the difference in memory mapping a file is simply that you are getting the VMM to do the I/O for you.
Consider using madvise with mmap to assist the VMM in paging well.
When you use open and read (plus, as erenon suggests, posix_fadvise), your file is still held in buffers anyway (i.e. it's not immediately written out) unless you also use O_DIRECT. So in both situations, you are relying on the kernel for I/O scheduling.
If the data is already in a file, it would speed up things, especially in the non-sequential case. (In the sequential case, read wins)
If using open and read, consider using posix_fadvise as well.
This really depends on your mmap() implementation. Mapping a file into memory has several advantages that can be exploited by the kernel:
The kernel knows that the contents of the mmap() pages is already present on disk. If it decides to evict these pages, it can omit the write back.
You reduce copying operations: read() operations typically first read the data into kernel memory, then copy it over to user space.
The reduced copies also mean that less memory is used to store data from the file, which means more memory is available for other uses, which can reduce paging as well.
This is also, why it is generally a bad idea to use large caches within an I/O library: Modern kernels already cache everything they ever read from disk, caching a copy in user space means that the amount of data that can be cached is actually reduced.
Of course, you also avoid a lot of headaches that result from buffering data of unknown size in your application. But that is just a convenience for you as a programmer.
However, even though the kernel can exploit these properties, it does not necessarily do so. My experience is that LINUX mmap() is generally fine; on AIX, however, I have witnessed really bad mmap() performance. So, if your goal is performance, it's the old measure-compare-decide stand by.

Why is reading from a memory mapped file so fast?

I don't have much experience with memory mapped i/o, but after using them for the first time I'm stunned at how fast they are. In my performance tests, I'm seeing that reading from memory mapped files is 30X faster than reading through regular c++ stdio.
My test data is a 3GB binary file, it contains 20 large double precision floating point arrays. The way my test program is structured, I call an external module's read method, which uses memory mapped i/o behind the scenes. Every time I call the read method, this external module returns a pointer and a size of the data that the pointer points to. Upon returning from this method, I call memcpy to copy the contents of the returned buffer into another array. Since I'm doing a memcpy to copy data from the memory mapped file, I expected the memory mapped reads to be not considerably faster than normal stdio, but I'm astonished that it's 30X faster.
Why is reading from a memory mapped file so fast?
PS: I use a Windows machine. I benchmarked my i/o speeds and my machine's max disk transfer rate is around 90 MiB/s
The OS kernel routines for IO, like read or write calls, are still just functions. Those functions are written to copy data to/from userspace buffer to a kernel space structure, and then to a device. When you consider that there is a user buffer, a IO library buffer (stdio buf for example), a kernel buffer, then a file, the data may potentially go through 3 copies to get between your program and the disk. The IO routines also have to be robust, and lastly, the sys calls themselves impose a latency (trapping to kernel, context switch, waking process up again).
When you memory map a file, you are skipping right through much of that, eliminating buffer copies. By effectively treating the file like a big virtual array, you enable random access without going through the syscall overhead, so you lower the latency per IO, and if the original code is inefficient (many small random IO calls) then the overhead is reduced even more drastically.
The abstraction of a virtual memory, multiprocessing OS has a price, and this is it.
You can, however, improve IO in some cases by disabling buffering in cases when you know it will hurt performance, such as large contiguous writes, but beyond that, you really cant improve on the performance of memory mapped IO without eliminating the OS altogether.

What's the best way of implementing a buffer of fixed size when using fread in C++?

Suppose that you have a file of integers and you want to read them one by one.
You have two options for buffering.
Declare an array buffer of size N and use setvbuf to tell fread which buffer to use. Then when calling the function fread to read an integer you write fread(&myInt, sizeof(myInt), 1, inputFile);
Declare the same array buffer but this time don't use the function setvbuf. Instead work on the buffering by yourself. So call fread(buffer, bufferSize*sizeof(int), 1, inputFile)
From my understanding setvbuf exists to make your life easier, but does it come at a cost? Which method would you use in terms of performance?
I would use neither of your examples. I don't think that part of the I/O is the performance bottleneck.
The vbuf is an area for the input routine to place data before putting it into your destination. It could be used as a cache or as a preformatting buffer.
Most of the time, I/O bottlenecks are related to the quantity of data fetched and the number of fetches. For example, reading one byte at a time is less efficient than reading a block of bytes.
Another I/O related bottleneck is the duration between input requests. I/O devices prefer to keep streaming data, non-stop. Some input devices, like hard drives, have an overhead time between when the request is received and when the data starts transmitting. For hard drives, this would be the disk speed up time.
Your best performance is not to waste development time messing with the C or C++ libraries. You need to use hardware assist. Some platforms have a device called a Direct Memory Access controller (DMA). This device can take data from an input source and deliver it to memory without using the CPU. The CPU can be executing instructions while the DMA is transferring data. In order to use hardware assistance, you need to write code at the OS driver level, or access the OS drivers directly.
The C and C++ I/O libraries are designed for a platform independent concept called streams. There may be execution overhead associated with this (such as extra buffering). If you don't care about different platforms, then access the OS drivers directly.
Don't waste your time messing with the C and C++ libraries. Not much performance gain there. More performance lies in accessing the OS drivers directly (or using your own). How and when you access the I/O will show bigger performance gains than tweaking the C and C++ libraries.
Lastly, using the processors data cache effectively will gain you performance too.

Speeding up file I/O: mmap() vs. read()

I have a Linux application that reads 150-200 files (4-10GB) in parallel. Each file is read in turn in small, variably sized blocks, typically less than 2K each.
I currently need to maintain over 200 MB/s read rate combined from the set of files. The disks handle this just fine. There is a projected requirement of over 1 GB/s (which is out of the disk's reach at the moment).
We have implemented two different read systems both make heavy use of posix_advise: first is a mmaped read in which we map the entirety of the data set and read on demand.
The second is a read()/seek() based system.
Both work well but only for the moderate cases, the read() method manages our overall file cache much better and can deal well with 100s of GB of files, but is badly rate limited, mmap is able to pre-cache data making the sustained data rate of over 200MB/s easy to maintain, but cannot deal with large total data set sizes.
So my question comes to these:
A: Can read() type file i/o be further optimized beyond the posix_advise calls on Linux, or having tuned the disk scheduler, VMM and posix_advise calls is that as good as we can expect?
B: Are there systematic ways for mmap to better deal with very large mapped data?
Mmap-vs-reading-blocks
is a similar problem to what I am working and provided a good starting point on this problem, along with the discussions in mmap-vs-read.
Reads back to what? What is the final destination of this data?
Since it sounds like you are completely IO bound, mmap and read should make no difference. The interesting part is in how you get the data to your receiver.
Assuming you're putting this data to a pipe, I recommend you just dump the contents of each file in its entirety into the pipe. To do this using zero-copy, try the splice system call. You might also try copying the file manually, or forking an instance of cat or some other tool that can buffer heavily with the current file as stdin, and the pipe as stdout.
if (pid = fork()) {
waitpid(pid, ...);
} else {
dup2(dest, 1);
dup2(source, 0);
execlp("cat", "cat");
}
Update0
If your processing is file-agnostic, and doesn't require random access, you want to create a pipeline using the options outlined above. Your processing step should accept data from stdin, or a pipe.
To answer your more specific questions:
A: Can read() type file i/o be further optimized beyond the posix_advise calls on Linux, or having tuned the disk scheduler, VMM and posix_advise calls is that as good as we can expect?
That's as good as it gets with regard to telling the kernel what to do from userspace. The rest is up to you: buffering, threading etc. but it's dangerous and probably unproductive guess work. I'd just go with splicing the files into a pipe.
B: Are there systematic ways for mmap to better deal with very large mapped data?
Yes. The following options may give you awesome performance benefits (and may make mmap worth using over read, with testing):
MAP_HUGETLB
Allocate the mapping using "huge pages."
This will reduce the paging overhead in the kernel, which is great if you will be mapping gigabyte sized files.
MAP_NORESERVE
Do not reserve swap space for this mapping. When swap space is reserved, one has the guarantee that it is possible to modify the mapping. When swap space is not reserved one might get SIGSEGV upon a write if no physical memory is available.
This will prevent you running out of memory while keeping your implementation simple if you don't actually have enough physical memory + swap for the entire mapping.**
MAP_POPULATE
Populate (prefault) page tables for a mapping. For a file mapping, this causes read-ahead on the file. Later accesses to the mapping will not be blocked by page faults.
This may give you speed-ups with sufficient hardware resources, and if the prefetching is ordered, and lazy. I suspect this flag is redundant, the VFS likely does this better by default.
Perhaps using the readahead system call might help, if your program can predict in advance the file fragments it wants to read (but this is only a guess, I could be wrong).
And I think you should tune your application, and perhaps even your algorithms, to read data in chunk much bigger than a few kilobytes. Can't than be half a megabyte instead?
The problem here doesn't seem to be which api is used. It doesn't matter if you use mmap() or read(), the disc still has to seek to the specified point and read the data (although the os does help to optimize the access).
mmap() has advantages over read() if you read very small chunks (a couple of bytes) because you don't have call the os for every chunk, which becomes very slow.
I would also advise like Basile did to read more than 2kb consecutively so the disc doesn't have to seek that often.

mmap() vs. reading blocks

I'm working on a program that will be processing files that could potentially be 100GB or more in size. The files contain sets of variable length records. I've got a first implementation up and running and am now looking towards improving performance, particularly at doing I/O more efficiently since the input file gets scanned many times.
Is there a rule of thumb for using mmap() versus reading in blocks via C++'s fstream library? What I'd like to do is read large blocks from disk into a buffer, process complete records from the buffer, and then read more.
The mmap() code could potentially get very messy since mmap'd blocks need to lie on page sized boundaries (my understanding) and records could potentially lie across page boundaries. With fstreams, I can just seek to the start of a record and begin reading again, since we're not limited to reading blocks that lie on page sized boundaries.
How can I decide between these two options without actually writing up a complete implementation first? Any rules of thumb (e.g., mmap() is 2x faster) or simple tests?
I was trying to find the final word on mmap / read performance on Linux and I came across a nice post (link) on the Linux kernel mailing list. It's from 2000, so there have been many improvements to IO and virtual memory in the kernel since then, but it nicely explains the reason why mmap or read might be faster or slower.
A call to mmap has more overhead than read (just like epoll has more overhead than poll, which has more overhead than read). Changing virtual memory mappings is a quite expensive operation on some processors for the same reasons that switching between different processes is expensive.
The IO system can already use the disk cache, so if you read a file, you'll hit the cache or miss it no matter what method you use.
However,
Memory maps are generally faster for random access, especially if your access patterns are sparse and unpredictable.
Memory maps allow you to keep using pages from the cache until you are done. This means that if you use a file heavily for a long period of time, then close it and reopen it, the pages will still be cached. With read, your file may have been flushed from the cache ages ago. This does not apply if you use a file and immediately discard it. (If you try to mlock pages just to keep them in cache, you are trying to outsmart the disk cache and this kind of foolery rarely helps system performance).
Reading a file directly is very simple and fast.
The discussion of mmap/read reminds me of two other performance discussions:
Some Java programmers were shocked to discover that nonblocking I/O is often slower than blocking I/O, which made perfect sense if you know that nonblocking I/O requires making more syscalls.
Some other network programmers were shocked to learn that epoll is often slower than poll, which makes perfect sense if you know that managing epoll requires making more syscalls.
Conclusion: Use memory maps if you access data randomly, keep it around for a long time, or if you know you can share it with other processes (MAP_SHARED isn't very interesting if there is no actual sharing). Read files normally if you access data sequentially or discard it after reading. And if either method makes your program less complex, do that. For many real world cases there's no sure way to show one is faster without testing your actual application and NOT a benchmark.
(Sorry for necro'ing this question, but I was looking for an answer and this question kept coming up at the top of Google results.)
There are lots of good answers here already that cover many of the salient points, so I'll just add a couple of issues I didn't see addressed directly above. That is, this answer shouldn't be considered a comprehensive of the pros and cons, but rather an addendum to other answers here.
mmap seems like magic
Taking the case where the file is already fully cached1 as the baseline2, mmap might seem pretty much like magic:
mmap only requires 1 system call to (potentially) map the entire file, after which no more system calls are needed.
mmap doesn't require a copy of the file data from kernel to user-space.
mmap allows you to access the file "as memory", including processing it with whatever advanced tricks you can do against memory, such as compiler auto-vectorization, SIMD intrinsics, prefetching, optimized in-memory parsing routines, OpenMP, etc.
In the case that the file is already in the cache, it seems impossible to beat: you just directly access the kernel page cache as memory and it can't get faster than that.
Well, it can.
mmap is not actually magic because...
mmap still does per-page work
A primary hidden cost of mmap vs read(2) (which is really the comparable OS-level syscall for reading blocks) is that with mmap you'll need to do "some work" for every 4K page accessed in a new mapping, even though it might be hidden by the page-fault mechanism.
For a example a typical implementation that just mmaps the entire file will need to fault-in so 100 GB / 4K = 25 million faults to read a 100 GB file. Now, these will be minor faults, but 25 million page faults is still not going to be super fast. The cost of a minor fault is probably in the 100s of nanos in the best case.
mmap relies heavily on TLB performance
Now, you can pass MAP_POPULATE to mmap to tell it to set up all the page tables before returning, so there should be no page faults while accessing it. Now, this has the little problem that it also reads the entire file into RAM, which is going to blow up if you try to map a 100GB file - but let's ignore that for now3. The kernel needs to do per-page work to set up these page tables (shows up as kernel time). This ends up being a major cost in the mmap approach, and it's proportional to the file size (i.e., it doesn't get relatively less important as the file size grows)4.
Finally, even in user-space accessing such a mapping isn't exactly free (compared to large memory buffers not originating from a file-based mmap) - even once the page tables are set up, each access to a new page is going to, conceptually, incur a TLB miss. Since mmaping a file means using the page cache and its 4K pages, you again incur this cost 25 million times for a 100GB file.
Now, the actual cost of these TLB misses depends heavily on at least the following aspects of your hardware: (a) how many 4K TLB enties you have and how the rest of the translation caching works performs (b) how well hardware prefetch deals with with the TLB - e.g., can prefetch trigger a page walk? (c) how fast and how parallel the page walking hardware is. On modern high-end x86 Intel processors, the page walking hardware is in general very strong: there are at least 2 parallel page walkers, a page walk can occur concurrently with continued execution, and hardware prefetching can trigger a page walk. So the TLB impact on a streaming read load is fairly low - and such a load will often perform similarly regardless of the page size. Other hardware is usually much worse, however!
read() avoids these pitfalls
The read() syscall, which is what generally underlies the "block read" type calls offered e.g., in C, C++ and other languages has one primary disadvantage that everyone is well-aware of:
Every read() call of N bytes must copy N bytes from kernel to user space.
On the other hand, it avoids most the costs above - you don't need to map in 25 million 4K pages into user space. You can usually malloc a single buffer small buffer in user space, and re-use that repeatedly for all your read calls. On the kernel side, there is almost no issue with 4K pages or TLB misses because all of RAM is usually linearly mapped using a few very large pages (e.g., 1 GB pages on x86), so the underlying pages in the page cache are covered very efficiently in kernel space.
So basically you have the following comparison to determine which is faster for a single read of a large file:
Is the extra per-page work implied by the mmap approach more costly than the per-byte work of copying file contents from kernel to user space implied by using read()?
On many systems, they are actually approximately balanced. Note that each one scales with completely different attributes of the hardware and OS stack.
In particular, the mmap approach becomes relatively faster when:
The OS has fast minor-fault handling and especially minor-fault bulking optimizations such as fault-around.
The OS has a good MAP_POPULATE implementation which can efficiently process large maps in cases where, for example, the underlying pages are contiguous in physical memory.
The hardware has strong page translation performance, such as large TLBs, fast second level TLBs, fast and parallel page-walkers, good prefetch interaction with translation and so on.
... while the read() approach becomes relatively faster when:
The read() syscall has good copy performance. E.g., good copy_to_user performance on the kernel side.
The kernel has an efficient (relative to userland) way to map memory, e.g., using only a few large pages with hardware support.
The kernel has fast syscalls and a way to keep kernel TLB entries around across syscalls.
The hardware factors above vary wildly across different platforms, even within the same family (e.g., within x86 generations and especially market segments) and definitely across architectures (e.g., ARM vs x86 vs PPC).
The OS factors keep changing as well, with various improvements on both sides causing a large jump in the relative speed for one approach or the other. A recent list includes:
Addition of fault-around, described above, which really helps the mmap case without MAP_POPULATE.
Addition of fast-path copy_to_user methods in arch/x86/lib/copy_user_64.S, e.g., using REP MOVQ when it is fast, which really help the read() case.
Update after Spectre and Meltdown
The mitigations for the Spectre and Meltdown vulnerabilities considerably increased the cost of a system call. On the systems I've measured, the cost of a "do nothing" system call (which is an estimate of the pure overhead of the system call, apart from any actual work done by the call) went from about 100 ns on a typical modern Linux system to about 700 ns. Furthermore, depending on your system, the page-table isolation fix specifically for Meltdown can have additional downstream effects apart from the direct system call cost due to the need to reload TLB entries.
All of this is a relative disadvantage for read() based methods as compared to mmap based methods, since read() methods must make one system call for each "buffer size" worth of data. You can't arbitrarily increase the buffer size to amortize this cost since using large buffers usually performs worse since you exceed the L1 size and hence are constantly suffering cache misses.
On the other hand, with mmap, you can map in a large region of memory with MAP_POPULATE and the access it efficiently, at the cost of only a single system call.
1 This more-or-less also includes the case where the file wasn't fully cached to start with, but where the OS read-ahead is good enough to make it appear so (i.e., the page is usually cached by the time you want it). This is a subtle issue though because the way read-ahead works is often quite different between mmap and read calls, and can be further adjusted by "advise" calls as described in 2.
2 ... because if the file is not cached, your behavior is going to be completely dominated by IO concerns, including how sympathetic your access pattern is to the underlying hardware - and all your effort should be in ensuring such access is as sympathetic as possible, e.g. via use of madvise or fadvise calls (and whatever application level changes you can make to improve access patterns).
3 You could get around that, for example, by sequentially mmaping in windows of a smaller size, say 100 MB.
4 In fact, it turns out the MAP_POPULATE approach is (at least one some hardware/OS combination) only slightly faster than not using it, probably because the kernel is using faultaround - so the actual number of minor faults is reduced by a factor of 16 or so.
The main performance cost is going to be disk i/o. "mmap()" is certainly quicker than istream, but the difference might not be noticeable because the disk i/o will dominate your run-times.
I tried Ben Collins's code fragment (see above/below) to test his assertion that "mmap() is way faster" and found no measurable difference. See my comments on his answer.
I would certainly not recommend separately mmap'ing each record in turn unless your "records" are huge - that would be horribly slow, requiring 2 system calls for each record and possibly losing the page out of the disk-memory cache.....
In your case I think mmap(), istream and the low-level open()/read() calls will all be about the same. I would recommend mmap() in these cases:
There is random access (not sequential) within the file, AND
the whole thing fits comfortably in memory OR there is locality-of-reference within the file so that certain pages can be mapped in and other pages mapped out. That way the operating system uses the available RAM to maximum benefit.
OR if multiple processes are reading/working on the same file, then mmap() is fantastic because the processes all share the same physical pages.
(btw - I love mmap()/MapViewOfFile()).
mmap is way faster. You might write a simple benchmark to prove it to yourself:
char data[0x1000];
std::ifstream in("file.bin");
while (in)
{
in.read(data, 0x1000);
// do something with data
}
versus:
const int file_size=something;
const int page_size=0x1000;
int off=0;
void *data;
int fd = open("filename.bin", O_RDONLY);
while (off < file_size)
{
data = mmap(NULL, page_size, PROT_READ, 0, fd, off);
// do stuff with data
munmap(data, page_size);
off += page_size;
}
Clearly, I'm leaving out details (like how to determine when you reach the end of the file in the event that your file isn't a multiple of page_size, for instance), but it really shouldn't be much more complicated than this.
If you can, you might try to break up your data into multiple files that can be mmap()-ed in whole instead of in part (much simpler).
A couple of months ago I had a half-baked implementation of a sliding-window mmap()-ed stream class for boost_iostreams, but nobody cared and I got busy with other stuff. Most unfortunately, I deleted an archive of old unfinished projects a few weeks ago, and that was one of the victims :-(
Update: I should also add the caveat that this benchmark would look quite different in Windows because Microsoft implemented a nifty file cache that does most of what you would do with mmap in the first place. I.e., for frequently-accessed files, you could just do std::ifstream.read() and it would be as fast as mmap, because the file cache would have already done a memory-mapping for you, and it's transparent.
Final Update: Look, people: across a lot of different platform combinations of OS and standard libraries and disks and memory hierarchies, I can't say for certain that the system call mmap, viewed as a black box, will always always always be substantially faster than read. That wasn't exactly my intent, even if my words could be construed that way. Ultimately, my point was that memory-mapped i/o is generally faster than byte-based i/o; this is still true. If you find experimentally that there's no difference between the two, then the only explanation that seems reasonable to me is that your platform implements memory-mapping under the covers in a way that is advantageous to the performance of calls to read. The only way to be absolutely certain that you're using memory-mapped i/o in a portable way is to use mmap. If you don't care about portability and you can rely on the particular characteristics of your target platforms, then using read may be suitable without sacrificing measurably any performance.
Edit to clean up answer list:
#jbl:
the sliding window mmap sounds
interesting. Can you say a little more
about it?
Sure - I was writing a C++ library for Git (a libgit++, if you will), and I ran into a similar problem to this: I needed to be able to open large (very large) files and not have performance be a total dog (as it would be with std::fstream).
Boost::Iostreams already has a mapped_file Source, but the problem was that it was mmapping whole files, which limits you to 2^(wordsize). On 32-bit machines, 4GB isn't big enough. It's not unreasonable to expect to have .pack files in Git that become much larger than that, so I needed to read the file in chunks without resorting to regular file i/o. Under the covers of Boost::Iostreams, I implemented a Source, which is more or less another view of the interaction between std::streambuf and std::istream. You could also try a similar approach by just inheriting std::filebuf into a mapped_filebuf and similarly, inheriting std::fstream into a mapped_fstream. It's the interaction between the two that's difficult to get right. Boost::Iostreams has some of the work done for you, and it also provides hooks for filters and chains, so I thought it would be more useful to implement it that way.
I'm sorry Ben Collins lost his sliding windows mmap source code. That'd be nice to have in Boost.
Yes, mapping the file is much faster. You're essentially using the the OS virtual memory subsystem to associate memory-to-disk and vice versa. Think about it this way: if the OS kernel developers could make it faster they would. Because doing so makes just about everything faster: databases, boot times, program load times, et cetera.
The sliding window approach really isn't that difficult as multiple continguous pages can be mapped at once. So the size of the record doesn't matter so long as the largest of any single record will fit into memory. The important thing is managing the book-keeping.
If a record doesn't begin on a getpagesize() boundary, your mapping has to begin on the previous page. The length of the region mapped extends from the first byte of the record (rounded down if necessary to the nearest multiple of getpagesize()) to the last byte of the record (rounded up to the nearest multiple of getpagesize()). When you're finished processing a record, you can unmap() it, and move on to the next.
This all works just fine under Windows too using CreateFileMapping() and MapViewOfFile() (and GetSystemInfo() to get SYSTEM_INFO.dwAllocationGranularity --- not SYSTEM_INFO.dwPageSize).
mmap should be faster, but I don't know how much. It very much depends on your code. If you use mmap it's best to mmap the whole file at once, that will make you life a lot easier. One potential problem is that if your file is bigger than 4GB (or in practice the limit is lower, often 2GB) you will need a 64bit architecture. So if you're using a 32 environment, you probably don't want to use it.
Having said that, there may be a better route to improving performance. You said the input file gets scanned many times, if you can read it out in one pass and then be done with it, that could potentially be much faster.
Perhaps you should pre-process the files, so each record is in a separate file (or at least that each file is a mmap-able size).
Also could you do all of the processing steps for each record, before moving onto the next one? Maybe that would avoid some of the IO overhead?
I agree that mmap'd file I/O is going to be faster, but while your benchmarking the code, shouldn't the counter example be somewhat optimized?
Ben Collins wrote:
char data[0x1000];
std::ifstream in("file.bin");
while (in)
{
in.read(data, 0x1000);
// do something with data
}
I would suggest also trying:
char data[0x1000];
std::ifstream iifle( "file.bin");
std::istream in( ifile.rdbuf() );
while( in )
{
in.read( data, 0x1000);
// do something with data
}
And beyond that, you might also try making the buffer size the same size as one page of virtual memory, in case 0x1000 is not the size of one page of virtual memory on your machine... IMHO mmap'd file I/O still wins, but this should make things closer.
I remember mapping a huge file containing a tree structure into memory years ago. I was amazed by the speed compared to normal de-serialization which involves lot of work in memory, like allocating tree nodes and setting pointers.
So in fact I was comparing a single call to mmap (or its counterpart on Windows)
against many (MANY) calls to operator new and constructor calls.
For such kind of task, mmap is unbeatable compared to de-serialization.
Of course one should look into boosts relocatable pointer for this.
This sounds like a good use-case for multi-threading... I'd think you could pretty easily setup one thread to be reading data while the other(s) process it. That may be a way to dramatically increase the perceived performance. Just a thought.
To my mind, using mmap() "just" unburdens the developer from having to write their own caching code. In a simple "read through file eactly once" case, this isn't going to be hard (although as mlbrock points out you still save the memory copy into process space), but if you're going back and forth in the file or skipping bits and so forth, I believe the kernel developers have probably done a better job implementing caching than I can...
I think the greatest thing about mmap is potential for asynchronous reading with:
addr1 = NULL;
while( size_left > 0 ) {
r = min(MMAP_SIZE, size_left);
addr2 = mmap(NULL, r,
PROT_READ, MAP_FLAGS,
0, pos);
if (addr1 != NULL)
{
/* process mmap from prev cycle */
feed_data(ctx, addr1, MMAP_SIZE);
munmap(addr1, MMAP_SIZE);
}
addr1 = addr2;
size_left -= r;
pos += r;
}
feed_data(ctx, addr1, r);
munmap(addr1, r);
Problem is that I can't find the right MAP_FLAGS to give a hint that this memory should be synced from file asap.
I hope that MAP_POPULATE gives the right hint for mmap (i.e. it will not try to load all contents before return from call, but will do that in async. with feed_data). At least it gives better results with this flag even that manual states that it does nothing without MAP_PRIVATE since 2.6.23.