Avoiding dynamic_cast in implementation of virtual functions in derived class - c++

Here is some sample code explaining what I am trying to achieve.
Basically, I have an algorithm that depends on some basic operations available in a class. I have defined those operations in a pure abstract base class. I want to apply that algorithm to a variety of objects that provide those operations by deriving classes for the specific objects.
However, the different derived objects are incompatible with one another as far those operations are concerned. My question is whether I can avoid using RTTI to ensure that for example, bool derived2::identical(const base* other2), asserts(or other exit mechanism) where other2 is not of type derived2.
One alternative would be to template the function algorithm on the specific derived object, but that would mean that it's implementation would have to live in a header file which I don't want to do since 1) Changing the algorithm code for test purposes can cause recompilation of large portions of the code 2) The algorithm's implementation would be exposed in the header instead of living nicely in a source file hidden from the end-user.
Header file
#include <list>
class base
{
public:
virtual float difference(const base*) const = 0;
virtual bool identical(const base*) const = 0;
};
class derived1 : public base
{
public:
float difference(const base* other1) const
{
// other1 has to be of type derived1
if(typeid(other1) == typeid(this))
{
// process ...
}
else
{
assert(0);
}
return 1;
}
bool identical(const base* other1) const
{
// other1 has to be of type derived1
if(typeid(other1) == typeid(this))
{
// compare...
}
else
{
assert(0);
}
return true;
}
};
class derived2 : public base
{
public:
float difference(const base* other2) const
{
// process ...
// other2 has to be of type derived2
return 2;
}
bool identical(const base* other2) const
{
// do comparison
// derived1 and derived2 cannot be compared
return true;
}
};
// Declaration
int algorithm(std::list<base*>& members);
Implementation of algorithm Source file
#include "header_file_containing_base"
int algorithm(std::list<base*>& members)
{
// This function only relies on the interface defined in base
// process members;
return 1;
}
Main program
int main()
{
// Create lists of derived1 and derived2
// Run algorithm on these lists
}

You could use double dispatch (http://en.wikipedia.org/wiki/Double_dispatch)

Well, there is one simple thing: store the real type as a member.
An enum, grouping all the types. It'll become cumbersome if you have a lot of them.
A Factory to generate ids (using templates to only generate one id per item)
...
I'll illustrate the factory id:
class IdFactory
{
public:
template <class T>
static size_t GetId(T const&) // argument deduction
{
static size_t const Id = GetIdImpl();
return Id;
}
private:
static size_t GetIdImpl()
{
static size_t Id = 0;
return ++Id;
}
}; // class IdFactory
And you can use it like such:
class Base
{
public:
explicit Base(size_t id): mId(id) {}
size_t const mId; // meaningless to change it afterward...
private:
};
class Derived: public Base
{
public:
explicit Derived(): Base(IdFactory::GetId(*this)) {}
};
Then you can use the mId member for testing. Note that since it's const it can be exposed... otherwise you can create an inline const getter...
float Derived::difference(const Base& rhs)
{
assert( IdFactory::GetId(*this) == rhs.mId );
// ...
}
The cost here is negligible:
GetId is inlined, thus no function call
GetId is lazily initialized, apart for the initialization it amounts to checking that the static member has been initialized: it's typically implemented as a if statement which condition always evaluate to true (apart from the first time).
== is normally fast ;)
The only downside is that you actually need to make sure that you correctly initialize the ids.
There is also a no-storing solution, which involves a virtual function call:
class Other: public Base
{
public:
virtual size_t id() const { return IdFactory::GetId(*this); }
};
It's easier to put in practice because not storing a const member means that you don't have to write the assignment yourself.

You could use a templated function. With templates it is possible to add more classes later without the need to change the original classes, by just adding another template function in another header file. If the only problem is the compile speed - you can implement the template function in a source file apart from the header and use explicit template instanciation.

Related

Dispatching a check condition on a generic subclass to a context where the base class only is known

I would like to be able to check whether a certain condition is true or not on an object of some Derived type, which in the local context is only known through its Base type.
The condition to be checked needs specific knowledge of the Derived type, but I'm trying to achieve a level of indirection that allows the checking to be done in a context which only knows about the base class.
One possible way of doing this is by encapsulating the information needed for the check in a functor (or lambda) and dispatch it to the place where the check needs to be performed.
Define the classes
class Base {
//...
public:
using Condition = std::function<bool(const Base*)>;
bool check(const Condition&);
}
class DerivedA : public Base {
//...
public:
int index() const { return index;}
private:
int index;
}
class DerivedB : public Base {
//...
public:
std::string name() const { return name;}
private:
std::string name;
}
and suppose we have a Derived-aware context, where I can encapsulate the the Derived-specific condition in a lambda function. We can then dispatch the Condition functor to the context where it is going to be needed:
//context where DerivedA and DerivedB are known
int idx = 1;
auto derivedCondition = [idx](const Base* obj) {
DerivedA* derivedObj = dynamic_cast<const DerivedA*>(obj);
if (derivedObj)
return (derivedObj->index() == idx);
return false;
};
std:string str = "Peter";
auto derivedCondition = [str](const Base* obj) {
DerivedB* derivedObj = dynamic_cast<const DerivedB*>(obj);
if (derivedObj)
return (derivedObj->name() == str);
return false;
};
// dispatch condition to an external context where it will be used, this context is not aware of Derived
useConditionElsewhere(derivedCondition);
with
void useConditionElsewhere(Condition condition) {
//context where only base class is known
Base* baseObj;
//... suppose baseObj is created from a factory class that returns a random subclass
// baseObj can be a DerivedA, DerivedB or none of them
bool checked = baseObj->check(condition);
//..
}
The above achieves what I need.
My question is: is it possible to do this without casting?
Suppose you were to create a ConditionChecker class, with a check function that is overloaded for the various types you need to check:-
class ConditionChecker
{
public:
bool checkCondition(DerivedA& toBeChecked)
{
//some checking code that knows about DerivedA objects
}
bool checkCondition(DerivedB& toBeChecked)
{
//some checking code that knows about DerivedB objects
}
};
If your existing Base class had a virtual function called check that accepts a ConditionChecker object:-
virtual bool check(ConditionChecker& checker) = 0;
then this can be implemented in your derived classes as
bool check(ConditionChecker& checker)
{
return checker.checkCondition(*this);// calls the correct overload
}
It seems you have a case of double dispatch here. Essentially your check condition call is dependent on two dynamic types: the derived type of Base and the type of condition itself (although you code the latter as an std::function in your example, which is in many ways equivalent in this case). In C++, which has no native double dispatch, this kind of problem is often solved by using two inheritance hierarchies and two calls. This is precisely the solution given by #ROX . His ConditionChecker can be made a base class with virtual checkConditionCalls to enable various conditions to be checked. Each derived condition class will implement multiple checkCondition functions, one for DerivedA and one for DerivedB (and any others you choose to add) - so they will have both specific knowledge of the condition being checked and the type being derived.
It is very hard to understand what do you want. But here is rewritten code using virtual method. I hope it will force you to produce the correct answer.
class Base {
//...
public:
virtual bool check(int idx) override { return idx == index();}
}
class Derived : public Base {
//...
public:
int index() const { return index;}
virtual bool check(int idx) { return false; }
private:
int index;
}
void useConditionElsewhere(int idx) {
//context where only base class is known
Base* baseObj;
//...
bool checked = baseObj->check(idx);
//..
}

C++ class that can hold one of a set of classes that all inherit from a common class

What are the ways in C++ to handle a class that has ownership of an instance of another class, where that instance could potentially be of a number of classes all of which inherit from a common class?
Example:
class Item { //the common ancestor, which is never used directly
public:
int size;
}
class ItemWidget: public Item { //possible class 1
public:
int height;
int width;
}
class ItemText: public Item { //possible class 2
std::string text;
}
Let's say there is also a class Container, each of which contains a single Item, and the only time anyone is ever interested in an Item is when they are getting it out of the Container. Let's also say Items are only created at the same time the Container is created, for the purpose of putting them in the Container.
What are the different ways to structure this? We could make a pointer in Container for the contained Item, and then pass arguments to the constructor of Container for what sort of Item to call new on, and this will stick the Items all in the heap. Is there a way to store the Item in the stack with the Container, and would this have any advantages?
Does it make a difference if the Container and Items are immutable, and we know everything about them at the moment of creation, and will never change them?
A correct solution looks like:
class Container {
public:
/* ctor, accessors */
private:
std::unique_ptr<Item> item;
};
If you have an old compiler, you can use std::auto_ptr instead.
The smart pointer ensures strict ownership of the item by the container. (You could as well make it a plain pointer and roll up your own destructor/assignment op/copy ctor/move ctor/ move assignment op/ etc, but unique_ptr has it all already done, so...)
Why do you need to use a pointer here, not just a plain composition?
Because if you compose, then you must know the exact class which is going to be composed. You can't introduce polymorphism. Also the size of all Container objects must be the same, and the size of Item's derived classes may vary.
And if you desperately need to compose?
Then you need as many variants of Container as there are the items stored, since every such Container will be of different size, so it's a different class. Your best shot is:
struct IContainer {
virtual Item& getItem() = 0;
};
template<typename ItemType>
struct Container : IContainer {
virtual Item& getItem() {
return m_item;
}
private:
ItemType m_item;
};
OK, crazy idea. Don't use this:
class AutoContainer
{
char buf[CRAZY_VALUE];
Base * p;
public:
template <typename T> AutoContainer(const T & x)
: p(::new (buf) T(x))
{
static_assert(std::is_base_of<Base, T>::value, "Invalid use of AutoContainer");
static_assert(sizeof(T) <= CRAZY_VAL, "Not enough memory for derived class.");
#ifdef __GNUC__
static_assert(__has_virtual_destructor(Base), "Base must have virtual destructor!");
#endif
}
~AutoContainer() { p->~Base(); }
Base & get() { return *p; }
const Base & get() const { return *p; }
};
The container requires no dynamic allocation itself, you must only ensure that CRAZY_VALUE is big enough to hold any derived class.
the example code below compiles and shows how to do something similar to what you want to do. this is what in java would be called interfaces. see that you need at least some similarity in the classes (a common function name in this case). The virtual keyword means that all subclasses need to implement this function and whenever that function is called the function of the real class is actually called.
whether the classes are const or not doesn't harm here. but in general you should be as const correct as possible. because the compiler can generate better code if it knows what will not be changed.
#include <iostream>
#include <algorithm>
#include <vector>
using namespace std;
class outputter {
public:
virtual void print() = 0;
};
class foo : public outputter {
public:
virtual void print() { std::cout << "foo\n"; }
};
class bar : public outputter {
public:
virtual void print() { std::cout << "bar\n"; }
};
int main(){
std::vector<outputter *> vec;
foo *f = new foo;
vec.push_back(f);
bar *b = new bar ;
vec.push_back(b);
for ( std::vector<outputter *>::iterator i =
vec.begin(); i != vec.end(); ++i )
{
(*i)->print();
}
return 0;
}
Output:
foo
bar
Hold a pointer (preferably a smart one) in the container class, and call a pure virtual clone() member function on the Item class that is implemented by the derived classes when you need to copy. You can do this in a completely generic way, thus:
class Item {
// ...
private:
virtual Item* clone() const = 0;
friend Container; // Or make clone() public.
};
template <class I>
class ItemCloneMixin : public Item {
private:
I* clone() const { return new I(static_cast<const I&>(*this); }
};
class ItemWidget : public ItemCloneMixin<ItemWidget> { /* ... */ };
class ItemText : public ItemCloneMixin<ItemText> { /* ... */ };
Regarding stack storage, you can use an overloaded new that calls alloca(), but do so at your peril. It will only work if the compiler inlines your special new operator, which you can't force it to do (except with non-portable compiler pragmas). My advice is that it just isn't worth the aggravation; runtime polymorphism belongs on the heap.

C++: Interface enforcing definition of copy-constr

Is there any way for an interface class to enforce a definition of the copy constructor and maybe of also other constructors? In my case, I have an IResource pure abstract class, and I want all classes that implement this interface to define a copy-constr, a constructor for loading from a file, and a constructor for loading from memory.
In order to construct an object, you need to know the concrete class to use (how would it otherwise know how much memory to allocate, or which virtual table to use, etc..?). As such, the interface is not in play when dealing with constructors, and you can't use interfaces (pure virtuals) to enforce the existence of such a constructor. It's kind of natural when you think about it, virtuals only work when you have a polymorphic object, i.e. after instantiation. Anyone referencing your IResource interface would only ever deal with instantiated objects, and never touch a constructor.
You can enforce these kind of constraints on stuff using templates if you want though. By simply calling the copy constructor from a templated function, the compiler will complain if it encounters a template instantiation using a type which does not have a copy constructor.
You cannot enforce that and it would not be a right way either. On the contrary, you should prevent the usage of public copy constructors in a polymorphic class hierarchy...
struct IResource {
virtual IResource* Clone() const = 0;
virtual ~IResource() {}
};
An implementer of IResource should follow this pattern:
class ConcreteResource : public IResource, public boost::noncopyable { // or equivalent
public:
virtual ConcreteResource* Clone() const;
explicit ConcreteResource(std::string const & pString) : mString(pString) {}
private:
std::string mString;
};
ConcreteResource* ConcreteResource::Clone() const {
return new ConcreteResource(this->mString);
}
Something in your project uses the IResource abstract class and somehow I doubt that it requires that the objects it uses contain particular constructors.
Something else creates IResource objects (possibly lots of things) and to do that it must use a constructor. The concrete classes that get created must implement the necessary constructors or the code will not compile.
So the answer to your question is that you enforce the presence of the constructors by using those constructors in some other code to create objects. Keep in mind, if the constructors aren't being used anywhere, they aren't necessary.
you can push all requirements to the resource implementations like so:
class t_resource_interface {
protected:
virtual ~t_resource_interface();
public:
virtual t_serialization* serializeResource() = 0;
virtual t_thing* cloneResource() = 0;
};
/* type disambiguators */
typedef enum t_load_from_url { LoadFromURL = 0 } t_load_from_url;
typedef enum t_load_from_memory { LoadFromMemory = 0 } t_load_from_memory;
typedef enum t_copy_constructor { CopyConstructor = 0 } t_copy_constructor;
template < typename TResourceImplementation >
class t_resource : public t_resource_interface {
public:
/* copy ctor should generally be avoided due to the expense. introduce a parameter for those cases where it's really needed and disable the standard copy ctor */
t_resource(const t_copy_constructor& copyCtor, const t_resource& other) : t_resource_interface(), d_implementation(TResourceImplementation::CopyConstructor(other.d_implementation)) {
MONUnusedParameter(copyCtor);
}
t_resource(const t_load_from_url& fromFile, const t_url& url) : t_resource_interface(), d_implementation(TResourceImplementation::LoadFromURL(url)) {
MONUnusedParameter(fromFile);
}
t_resource(const t_load_from_memory& fromMemory, const t_serialization& serialization) : t_resource_interface(), d_implementation(TResourceImplementation::LoadFromMemory(serialization)) {
MONUnusedParameter(fromMemory);
}
virtual ~t_resource() {
}
public:
/* t_resource_interface requirements. implementation forwarded to TResourceImplementation */
virtual t_serialization* serializeResource() {
return this->d_implementation->serializeResource();
}
virtual t_thing* cloneResource() {
return this->d_implementation->cloneResource();
}
private:
/* assuming you will end up needing dynamic allocation/polymorphism along the way... */
t_auto_pointer<TResourceImplementation> d_implementation;
private:
/* prohibited */
t_resource(const t_resource&);
t_resource& operator=(const t_resource&);
};
class t_image_resource_implementation : public t_resource_interface {
private:
static t_image_resource_implementation* ValidationCheck(const t_image_resource_implementation* const arg) {
assert(arg && "allocation or argument error");
if (0 == arg) {
return 0;
}
else if (0 == arg->isValid()) {
delete res;
return 0;
}
else {
return arg;
}
}
public:
static t_image_resource_implementation* CopyConstructor(const t_image_resource_implementation* const other) {
return ValidationCheck(new t_image_resource_implementation(other, ...));
}
static t_image_resource_implementation* LoadFromURL(const t_url& url) {
/* assuming t_image_at_url_resource_implementation exists */
return ValidationCheck(new t_image_at_url_resource_implementation(url, ...));
}
static t_image_resource_implementation* LoadFromMemory(const t_serialization& serialization) {
assert(serialization);
if (0 == serialization) {
return 0;
}
else {
return ValidationCheck(new t_image_resource_implementation(serialization, ...));
}
}
/* some physical ctors and the rest of the implementation... */
public:
/* t_resource_interface requirements */
virtual t_serialization* serializeResource() {
return this->createSerialization();
}
virtual t_thing* cloneResource() {
return this->clone();
}
};
typedef t_resource<t_image_resource_implementation> t_image_resource;
t_error_code ConvertImageToGrayscale(const t_url& sourceUrl, const t_url& destinationUrl) {
t_image_resource imageResource(LoadFromURL, sourceUrl);
/* ... */
}

C++ static virtual members?

Is it possible in C++ to have a member function that is both static and virtual? Apparently, there isn't a straightforward way to do it (static virtual member(); is a compile error), but is there at least a way to achieve the same effect?
I.E:
struct Object
{
struct TypeInformation;
static virtual const TypeInformation &GetTypeInformation() const;
};
struct SomeObject : public Object
{
static virtual const TypeInformation &GetTypeInformation() const;
};
It makes sense to use GetTypeInformation() both on an instance (object->GetTypeInformation()) and on a class (SomeObject::GetTypeInformation()), which can be useful for comparisons and vital for templates.
The only ways I can think of involves writing two functions / a function and a constant, per class, or use macros.
Any other solutions?
No, there's no way to do it, since what would happen when you called Object::GetTypeInformation()? It can't know which derived class version to call since there's no object associated with it.
You'll have to make it a non-static virtual function to work properly; if you also want to be able to call a specific derived class's version non-virtually without an object instance, you'll have to provide a second redunduant static non-virtual version as well.
Many say it is not possible, I would go one step further and say it is not meaningfull.
A static member is something that does not relate to any instance, only to the class.
A virtual member is something that does not relate directly to any class, only to an instance.
So a static virtual member would be something that does not relate to any instance or any class.
I ran into this problem the other day: I had some classes full of static methods but I wanted to use inheritance and virtual methods and reduce code repetition. My solution was:
Instead of using static methods, use a singleton with virtual methods.
In other words, each class should contain a static method that you call to get a pointer to a single, shared instance of the class. You can make the true constructors private or protected so that outside code can't misuse it by creating additional instances.
In practice, using a singleton is a lot like using static methods except that you can take advantage of inheritance and virtual methods.
While Alsk has already given a pretty detailed answer, I'd like to add an alternative, since I think his enhanced implementation is overcomplicated.
We start with an abstract base class, that provides the interface for all the object types:
class Object
{
public:
virtual char* GetClassName() = 0;
};
Now we need an actual implementation. But to avoid having to write both the static and the virtual methods, we will have our actual object classes inherit the virtual methods. This does obviously only work, if the base class knows how to access the static member function. So we need to use a template and pass the actual objects class name to it:
template<class ObjectType>
class ObjectImpl : public Object
{
public:
virtual char* GetClassName()
{
return ObjectType::GetClassNameStatic();
}
};
Finally we need to implement our real object(s). Here we only need to implement the static member function, the virtual member functions will be inherited from the ObjectImpl template class, instantiated with the name of the derived class, so it will access it's static members.
class MyObject : public ObjectImpl<MyObject>
{
public:
static char* GetClassNameStatic()
{
return "MyObject";
}
};
class YourObject : public ObjectImpl<YourObject>
{
public:
static char* GetClassNameStatic()
{
return "YourObject";
}
};
Let's add some code to test:
char* GetObjectClassName(Object* object)
{
return object->GetClassName();
}
int main()
{
MyObject myObject;
YourObject yourObject;
printf("%s\n", MyObject::GetClassNameStatic());
printf("%s\n", myObject.GetClassName());
printf("%s\n", GetObjectClassName(&myObject));
printf("%s\n", YourObject::GetClassNameStatic());
printf("%s\n", yourObject.GetClassName());
printf("%s\n", GetObjectClassName(&yourObject));
return 0;
}
Addendum (Jan 12th 2019):
Instead of using the GetClassNameStatic() function, you can also define the the class name as a static member, even "inline", which IIRC works since C++11 (don't get scared by all the modifiers :)):
class MyObject : public ObjectImpl<MyObject>
{
public:
// Access this from the template class as `ObjectType::s_ClassName`
static inline const char* const s_ClassName = "MyObject";
// ...
};
It is possible!
But what exactly is possible, let's narrow down. People often want some kind of "static virtual function" because of duplication of code needed for being able to call the same function through static call "SomeDerivedClass::myfunction()" and polymorphic call "base_class_pointer->myfunction()". "Legal" method for allowing such functionality is duplication of function definitions:
class Object
{
public:
static string getTypeInformationStatic() { return "base class";}
virtual string getTypeInformation() { return getTypeInformationStatic(); }
};
class Foo: public Object
{
public:
static string getTypeInformationStatic() { return "derived class";}
virtual string getTypeInformation() { return getTypeInformationStatic(); }
};
What if base class has a great number of static functions and derived class has to override every of them and one forgot to provide a duplicating definition for virtual function. Right, we'll get some strange error during runtime which is hard to track down. Cause duplication of code is a bad thing. The following tries to resolve this problem (and I want to tell beforehand that it is completely type-safe and doesn't contain any black magic like typeid's or dynamic_cast's :)
So, we want to provide only one definition of getTypeInformation() per derived class and it is obvious that it has to be a definition of static function because it is not possible to call "SomeDerivedClass::getTypeInformation()" if getTypeInformation() is virtual. How can we call static function of derived class through pointer to base class? It is not possible with vtable because vtable stores pointers only to virtual functions and since we decided not to use virtual functions, we cannot modify vtable for our benefit. Then, to be able to access static function for derived class through pointer to base class we have to store somehow the type of an object within its base class. One approach is to make base class templatized using "curiously recurring template pattern" but it is not appropriate here and we'll use a technique called "type erasure":
class TypeKeeper
{
public:
virtual string getTypeInformation() = 0;
};
template<class T>
class TypeKeeperImpl: public TypeKeeper
{
public:
virtual string getTypeInformation() { return T::getTypeInformationStatic(); }
};
Now we can store the type of an object within base class "Object" with a variable "keeper":
class Object
{
public:
Object(){}
boost::scoped_ptr<TypeKeeper> keeper;
//not virtual
string getTypeInformation() const
{ return keeper? keeper->getTypeInformation(): string("base class"); }
};
In a derived class keeper must be initialized during construction:
class Foo: public Object
{
public:
Foo() { keeper.reset(new TypeKeeperImpl<Foo>()); }
//note the name of the function
static string getTypeInformationStatic()
{ return "class for proving static virtual functions concept"; }
};
Let's add syntactic sugar:
template<class T>
void override_static_functions(T* t)
{ t->keeper.reset(new TypeKeeperImpl<T>()); }
#define OVERRIDE_STATIC_FUNCTIONS override_static_functions(this)
Now declarations of descendants look like:
class Foo: public Object
{
public:
Foo() { OVERRIDE_STATIC_FUNCTIONS; }
static string getTypeInformationStatic()
{ return "class for proving static virtual functions concept"; }
};
class Bar: public Foo
{
public:
Bar() { OVERRIDE_STATIC_FUNCTIONS; }
static string getTypeInformationStatic()
{ return "another class for the same reason"; }
};
usage:
Object* obj = new Foo();
cout << obj->getTypeInformation() << endl; //calls Foo::getTypeInformationStatic()
obj = new Bar();
cout << obj->getTypeInformation() << endl; //calls Bar::getTypeInformationStatic()
Foo* foo = new Bar();
cout << foo->getTypeInformation() << endl; //calls Bar::getTypeInformationStatic()
Foo::getTypeInformation(); //compile-time error
Foo::getTypeInformationStatic(); //calls Foo::getTypeInformationStatic()
Bar::getTypeInformationStatic(); //calls Bar::getTypeInformationStatic()
Advantages:
less duplication of code (but we
have to call
OVERRIDE_STATIC_FUNCTIONS in every
constructor)
Disadvantages:
OVERRIDE_STATIC_FUNCTIONS in every
constructor
memory and performance
overhead
increased complexity
Open issues:
1) there are different names for static and virtual functions
how to solve ambiguity here?
class Foo
{
public:
static void f(bool f=true) { cout << "static";}
virtual void f() { cout << "virtual";}
};
//somewhere
Foo::f(); //calls static f(), no ambiguity
ptr_to_foo->f(); //ambiguity
2) how to implicitly call OVERRIDE_STATIC_FUNCTIONS inside every constructor?
It is possible. Make two functions: static and virtual
struct Object{
struct TypeInformation;
static const TypeInformation &GetTypeInformationStatic() const
{
return GetTypeInformationMain1();
}
virtual const TypeInformation &GetTypeInformation() const
{
return GetTypeInformationMain1();
}
protected:
static const TypeInformation &GetTypeInformationMain1(); // Main function
};
struct SomeObject : public Object {
static const TypeInformation &GetTypeInformationStatic() const
{
return GetTypeInformationMain2();
}
virtual const TypeInformation &GetTypeInformation() const
{
return GetTypeInformationMain2();
}
protected:
static const TypeInformation &GetTypeInformationMain2(); // Main function
};
No, this is not possible, because static member functions lack a this pointer. And static members (both functions and variables) are not really class members per-se. They just happen to be invoked by ClassName::member, and adhere to the class access specifiers. Their storage is defined somewhere outside the class; storage is not created each time you instantiated an object of the class. Pointers to class members are special in semantics and syntax. A pointer to a static member is a normal pointer in all regards.
virtual functions in a class needs the this pointer, and is very coupled to the class, hence they can't be static.
It's not possible, but that's just because an omission. It isn't something that "doesn't make sense" as a lot of people seem to claim. To be clear, I'm talking about something like this:
struct Base {
static virtual void sayMyName() {
cout << "Base\n";
}
};
struct Derived : public Base {
static void sayMyName() override {
cout << "Derived\n";
}
};
void foo(Base *b) {
b->sayMyName();
Derived::sayMyName(); // Also would work.
}
This is 100% something that could be implemented (it just hasn't), and I'd argue something that is useful.
Consider how normal virtual functions work. Remove the statics and add in some other stuff and we have:
struct Base {
virtual void sayMyName() {
cout << "Base\n";
}
virtual void foo() {
}
int somedata;
};
struct Derived : public Base {
void sayMyName() override {
cout << "Derived\n";
}
};
void foo(Base *b) {
b->sayMyName();
}
This works fine and basically what happens is the compiler makes two tables, called VTables, and assigns indices to the virtual functions like this
enum Base_Virtual_Functions {
sayMyName = 0;
foo = 1;
};
using VTable = void*[];
const VTable Base_VTable = {
&Base::sayMyName,
&Base::foo
};
const VTable Derived_VTable = {
&Derived::sayMyName,
&Base::foo
};
Next each class with virtual functions is augmented with another field that points to its VTable, so the compiler basically changes them to be like this:
struct Base {
VTable* vtable;
virtual void sayMyName() {
cout << "Base\n";
}
virtual void foo() {
}
int somedata;
};
struct Derived : public Base {
VTable* vtable;
void sayMyName() override {
cout << "Derived\n";
}
};
Then what actually happens when you call b->sayMyName()? Basically this:
b->vtable[Base_Virtual_Functions::sayMyName](b);
(The first parameter becomes this.)
Ok fine, so how would it work with static virtual functions? Well what's the difference between static and non-static member functions? The only difference is that the latter get a this pointer.
We can do exactly the same with static virtual functions - just remove the this pointer.
b->vtable[Base_Virtual_Functions::sayMyName]();
This could then support both syntaxes:
b->sayMyName(); // Prints "Base" or "Derived"...
Base::sayMyName(); // Always prints "Base".
So ignore all the naysayers. It does make sense. Why isn't it supported then? I think it's because it has very little benefit and could even be a little confusing.
The only technical advantage over a normal virtual function is that you don't need to pass this to the function but I don't think that would make any measurable difference to performance.
It does mean you don't have a separate static and non-static function for cases when you have an instance, and when you don't have an instance, but also it might be confusing that it's only really "virtual" when you use the instance call.
Well , quite a late answer but it is possible using the curiously recurring template pattern. This wikipedia article has the info you need and also the example under static polymorphism is what you are asked for.
This question is over a decade old, but it looks like it gets a good amount of traffic, so I wanted to post an alternative using modern C++ features that I haven't seen anywhere else.
This solution uses CRTP and SFINAE to perform static dispatching. That, in itself, is nothing new, but all such implementations I've found lack strict signature checking for "overrides." This implementation requires that the "overriding" method signature exactly matches that of the "overridden" method. This behavior more closely resembles that of virtual functions, while also allowing us to effectively overload and "override" a static method.
Note that I put override in quotes because, strictly speaking, we're not technically overriding anything. Instead, we're calling a dispatch method X with signature Y that forwards all of its arguments to T::X, where T is to the first type among a list of types such that T::X exists with signature Y. This list of types considered for dispatching can be anything, but generally would include a default implementation class and the derived class.
Implementation
#include <experimental/type_traits>
template <template <class...> class Op, class... Types>
struct dispatcher;
template <template <class...> class Op, class T>
struct dispatcher<Op, T> : std::experimental::detected_t<Op, T> {};
template <template <class...> class Op, class T, class... Types>
struct dispatcher<Op, T, Types...>
: std::experimental::detected_or_t<
typename dispatcher<Op, Types...>::type, Op, T> {};
// Helper to convert a signature to a function pointer
template <class Signature> struct function_ptr;
template <class R, class... Args> struct function_ptr<R(Args...)> {
using type = R (*)(Args...);
};
// Macro to simplify creation of the dispatcher
// NOTE: This macro isn't smart enough to handle creating an overloaded
// dispatcher because both dispatchers will try to use the same
// integral_constant type alias name. If you want to overload, do it
// manually or make a smarter macro that can somehow put the signature in
// the integral_constant type alias name.
#define virtual_static_method(name, signature, ...) \
template <class VSM_T> \
using vsm_##name##_type = std::integral_constant< \
function_ptr<signature>::type, &VSM_T::name>; \
\
template <class... VSM_Args> \
static auto name(VSM_Args&&... args) \
{ \
return dispatcher<vsm_##name##_type, __VA_ARGS__>::value( \
std::forward<VSM_Args>(args)...); \
}
Example Usage
#include <iostream>
template <class T>
struct Base {
// Define the default implementations
struct defaults {
static std::string alpha() { return "Base::alpha"; };
static std::string bravo(int) { return "Base::bravo"; }
};
// Create the dispatchers
virtual_static_method(alpha, std::string(void), T, defaults);
virtual_static_method(bravo, std::string(int), T, defaults);
static void where_are_the_turtles() {
std::cout << alpha() << std::endl; // Derived::alpha
std::cout << bravo(1) << std::endl; // Base::bravo
}
};
struct Derived : Base<Derived> {
// Overrides Base::alpha
static std::string alpha(){ return "Derived::alpha"; }
// Does not override Base::bravo because signatures differ (even though
// int is implicitly convertible to bool)
static std::string bravo(bool){ return "Derived::bravo"; }
};
int main() {
Derived::where_are_the_turtles();
}
I think what you're trying to do can be done through templates. I'm trying to read between the lines here. What you're trying to do is to call a method from some code, where it calls a derived version but the caller doesn't specify which class. Example:
class Foo {
public:
void M() {...}
};
class Bar : public Foo {
public:
void M() {...}
};
void Try()
{
xxx::M();
}
int main()
{
Try();
}
You want Try() to call the Bar version of M without specifying Bar. The way you do that for statics is to use a template. So change it like so:
class Foo {
public:
void M() {...}
};
class Bar : public Foo {
public:
void M() {...}
};
template <class T>
void Try()
{
T::M();
}
int main()
{
Try<Bar>();
}
No, Static member function can't be virtual .since virtual concept is resolved at run time with the help of vptr, and vptr is non static member of a class.due to that static member function can't acess vptr so static member can't be virtual.
No, its not possible, since static members are bound at compile time, while virtual members are bound at runtime.
If your desired use for a virtual static is to be able to define an interface over the static section of a class then there is a solution to your problem using C++20 concept's.
class ExBase { //object properties
public: virtual int do(int) = 0;
};
template <typename T> //type properties
concept ExReq = std::derived_from<T, ExBase> && requires(int i) { //~constexpr bool
{
T::do_static(i) //checks that this compiles
} -> std::same_as<int> //checks the expression type is int
};
class ExImpl : virtual public ExBase { //satisfies ExReq
public: int do(int i) override {return i;} //overrides do in ExBase
public: static int do_static(int i) {return i;} //satisfies ExReq
};
//...
void some_func(ExReq auto o) {o.do(0); decltype(o)::do_static(0);}
(this works the same way on members aswell!)
For more on how concepts work: https://en.cppreference.com/w/cpp/language/constraints
For the standard concepts added in C++20: https://en.cppreference.com/w/cpp/concepts
First, the replies are correct that what the OP is requesting is a contradiction in terms: virtual methods depend on the run-time type of an instance; static functions specifically don't depend on an instance -- just on a type. That said, it makes sense to have static functions return something specific to a type. For example, I had a family of MouseTool classes for the State pattern and I started having each one have a static function returning the keyboard modifier that went with it; I used those static functions in the factory function that made the correct MouseTool instance. That function checked the mouse state against MouseToolA::keyboardModifier(), MouseToolB::keyboardModifier(), etc. and then instantiated the appropriate one. Of course later I wanted to check if the state was right so I wanted write something like "if (keyboardModifier == dynamic_type(*state)::keyboardModifier())" (not real C++ syntax), which is what this question is asking.
So, if you find yourself wanting this, you may want to rething your solution. Still, I understand the desire to have static methods and then call them dynamically based on the dynamic type of an instance. I think the Visitor Pattern can give you what you want. It gives you what you want. It's a bit of extra code, but it could be useful for other visitors.
See: http://en.wikipedia.org/wiki/Visitor_pattern for background.
struct ObjectVisitor;
struct Object
{
struct TypeInformation;
static TypeInformation GetTypeInformation();
virtual void accept(ObjectVisitor& v);
};
struct SomeObject : public Object
{
static TypeInformation GetTypeInformation();
virtual void accept(ObjectVisitor& v) const;
};
struct AnotherObject : public Object
{
static TypeInformation GetTypeInformation();
virtual void accept(ObjectVisitor& v) const;
};
Then for each concrete Object:
void SomeObject::accept(ObjectVisitor& v) const {
v.visit(*this); // The compiler statically picks the visit method based on *this being a const SomeObject&.
}
void AnotherObject::accept(ObjectVisitor& v) const {
v.visit(*this); // Here *this is a const AnotherObject& at compile time.
}
and then define the base visitor:
struct ObjectVisitor {
virtual ~ObjectVisitor() {}
virtual void visit(const SomeObject& o) {} // Or = 0, depending what you feel like.
virtual void visit(const AnotherObject& o) {} // Or = 0, depending what you feel like.
// More virtual void visit() methods for each Object class.
};
Then the concrete visitor that selects the appropriate static function:
struct ObjectVisitorGetTypeInfo {
Object::TypeInformation result;
virtual void visit(const SomeObject& o) {
result = SomeObject::GetTypeInformation();
}
virtual void visit(const AnotherObject& o) {
result = AnotherObject::GetTypeInformation();
}
// Again, an implementation for each concrete Object.
};
finally, use it:
void printInfo(Object& o) {
ObjectVisitorGetTypeInfo getTypeInfo;
Object::TypeInformation info = o.accept(getTypeInfo).result;
std::cout << info << std::endl;
}
Notes:
Constness left as an exercise.
You returned a reference from a static. Unless you have a singleton, that's questionable.
If you want to avoid copy-paste errors where one of your visit methods calls the wrong static function, you could use a templated helper function (which can't itself be virtual) t your visitor with a template like this:
struct ObjectVisitorGetTypeInfo {
Object::TypeInformation result;
virtual void visit(const SomeObject& o) { doVisit(o); }
virtual void visit(const AnotherObject& o) { doVisit(o); }
// Again, an implementation for each concrete Object.
private:
template <typename T>
void doVisit(const T& o) {
result = T::GetTypeInformation();
}
};
With c++ you can use static inheritance with the crt method. For the example, it is used widely on window template atl & wtl.
See https://en.wikipedia.org/wiki/Curiously_recurring_template_pattern
To be simple, you have a class that is templated from itself like class myclass : public myancestor. From this point the myancestor class can now call your static T::YourImpl function.
I had a browse through the other answers and none of them seem to mention virtual function tables (vtable), which explains why this is not possible.
A static function inside a C++ class compiles to something which is effectively the same as any other function in a regular namespace.
In other words, when you declare a function static you are using the class name as a namespace rather than an object (which has an instance, with some associated data).
Let's quickly look at this...
// This example is the same as the example below
class ExampleClass
{
static void exampleFunction();
int someData;
};
// This example is the same as the example above
namespace ExampleClass
{
void exampleFunction();
// Doesn't work quite the same. Each instance of a class
// has independent data. Here the data is global.
int someData;
}
With that out of the way, and an understanding of what a static member function really is, we can now consider vtables.
If you declare any virtual function in a class, then the compiler creates a block of data which (usually) precedes other data members. This block of data contains runtime information which tells the program at runtime where in memory it needs to jump to in order to execute the correct (virtual) function for each instance of a class which might be created during runtime.
The important point here is "block of data". In order for that block of data to exist, it has to be stored as part of an instance of an object (class). If your function is static, then we already said it uses the name of the class as a namespace. There is no object associated with that function call.
To add slightly more detail: A static function does not have an implicit this pointer, which points to the memory where the object lives. Because it doesn't have that, you can't jump to a place in memory and find the vtable for that object. So you can't do virtual function dispatch.
I'm not an expert in compiler engineering by any means, but understanding things at least to this level of detail is helpful, and (hopefully?) makes it easy to understand why (at least in C++) static virtual does not make sense, and cannot be translated into something sensible by the compiler.
Maybe you can try my solution below:
class Base {
public:
Base(void);
virtual ~Base(void);
public:
virtual void MyVirtualFun(void) = 0;
static void MyStaticFun(void) { assert( mSelf != NULL); mSelf->MyVirtualFun(); }
private:
static Base* mSelf;
};
Base::mSelf = NULL;
Base::Base(void) {
mSelf = this;
}
Base::~Base(void) {
// please never delete mSelf or reset the Value of mSelf in any deconstructors
}
class DerivedClass : public Base {
public:
DerivedClass(void) : Base() {}
~DerivedClass(void){}
public:
virtual void MyVirtualFun(void) { cout<<"Hello, it is DerivedClass!"<<endl; }
};
int main() {
DerivedClass testCls;
testCls.MyStaticFun(); //correct way to invoke this kind of static fun
DerivedClass::MyStaticFun(); //wrong way
return 0;
}
Like others have said, there are 2 important pieces of information:
there is no this pointer when making a static function call and
the this pointer points to the structure where the virtual table, or thunk, are used to look up which runtime method to call.
A static function is determined at compile time.
I showed this code example in C++ static members in class; it shows that you can call a static method given a null pointer:
struct Foo
{
static int boo() { return 2; }
};
int _tmain(int argc, _TCHAR* argv[])
{
Foo* pFoo = NULL;
int b = pFoo->boo(); // b will now have the value 2
return 0;
}

PIMPL problem: How to have multiple interfaces to the impl w/o code duplication

I have this pimpl design where the implementation classes are polymorphic but the interfaces are supposed to just contain a pointer, making them polymorphic somewhat defeats the purpose of the design.
So I create my Impl and Intf base classes to provide reference counting. And then the user can create their implementations. An example:
class Impl {
mutable int _ref;
public:
Impl() : _ref(0) {}
virtual ~Impl() {}
int addRef() const { return ++_ref; }
int decRef() const { return --_ref; }
};
template <typename TImpl>
class Intf {
TImpl* impl;
public:
Intf(TImpl* t = 0) : impl(0) {}
Intf(const Intf& other) : impl(other.impl) { if (impl) impl->addRef(); }
Intf& operator=(const Intf& other) {
if (other.impl) other.impl->addRef();
if (impl && impl->decRef() <= 0) delete impl;
impl = other.impl;
}
~Intf() { if (impl && impl->decRef() <= 0) delete impl; }
protected:
TImpl* GetImpl() const { return impl; }
void SetImpl(... //etc
};
class ShapeImpl : public Impl {
public:
virtual void draw() = 0;
};
class Shape : public Intf<ShapeImpl> {
public:
Shape(ShapeImpl* i) : Intf<ShapeImpl>(i) {}
void draw() {
ShapeImpl* i = GetImpl();
if (i) i->draw();
}
};
class TriangleImpl : public ShapeImpl {
public:
void draw();
};
class PolygonImpl : public ShapeImpl {
public:
void draw();
void addSegment(Point a, Point b);
};
Here is where have the issue. There are two possible declaration for class Polygon:
class Polygon1 : public Intf<PolygonImpl> {
public:
void draw() {
PolygonImpl* i = GetImpl();
if (i) i->draw();
}
void addSegment(Point a, Point b) {
PolygonImpl* i = GetImpl();
if (i) i->addSegment(a,b);
}
};
class Polygon2 : public Shape {
void addSegment(Point a, Point b) {
ShapeImpl* i = GetImpl();
if (i) dynamic_cast<Polygon*>(i)->addSegment(a,b);
}
}
In the Polygon1, I have rewrite the code for draw because I have not inherited it. In Polygon2 I need ugly dynamic casts because GetImpl() doesn't know about PolygonImpl. What I would like to do is something like this:
template <typename TImpl>
struct Shape_Interface {
void draw() {
TImpl* i = GetImpl();
if (i) i->draw();
}
};
template <typename TImpl>
struct Polygon_Interface : public Shape_Interface<Timpl> {
void addSegment(Point a, Point b) { ... }
};
class Shape : public TIntf<ShapeImpl>, public Shape_Interface<ShapeImpl> {...};
class Polygon : public TIntf<PolygonImpl>, public Polygon_Interface<PolygonImpl> {
public:
Polygon(PolygonImpl* i) : TIntf<PolygonImpl>(i) {}
};
But of course there's a problem here. I can't access GetImpl() from the Interface classes unless I derive them from Intf. And if I do that, I need to make Intf virtual everywhere it appears.
template <typename TImpl>
class PolygonInterface : public virtual Intf<TImpl> { ... };
class Polygon : public virtual Intf<PolygonImpl>, public PolygonInterface { ... }
OR I can store a TImpl*& in each Interface and construct them with a reference to the base Intf::impl. But that just means I have a pointer pointing back into myself for every interface included.
template <typename TImpl>
class PolygonInterface {
TImpl*& impl;
public:
PolygonInterface(TImpl*& i) : impl(i) {}
...};
Both of these solutions bloat the Intf class, add an extra dereference, and basically provide no benefit over straight polymorphism.
So, the question is, is there a third way, that I've missed that would solve this issue besides just duplicating the code everywhere (with its maintenance issues)?
TOTALLY SHOULD, BUT DOESN'T WORK: I wish there were base classes unions that just overlaid the class layouts and, for polymorphic classes, required that they have the exact same vtable layout. Then both Intf and ShapeInterface would each declare a single T* element and access it identically:
class Shape : public union Intf<ShapeImpl>, public union ShapeInterface<ShapeImpl> {};
I should note that your Impl class is nothing more than the reimplementation of a shared_ptr without the thread safety and all those cast bonuses.
Pimpl is nothing but a technic to avoid needless compile-time dependencies.
You do not need to actually know how a class is implemented to inherit from it. It would defeat the purpose of encapsulation (though your compiler does...).
So... I think that you are not trying to use Pimpl here. I would rather think this is a kind of Proxy patterns, since apparently:
Polygon1 numberOne;
Polygon2 numberTwo = numberOne;
numberTwo.changeData(); // affects data from numberOne too
// since they point to the same pointer!!
If you want to hide implementation details
Use Pimpl, but the real one, it means copying in depth during copy construction and assignment rather than just passing the pointer around (whether ref-counted or not, though ref-counted is preferable of course :) ).
If you want a proxy class
Just use a plain shared_ptr.
For inheritance
It does not matter, when you inherit from a class, how its private members are implemented. So just inherit from it.
If you want to add some new private members (usual case), then:
struct DerivedImpl;
class Derived: public Base // Base implemented with a Pimpl
{
public:
private:
std::shared_ptr<DerivedImpl> _data;
};
There is not much difference with classic implementation, as you can see, just that there is a pointer in lieu of a bunch of data.
BEWARE
If you forward declare DerivedImpl (which is the goal of Pimpl), then the destructor automatically generated by the compiler is... wrong.
The problem is that in order to generate the code for the destructor, the compiler needs the definition of DerivedImpl (ie: a complete type) in order to know how to destroy it, since a call to delete is hidden in the bowels of shared_ptr. However it may only generate a warning at compilation time (but you'll have a memory leak).
Furthermore, if you want an in-depth copy (rather than a shallow one, which consists in the copy and the original both pointing to the same DerivedImpl instance), you will also have to define manually the copy-constructor AND the assignment operator.
You may decide to create a better class that shared_ptr which will have deep-copy semantics (which could be called member_ptr as in cryptopp, or just Pimpl ;) ). This introduce a subtle bug though: while the code generated for the copy-constructor and the assignement operator could be thought of as correct, they are not, since once again you need a complete type (and thus the definition of DerivedImpl), so you will have to write them manually.
This is painful... and I'm sorry for you.
EDIT: Let's have a Shape discussion.
// Shape.h
namespace detail { class ShapeImpl; }
class Shape
{
public:
virtual void draw(Board& ioBoard) const = 0;
private:
detail::ShapeImpl* m_impl;
}; // class Shape
// Rectangle.h
namespace detail { class RectangleImpl; }
class Rectangle: public Shape
{
public:
virtual void draw(Board& ioBoard) const;
size_t getWidth() const;
size_t getHeight() const;
private:
detail::RectangleImpl* m_impl;
}; // class Rectangle
// Circle.h
namespace detail { class CircleImpl; }
class Circle: public Shape
{
public:
virtual void draw(Board& ioBoard) const;
size_t getDiameter() const;
private:
detail::CircleImpl* m_impl;
}; // class Circle
You see: neither Circle nor Rectangle care if Shape uses Pimpl or not, as its name implies, Pimpl is an implementation detail, something private that is not shared with the descendants of the class.
And as I explained, both Circle and Rectangle use Pimpl too, each with their own 'implementation class' (which can be nothing more than a simple struct with no method by the way).
I think you were right in that I didn't understand your question initially.
I think you're trying to force a square shape into a round hole... it don't quite fit C++.
You can force that your container holds pointers to objects of a given base-layout, and then allow objects of arbitrary composition to be actually pointed to from there, assuming that you as a programmer only actually place objects that in fact have identical memory layouts (member-data - there's no such thing as member-function-layout for a class unless it has virtuals, which you wish to avoid).
std::vector< boost::shared_ptr<IShape> > shapes;
NOTE at the absolute MINIMUM, you must still have a virtual destructor defined in IShape, or object deletion is going to fail miserably
And you could have classes which all take a pointer to a common implementation core, so that all compositions can be initialized with the element that they share (or it could be done statically as a template via pointer - the shared data).
But the thing is, if I try to create an example, I fall flat the second I try to consider: what is the data shared by all shapes? I suppose you could have a vector of Points, which then could be as large or small as any shape required. But even so, Draw() is truly polymorphic, it isn't an implementation that can possibly be shared by multiple types - it has to be customized for various classifications of shapes. i.e. a circle and a polygon cannot possibly share the same Draw(). And without a vtable (or some other dynamic function pointer construct), you cannot vary the function called from some common implementation or client.
Your first set of code is full of confusing constructs. Maybe you can add a new, simplified example that PURELY shows - in a more realistic way - what you're trying to do (and ignore the fact that C++ doesn't have the mechanics you want - just demonstrate what your mechanic should look like).
To my mind, I just don't get the actual practical application, unless you're tyring to do something like the following:
Take a COM class, which inherits from two other COM Interfaces:
class MyShellBrowserDialog : public IShellBrowser, public ICommDlgBrowser
{
...
};
And now I have a diamond inheritence pattern: IShellBrowser inherits ultimately from IUnknown, as does ICommDlgBrowser. But it seems incredibly silly to have to write my own IUnknown:AddRef and IUnknown::Release implementation, which is a highly standard implementation, because there's no way to cause the compiler to let another inherited class supply the missing virtual functions for IShellBrowser and/or ICommDlgBrowser.
i.e., I end up having to:
class MyShellBrowserDialog : public IShellBrowser, public ICommDlgBrowser
{
public:
virtual ULONG STDMETHODCALLTYPE AddRef(void) { return ++m_refcount; }
virtual ULONG STDMETHODCALLTYPE Release(void) { return --m_refcount; }
...
}
because there's no way I know of to "inherit" or "inject" those function implementations into MyShellBrowserDialog from anywhere else which actually fill-in the needed virtual member function for either IShellBrowser or ICommDlgBrowser.
I can, if the implementations were more complex, manually link up the vtable to an inherited implementor if I wished:
class IUnknownMixin
{
ULONG m_refcount;
protected:
IUnknonwMixin() : m_refcount(0) {}
ULONG AddRef(void) { return ++m_refcount; } // NOTE: not virutal
ULONG Release(void) { return --m_refcount; } // NOTE: not virutal
};
class MyShellBrowserDialog : public IShellBrowser, public ICommDlgBrowser, private IUnknownMixin
{
public:
virtual ULONG STDMETHODCALLTYPE AddRef(void) { return IUnknownMixin::AddRef(); }
virtual ULONG STDMETHODCALLTYPE Release(void) { return IUnknownMixin::Release(); }
...
}
And if I needed the mix-in to actually refer to the most-derived class to interact with it, I could add a template parameter to IUnknownMixin, to give it access to myself.
But what common elements could my class have or benefit by that IUnknownMixin couldn't itself supply?
What common elements could any composite class have that various mixins would want to have access to, which they needed to derive from themselves? Just have the mixins take a type parameter and access that. If its instance data in the most derived, then you have something like:
template <class T>
class IUnknownMixin
{
T & const m_outter;
protected:
IUnknonwMixin(T & outter) : m_outter(outter) {}
// note: T must have a member m_refcount
ULONG AddRef(void) { return ++m_outter.m_refcount; } // NOTE: not virtual
ULONG Release(void) { return --m_outter.m_refcount; } // NOTE: not virtual
};
Ultimately your question remains somewhat confusing to me. Perhaps you could create that example that shows your preferred-natural-syntax that accomplishes something clearly, as I just don't see that in your initial post, and I can't seem to sleuth it out from toying with these ideas myself.
I have seen lots of solutions to this basic conundrum: polymorphism + variation in interfaces.
One basic approach is to provide a way to query for extended interfaces - so you have something along the lines of COM programming under Windows:
const unsigned IType_IShape = 1;
class IShape
{
public:
virtual ~IShape() {} // ensure all subclasses are destroyed polymorphically!
virtual bool isa(unsigned type) const { return type == IType_IShape; }
virtual void Draw() = 0;
virtual void Erase() = 0;
virtual void GetBounds(std::pair<Point> & bounds) const = 0;
};
const unsigned IType_ISegmentedShape = 2;
class ISegmentedShape : public IShape
{
public:
virtual bool isa(unsigned type) const { return type == IType_ISegmentedShape || IShape::isa(type); }
virtual void AddSegment(const Point & a, const Point & b) = 0;
virtual unsigned GetSegmentCount() const = 0;
};
class Line : public IShape
{
public:
Line(std::pair<Point> extent) : extent(extent) { }
virtual void Draw();
virtual void Erase();
virtual void GetBounds(std::pair<Point> & bounds);
private:
std::pair<Point> extent;
};
class Polygon : public ISegmentedShape
{
public:
virtual void Draw();
virtual void Erase();
virtual void GetBounds(std::pair<Point> & bounds);
virtual void AddSegment(const Point & a, const Point & b);
virtual unsigned GetSegmentCount() const { return vertices.size(); }
private:
std::vector<Point> vertices;
};
Another option would be to make a single richer base interface class - which has all the interfaces you need, and then to simply define a default, no-op implementation for those in the base class, which returns false or throws to indicate that it isn't supported by the subclass in question (else the subclass would have provided a functional implementation for this member function).
class Shape
{
public:
struct Unsupported
{
Unsupported(const std::string & operation) : bad_op(operation) {}
const std::string & AsString() const { return bad_op; }
std::string bad_op;
};
virtual ~Shape() {} // ensure all subclasses are destroyed polymorphically!
virtual void Draw() = 0;
virtual void Erase() = 0;
virtual void GetBounds(std::pair<Point> & bounds) const = 0;
virtual void AddSegment(const Point & a, const Point & b) { throw Unsupported("AddSegment"); }
virtual unsigned GetSegmentCount() const { throw Unsupported("GetSegmentCount"); }
};
I hope that this helps you to see some possibilities.
Smalltalk had the wonderful attribute of being able to ask the meta-type-system whether a given instance supported a particular method - and it supported having a class-handler that could execute anytime a given instance was told to perform an operation it didn't support - along with what operation that was, so you could forward it as a proxy, or you could throw a different error, or simply quietly ignore that operation as a no-op).
Objective-C supports all of those same modalities as Smalltalk! Very, very cool things can be accomplished by having access to the type-system at runtime. I assume that .NET can pull of some crazy cool stuff along those lines (though I doubt that its nearly as elegant as Smalltalk or Objective-C, from what I've seen).
Anyway, ... good luck :)