std::tr1::function::target<TFuncPtr> and co-/contravariance - c++

Since I love progamming in both C# and C++, I'm about to implementing a C#-like event system as a solid base for my planned C++ SFML-GUI.
This is only an excerpt of my code and I hope this clarifies my concept:
// Event.h
// STL headers:
#include <functional>
#include <type_traits>
#include <iostream>
// boost headers:
#include <boost/signals/trackable.hpp>
#include <boost/signal.hpp>
namespace Utils
{
namespace Gui
{
#define IMPLEMENTS_EVENT(EVENTNAME, EVENTARGS) public: \
Utils::Gui::IEvent<EVENTARGS>& EVENTNAME() { return m_on##EVENTNAME; } \
protected: \
virtual void On##EVENTNAME(EVENTARGS& e) { m_on##EVENTNAME(this, e); } \
private: \
Utils::Gui::Event<EVENTARGS> m_on##EVENTNAME;
#define MAKE_EVENTFIRING_CLASS(EVENTNAME, EVENTARGS) class Fires##EVENTNAME##Event \
{ \
IMPLEMENTS_EVENT(EVENTNAME, EVENTARGS); \
};
class EventArgs
{
public:
static EventArgs Empty;
};
EventArgs EventArgs::Empty = EventArgs();
template<class TEventArgs>
class EventHandler : public std::function<void (void*, TEventArgs&)>
{
static_assert(std::is_base_of<EventArgs, TEventArgs>::value,
"EventHandler must be instantiated with a TEventArgs template paramater type deriving from EventArgs.");
public:
typedef void Signature(void*, TEventArgs&);
typedef void (*HandlerPtr)(void*, TEventArgs&);
EventHandler() : std::function<Signature>() { }
template<class TContravariantEventArgs>
EventHandler(const EventHandler<TContravariantEventArgs>& rhs)
: std::function<Signature>(reinterpret_cast<HandlerPtr>(*rhs.target<EventHandler<TContravariantEventArgs>::HandlerPtr>()))
{
static_assert(std::is_base_of<TContravariantEventArgs, TEventArgs>::value,
"The eventHandler instance to copy does not suffice the rules of contravariance.");
}
template<class F>
EventHandler(F f) : std::function<Signature>(f) { }
template<class F, class Allocator>
EventHandler(F f, Allocator alloc) : std::function<Signature>(f, alloc) { }
};
template<class TEventArgs>
class IEvent
{
public:
typedef boost::signal<void (void*, TEventArgs&)> SignalType;
void operator+= (const EventHandler<TEventArgs>& eventHandler)
{
Subscribe(eventHandler);
}
void operator-= (const EventHandler<TEventArgs>& eventHandler)
{
Unsubscribe(eventHandler);
}
virtual void Subscribe(const EventHandler<TEventArgs>& eventHandler) = 0;
virtual void Subscribe(const EventHandler<TEventArgs>& eventHandler, int group) = 0;
virtual void Unsubscribe(const EventHandler<TEventArgs>& eventHandler) = 0;
};
template<class TEventArgs>
class Event : public IEvent<TEventArgs>
{
public:
virtual void Subscribe(const EventHandler<TEventArgs>& eventHandler)
{
m_signal.connect(*eventHandler.target<EventHandler<TEventArgs>::HandlerPtr>());
}
virtual void Subscribe(const EventHandler<TEventArgs>& eventHandler, int group)
{
m_signal.connect(group, *eventHandler.target<EventHandler<TEventArgs>::HandlerPtr>());
}
virtual void Unsubscribe(const EventHandler<TEventArgs>& eventHandler)
{
m_signal.disconnect(*eventHandler.target<EventHandler<TEventArgs>::HandlerPtr>());
}
void operator() (void* sender, TEventArgs& e)
{
m_signal(sender, e);
}
private:
SignalType m_signal;
};
class IEventListener : public boost::signals::trackable
{
};
};
};
As you can see, I'm using boost::signal as my actual event system, but I encapsulate it with the IEvent interface (which is actually an abstract class) to prevent event listeners to fire the event via operator().
For convenience I overloaded the add-assignment and subtract-assignment operators. If I do now derive my event listening classes from IEventListener, I am able to write code without needing to worry about dangling function pointer in the signal.
So far I'm testing my results, but I have trouble with std::tr1::function::target<TFuncPtr>():
class BaseEventArgs : public Utils::Gui::EventArgs
{
};
class DerivedEventArgs : public BaseEventArgs
{
};
void Event_BaseEventRaised(void* sender, BaseEventArgs& e)
{
std::cout << "Event_BaseEventRaised called";
}
void Event_DerivedEventRaised(void* sender, DerivedEventArgs& e)
{
std::cout << "Event_DerivedEventRaised called";
}
int main()
{
using namespace Utils::Gui;
typedef EventHandler<BaseEventArgs>::HandlerPtr pfnBaseEventHandler;
typedef EventHandler<DerivedEventArgs>::HandlerPtr pfnNewEventHandler;
// BaseEventHandler with a function taking a BaseEventArgs
EventHandler<BaseEventArgs> baseEventHandler(Event_BaseEventRaised);
// DerivedEventHandler with a function taking a DerivedEventArgs
EventHandler<DerivedEventArgs> newEventHandler(Event_DerivedEventRaised);
// DerivedEventHandler with a function taking a BaseEventArgs -> Covariance
EventHandler<DerivedEventArgs> covariantBaseEventHandler(Event_BaseEventRaised);
const pfnBaseEventHandler* pBaseFunc = baseEventHandler.target<pfnBaseEventHandler>();
std::cout << "baseEventHandler function pointer is " << ((pBaseFunc != nullptr) ? "valid" : "invalid") << std::endl;
const pfnNewEventHandler* pNewFunc = newEventHandler.target<pfnNewEventHandler>();
std::cout << "baseEventHandler function pointer is " << ((pNewFunc != nullptr) ? "valid" : "invalid") << std::endl;
// Here is the error, covariantBaseEventHandler actually stores a pfnBaseEventHandler:
pNewFunc = covariantBaseEventHandler.target<pfnNewEventHandler>();
std::cout << "covariantBaseEventHandler as pfnNewEventHandler function pointer is " << ((pNewFunc != nullptr) ? "valid" : "invalid") << std::endl;
// This works as expected, but template forces compile-time knowledge of the function pointer type
pBaseFunc = covariantBaseEventHandler.target<pfnBaseEventHandler>();
std::cout << "covariantBaseEventHandler as pfnBaseEventHandler function pointer is " << ((pBaseFunc != nullptr) ? "valid" : "invalid") << std::endl;
return EXIT_SUCCESS;
}
The EventHandler<TEventArgs>::target<TFuncPtr>() method will only return a valid pointer if TFuncPtr is the exact same type as stored in the Functor, regardless of covariance.
Because of the RTTI check, it prohibits to access the pointer as a standard weakly-typed C function pointer, which is kind of annoying in cases like this one.
The EventHandler is of type DerivedEventArgs but nevertheless points to a pfnBaseEventHandler function even though the function ran through the constructor.
That means, that std::tr1::function itself "supports" contravariance, but I can't find a way of simply getting the function pointer out of the std::tr1::funcion object if I don't know its type at compile time which is required for a template argument.
I would appreciate in cases like this that they added a simple get() method like they did for RAII pointer types.
Since I'm quite new to programming, I would like to know if there is a way to solve this problem, preferrably at compile-time via templates (which I think would be the only way).

Just found a solution for the problem. It seems that I just missed a cast at a different location:
template<class TEventArgs>
class EventHandler : public std::function<void (void*, TEventArgs&)>
{
public:
typedef void Signature(void*, TEventArgs&);
typedef void (*HandlerPtr)(void*, TEventArgs&);
// ...
template<class TContravariantEventArgs>
EventHandler(const EventHandler<TContravariantEventArgs>& rhs)
: std::function<Signature>(reinterpret_cast<HandlerPtr>(*rhs.target<EventHandler<TContravariantEventArgs>::HandlerPtr>()))
{
static_assert(std::is_base_of<TContravariantEventArgs, TEventArgs>::value,
"The eventHandler instance to copy does not suffice the rules of contravariance.");
}
// ...
}
This works how it is supposed to work. Thank you nonetheless for giving me a smooth introduction into this really awesome community!

Related

How to use polymorphism to execute command on objects, which have no common base class?

I am receiveing commands through json, which I insert in to a pipe. For this reason thye must have the same base class.
The pipe is read by a pipe handler, some commands are consumed by the pipe handler, others have to be passed down to a device, which is a member of the pipe handler. I could simply do this:
class Command{};
class HandlerCommand : public Command {
void execute(Handler* h);
};
class DeviceCommand : public Command {
void execute(Device* d);
};
Command* c = pipe.receive();
if (const auto hc = dynamic_cast<const HandlerCommand*>(c)) { hc.execute( **handlerptr** ); }
else if (const auto dc = dynamic_cast<const DeviceCommand*>(c)) { dc.execute( **deviceptr** );}
Device and pipehandler should not have the same base, since they have no common methods, fields, they are conceptually different.
Is there a way to avoid using dynamic cast here. I was thinking maybe there is some neat design pattern for this, but couldn`t quit come up with a better solution.
EDIT: did not derive DeviceCommand and HandlerCommand from command, fixed this.
You cannot use polymorphism of two things which have nothing in common. You will need the same base class/interface: in your case Command. As mentioned above your base class requires a pure virtual function that must be implemented by the derived classes. I will utilize a Command * clone()const prototype, which could be very useful later on. Please introduce a virtual destructor of your base class, otherwise, to track down this memory error could be a pain in the ass. Note, regarding your dynamic_cast the member function execute, must be const. You may try this:
#include <iostream>
#include <vector>
class Handler
{
public:
Handler(){}
};
class Device
{
public:
Device(){}
};
enum class CommandType{Handler,Devise};
class Command
{
public:
virtual ~Command(){}
virtual Command*clone()const = 0;
virtual CommandType getType()const = 0;
};
class HandlerCommand : public Command {
public:
HandlerCommand():Command(){}
void execute(Handler* h) const
{
std::cout << __FUNCTION__<<"\n";
}
HandlerCommand*clone()const { return new HandlerCommand(*this); }
CommandType getType()const { return CommandType::Handler; }
};
class DeviceCommand : public Command{
public:
DeviceCommand():Command(){}
void execute(Device* d)const
{
std::cout << __FUNCTION__<<"\n";
}
DeviceCommand*clone()const { return new DeviceCommand(*this); }
CommandType getType()const { return CommandType::Devise; }
};
int main()
{
Device dev;
Handler handler;
std::vector<Command*> pipe{ new HandlerCommand(), new DeviceCommand() };
while (!pipe.empty())
{
Command* c = pipe.back();
if (c->getType() == CommandType::Handler) { static_cast<const HandlerCommand*>(c)->execute(&handler); }
else if (c->getType() == CommandType::Devise ) { static_cast<const DeviceCommand*>(c)->execute(&dev); }
delete c;
pipe.pop_back();
}
std::cin.get();
}
outputs:
DeviceCommand::execute
HandlerCommand::execute
Version 2.0 using std::variant. You will need at least C++17 to compile this. Note, a single pipe container can exclusively comprise one of the mentioned classes within the variant. So there is no casting anymore, but you will need two pipes. Because of that, I introduced a time stamp variable.
#include <iostream>
#include <vector>
#include <variant>
class Handler
{
public:
Handler() {}
};
class Device
{
public:
Device() {}
};
class HandlerCommand {
int ts;
public:
HandlerCommand(int _ts):ts(_ts) {}
void execute(Handler* h) const
{
std::cout << ts << ": "<< __FUNCTION__ << "\n";
}
int timeStamp()const { return ts; }
};
class DeviceCommand {
int ts;
public:
DeviceCommand(int _ts) :ts(_ts) {}
void execute(Device* d)const
{
std::cout << ts << ": " << __FUNCTION__ << "\n";
}
int timeStamp()const { return ts; }
};
using Command = std::variant<HandlerCommand, DeviceCommand>;
int main()
{
Device dev;
Handler handler;
std::vector<Command> hcPipe{HandlerCommand(2),HandlerCommand(5)};
std::vector<Command> dcPipe{DeviceCommand(1),DeviceCommand(4)};
Command single = DeviceCommand(0);
if (single.index() == 0)
{
std::get<HandlerCommand>(single).execute(&handler);
}
else
{
std::get<DeviceCommand>(single).execute(&dev);
}
while (!hcPipe.empty() || !dcPipe.empty())
{
if (!hcPipe.empty() && (dcPipe.empty() || std::get<HandlerCommand>(hcPipe.front()).timeStamp() < std::get<DeviceCommand>(dcPipe.front()).timeStamp()))
{
std::get<HandlerCommand>(hcPipe.front()).execute(&handler);
hcPipe.erase(hcPipe.begin());
}
else
{
std::get<DeviceCommand>(dcPipe.front()).execute(&dev);
dcPipe.erase(dcPipe.begin());
}
}
std::cin.get();
}
outputs:
0: DeviceCommand::execute
1: DeviceCommand::execute
2: HandlerCommand::execute
4: DeviceCommand::execute
5: HandlerCommand::execute

creating type vector in c++

I have several classes that each of them has an ID and the Id is passed to the class as a template parameter:
typedef class1<1> baseClass;
typedef class2<2> baseClass;
typedef class<100> baseClass;
Now I need a map so if I can associate 1 with Class1 and 2 with Class2 and so on.
How can I create such vector? I am working on a header only library, so it should be a header only definition.
I am looking something that do the same thing that this code would do (if someone can compile it!):
std::map<int,Type> getMap()
{
std::map<int,Type> output;
output.add(1,class1);
output.add(2,class2);
output.add(100,class100);
}
The idea is that when I get as input 1, I create a class1 and when I receive 2, I create class2.
Any suggestion is very appreciated.
using this data, then I can write a function like this:
void consume(class1 c)
{
// do something interesting with c
}
void consume(class2 c)
{
// do something interesting with c
}
void consume(class3 c)
{
// do something interesting with c
}
void consume(int id,void * buffer)
{
auto map=getMap();
auto data= new map[id](buffer); // assuming that this line create a class based on map, so the map provide the type that it should be created and then this line create that class and pass buffer to it.
consume(data);
}
As a sketch:
class BaseClass { virtual ~BaseClass() = default; };
template<std::size_t I>
class SubClass : public BaseClass {};
namespace detail {
template<std::size_t I>
std::unique_ptr<BaseClass> makeSubClass() { return { new SubClass<I> }; }
template<std::size_t... Is>
std::vector<std::unique_ptr<BaseClass>(*)> makeFactory(std::index_sequence<Is...>)
{ return { makeSubclass<Is>... }; }
}
std::vector<std::unique_ptr<BaseClass>(*)> factory = detail::makeFactory(std::make_index_sequence<100>{});
We populate the vector by expanding a parameter pack, so we don't have to write out all 100 instantiations by hand. This gives you Subclass<0> at factory[0], Subclass<1> at factory[1], etc. up to Subclass<99> at factory[99].
If I understand correctly you want a map to create different types according to a given number.
If that is so, then the code should look something like this:
class Base
{
};
template <int number>
class Type : public Base
{
public:
Type()
{
std::cout << "type is " << number << std::endl;
}
};
using Type1 = Type<1>;
using Type2 = Type<2>;
using Type3 = Type<3>;
using CreateFunction = std::function<Base*()>;
std::map<int, CreateFunction> creators;
int main()
{
creators[1] = []() -> Base* { return new Type1(); };
creators[2] = []() -> Base* { return new Type2(); };
creators[3] = []() -> Base* { return new Type3(); };
std::vector<Base*> vector;
vector.push_back(creators[1]());
vector.push_back(creators[2]());
vector.push_back(creators[3]());
}
output:
type is 1
type is 2
type is 3
If you need only to create object, it would be enough to implement template creator function like:
template<int ID>
Base<ID> Create()
{
return Base<ID>();
}
And then use it:
auto obj1 = Create<1>();
auto obj2 = Create<2>();
// etc
Working example: https://ideone.com/urh7h6
Due to C++ being a statically-typed language, you may choose to either have arbitrary types that do a fixed set of things or have a fixed set of types do arbitrary things, but not both.
Such limitations is embodied by std::function and std::variant. std::function can have arbitrary types call operator() with a fixed signature, and std::variant can have arbitrary functions visit the fixed set of types.
Since you already said the types may be arbitrary, you may only have a fixed set of things you can do with such a type (e.g. consume). The simplest way is to delegate the hard work to std::function
struct Type
{
template<typename T>
Type(T&& t)
: f{[t = std::forward<T>(t)]() mutable { consume(t); }} {}
std::function<void()> f;
};
void consume(Type& t)
{
t.f();
}
What you are looking for is either the Stategy pattern:
#include <iostream>
#include <memory>
#include <string>
#include <vector>
class A {
public:
A() {}
virtual void doIt() {};
};
class Aa : public A {
public:
Aa() {}
virtual void doIt() {
std::cout << "do it the Aa way" << std::endl;
}
};
class Ab : public A {
public:
Ab() {}
virtual void doIt() {
std::cout << "do it the Ab way" << std::endl;
}
};
class Concrete {
public:
Concrete(std::string const& type) {
if (type == ("Aa")) {
_a.reset(new Aa());
} else if (type == "Ab") {
_a.reset(new Ab());
}
}
void doIt () const {
_a->doIt();
}
private:
std::unique_ptr<A> _a;
};
int main() {
std::vector<Concrete> vc;
vc.push_back(Concrete("Aa"));
vc.push_back(Concrete("Ab"));
for (auto const& i : vc) {
i.doIt();
}
return 0;
}
Will output:
do it the Aa way
do it the Ab way

How to work around C++ pointer-to-member function limitation

C++ has limited ability to use pointer-to-member functions. I need something that will allow me to dynamically choose a callback member function, in order to use the Visitor pattern of the XMLNode::Accept(XMLVisitor *visitor) method from the TinyXML2 library.
To use XMLNode::Accept(), I must call it with a class which implements the XMLVisitor interface. Hence:
typedef bool (*Callback)(string, string);
class MyVisitor : public tinyxml2::XMLVisitor {
public:
bool VisitExit(const tinyxml2::XMLElement &e) {
callback(e.Name(), e.GetText());
}
Callback callback;
}
This works fine if my caller is NOT an object which wants to use one of its own methods as a callback function (so that it can access class variables). For example, this works:
bool myCallBackFunc(string e, string v) {
cout << "Element " << e << " has value " << v << endl;
return true;
}
int main(...) {
tinyxml2::XMLDocument doc;
doc.LoadFile("somefile.xml");
MyVisitor visit;
visit.callback = myCallBackFunc;
doc.Accept(&visit);
}
However, in my use case, the parsing is done inside a method in a class. I have multiple applications which have similar but unique such classes. I'd like to use only one generic MyVisitor class, rather than have the visitor class have unique knowledge of the internals of each class which will call it.
Thus, it would be convenient if the callback function were a method in each calling class so that I can affect the internal state of the object instantiated from that calling class.
Top level: I have 5 server applications which talk to 5 different trading partners, who all send XML responses, but each is enough different that each server app has a class which is unique to that trading partner. I'm trying to follow good OO and DRY design, and avoid extra classes having unique knowledge while still doing basically the same work.
Here's the class method I want Accept() to call back.
ServiceClass::changeState(string elem, string value) {
// Logic which sets member vars based on element found and its value.
}
Here's the class method which will call Accept() to walk the XML:
ServiceClass::processResponse(string xml) {
// Parse XML and do something only if certain elements present.
tinyxml2::XMLDocument doc;
doc.Parse(xml.c_str(), xml.length());
MyVisitor visit;
visit.callback = &changeState; // ERROR. Does not work.
visit.callback = &ServiceClass::changeState; // ERROR. Does not work.
doc.Accept(&visit);
}
What's a simple way to get what I want? I can imagine more classes with derived classes unique to each situation, but that seems extremely verbose and clumsy.
Note: In the interest of brevity, my sample code above has no error checking, no null checking and may even have minor errors (e.g. treating const char * as a string ;-).
Below is the std::bind(..) example for what you're trying to do in C++11. For earlier C++ versions you could use the boost::bind utilities.
Fix your MyVisitor::VisitExit(...) method to return a boolean, by the way.
The code is converting const char * to std::string. tinyxml2 does not guarantee that the char * arguments from Name() or GetText() are not null. In fact in my experience they will be null at some point. You should guard against this. For the sake of not modifying your example too much I've not protected against this possibility everywhere in the example.
typedef bool(*Callback)(string, string);
using namespace std;
class MyVisitor : public tinyxml2::XMLVisitor {
public:
bool VisitExit(const tinyxml2::XMLElement &e) {
// return callback(e.Name(), e.GetText());
return true;
}
Callback callback;
};
/** Typedef to hopefully save on confusing syntax later */
typedef std::function< bool(const char * element_name, const char * element_text) > visitor_fn;
class MyBoundVisitor : public tinyxml2::XMLVisitor {
public:
MyBoundVisitor(visitor_fn fn) : callback(fn) {}
bool VisitExit(const tinyxml2::XMLElement &e) {
return callback(e.Name() == nullptr ? "\0" : e.Name(), e.GetText() == nullptr ? "\0": e.GetText());
}
visitor_fn callback;
};
bool
myCallBackFunc(string e, string v) {
cout << "Element " << e << " has value " << v << endl;
return true;
}
int
main()
{
tinyxml2::XMLDocument doc;
doc.LoadFile("somefile.xml");
MyVisitor visit;
visit.callback = myCallBackFunc;
doc.Accept(&visit);
visitor_fn fn = myCallBackFunc; // copy your function pointer into the std::function<> type
MyBoundVisitor visit2(fn); // note: declare this outside the Accept(..) , do not use a temporary
doc.Accept(&visit2);
}
So from within the ServiceClass method you'd do:
ServiceClass::processResponse(string xml) {
// Parse XML and do something only if certain elements present.
tinyxml2::XMLDocument doc;
doc.Parse(xml.c_str(), xml.length());
// presuming changeState(const char *, const char *) here
visitor_fn fn = std::bind(&ServiceClass::changeState,this,std::placeholders::_1,std::placeholders::_2);
MyBoundVisitor visit2(fn); // the method pointer is in the fn argument, together with the instance (*this) it is a method for.
doc.Accept(&visit);
}
You can use generics in order to support whichever callback you'd like.
I've tried to mock the classes of the library in order to give you a fully runnable example:
#include <string>
#include <iostream>
#include <functional>
class XmlNode {
public:
XmlNode(const std::string& n, const std::string t) : name(n), txt(t) {}
const std::string& Name() const { return name; }
const std::string& GetText() const { return txt; }
private:
std::string name;
std::string txt;
};
class XMLVisitor {
public:
virtual void VisitExit(const XmlNode& node) = 0;
virtual ~XMLVisitor() {}
};
template<typename T>
class MyVisitor : XMLVisitor {
public:
MyVisitor() {}
void myInnerPrint(const XmlNode& node) {
std::cout << "MyVisitor::myInnerPrint" << std::endl;
std::cout << "node.Name(): " << node.Name() << std::endl;
std::cout << "node.GetText(): " << node.GetText() << std::endl;
}
void SetCallback(T newCallback) {
callback = newCallback;
}
virtual void VisitExit(const XmlNode& node) {
callback(node);
}
T callback;
};
int main() {
XmlNode node("In", "Member");
MyVisitor<std::function<void(const XmlNode&)>> myVisitor;
auto boundCall =
[&myVisitor](const XmlNode& node) -> void {
myVisitor.myInnerPrint(node);
};
myVisitor.SetCallback(boundCall);
myVisitor.VisitExit(node);
return 0;
}
First define a template and a helper function:
namespace detail {
template<typename F>
struct xml_visitor : tinyxml2::XMLVisitor {
xml_visitor(F&& f) : f_(std::move(f)) {}
virtual void VisitExit(const tinyxml2::XMLElement &e) {
f_(e);
}
private:
F f_;
};
}
template<class F>
auto make_xml_visitor(F&& f)
{
return detail::xml_visitor<std::decay_t<F>>(std::forward<F>(f));
}
Then use the helper function to construct a custom visitor from a lambda which captures this:
void ServiceClass::processResponse(std::string xml) {
// Parse XML and do something only if certain elements present.
tinyxml2::XMLDocument doc;
doc.Parse(xml.c_str(), xml.length());
auto visit = make_xml_visitor([this](const auto& elem)
{
this->changeState(elem.Name(), elem.GetText);
});
doc.Accept(std::addressof(visit));
}
The rule is that a function pointer must always accept a void * which is passed in to the module which calls it, and passed back. Or use a lambda which is the same thing with some of the machinery automated for you. (The void * is the "closure").
So
typedef bool (*Callback)(string, string, void *context);
class MyVisitor : public tinyxml2::XMLVisitor {
public:
bool VisitExit(const tinyxml2::XMLElement &e) {
callback(e.Name(), e.GetText(), contextptr);
}
Callback callback;
void *contextptr;
}
bool myCallBackFunc(string e, string v, void *context) {
ServiceClass *service = (ServiceClass *) context;
cout << "Element " << e << " has value " << v << endl;
service->ChangeState(e, v);
return true;
}

How to iterate through a collection of instances of a class and access its template member

So, I have got the following classes and methods:
Property: Has a single member of type int (named mTag)
TypedProperty: Inherits from the Property class and adds a member called mValue of type T to it.
PropertyList: A class which Maintains a std::set of Property and has an Add and Print method.
CheckSubset: A method which checks if a std::set is included in another set.
I don't know how I should implement the CheckSubset method. Because I do not know how to iterate through a set<Property> and access to the template member (mValue). I also tried to use the includes method, which did not work (even if it worked, I would have no idea how it did!). The same problem exists in the PropertyList::Print method, where I do not know what cast should be used.
Any advice on the implementation of CheckSubset and Print methods would be appreciated!
Updated source code (using pointer)
#include <string>
#include <iostream>
#include <set>
#include <algorithm>
#include <tr1/memory>
using namespace std;
/////////////////// Property Class //////////////////////
class Property
{
public:
Property(){};
Property(const int tag)
: mTag(tag) {}
virtual ~Property() {}
int mTag;
bool operator<(const Property &property) const
{
return mTag < property.mTag;
}
};
/////////////////// TypedProperty Class /////////////////
template< typename T >
class TypedProperty : public Property
{
public:
TypedProperty (const int tag, const T& value)
: Property(tag), mValue(value){}
T mValue;
};
/////////////////////////////////////////////////////////
typedef std::tr1::shared_ptr<Property> PropertyPtr;
/////////////////// PropertyList Class /////////////////
class PropertyList
{
public:
PropertyList(){};
virtual ~PropertyList(){};
template <class T>
void Add(int tag, T value)
{
PropertyPtr ptr(new TypedProperty<T>(tag, value));
mProperties.insert(ptr);
}
void Print()
{
for(set<PropertyPtr>::iterator itr = mProperties.begin(); itr != mProperties.end(); itr++)
{
cout << ((PropertyPtr)*itr)->mTag << endl;
// What should I do to print mValue? I do not know its type
// what should *itr be cast to?
}
}
set<PropertyPtr> mProperties;
};
//////////////////// Check Subset ///////////////////////
/*
* Checks if subset is included in superset
*/
bool CheckSubset(set<PropertyPtr> &superset, set<PropertyPtr> &subset)
{
// How can I iterate over superset and subset values while I do not know
// the type of mValue inside each Property?
// I also tried the following method which does not seem to work correctly
return includes(superset.begin(), superset.end(),
subset.begin(), subset.end());
}
int main()
{
PropertyList properties1;
properties1.Add(1, "hello");
properties1.Add(2, 12);
properties1.Add(3, 34);
properties1.Add(4, "bye");
properties1.Print();
PropertyList properties2;
properties2.Add(1, "hello");
properties2.Add(3, 34);
if(CheckSubset(properties1.mProperties, properties2.mProperties)) // should be true
cout << "properties2 is subset!" << endl;
PropertyList properties3;
properties3.Add(1, "hello");
properties3.Add(4, 1234);
if(CheckSubset(properties1.mProperties, properties3.mProperties)) // should be false
cout << "properties3 is subset!" << endl;
}
What you want, cannot be done with the current design.
Your approach fails with std::set<Property>.
std::set<Property> will slice. That means that it will only copy the Property part and forget to copy the additional TypedProperty<T> members.
As a result, inside PropertyList::print(), there is no way to access the mValue.
If you want to store TypedProperty<T>s inside a std::set, you must use some sort of pointer. I.e. either std::set<Property*>, or a smart pointer version.
For solving the problem in Print method of PropertyList, you could write a Print method for TypedProperty class, which prints its tag and value.
But about the problem in accessing mValue which you want to do some operations on, I can't think of a way using normal types and templates to get the mValue without engaging your parent class Property with template type of TypedProperty (which seems undesirable). But you could get the address of mValue and cast it to void* to eliminate the type problem. This way you will face another problem, that you can not point to value of a void* pointer, so you can not work with your pointer in parent level. Therefore, you should write a method (implemented by TypedProperty) that takes a void* pointer and casts it to the type defined in child and perform the desired operation.
For example in the following code, I assumed you want to check equality of a value in a TypedProperty with another one of the same type (IsEqual method).
Now you can implement simply CheckSubset using IsEqual (checking two elements would be like: superItr->IsEqual(subItr->GetValue())).
class Property
{
public:
Property(){};
Property(const int tag)
: mTag(tag) {}
virtual ~Property() {}
virtual void* GetValue() = 0;
virtual bool IsEqual(void* value) = 0;
virtual void Print() = 0;
int mTag;
bool operator<(const Property &property) const
{
return mTag < property.mTag;
}
};
template< typename T >
class TypedProperty : public Property
{
public:
TypedProperty (const int tag, const T& value)
: Property(tag), mValue(value){}
void* GetValue()
{
return &mValue;
}
bool IsEqual(void* value)
{
return *((T*)value) == mValue;
}
void Print()
{
cout << "Tag: " << mTag << ", Value: " << mValue << endl;
}
T mValue;
};
typedef std::tr1::shared_ptr<Property> PropertyPtr;
class PropertyList
{
public:
PropertyList(){};
virtual ~PropertyList(){};
template <class T>
void Add(int tag, T value)
{
PropertyPtr ptr(new TypedProperty<T>(tag, value));
mProperties.insert(ptr);
}
void Print()
{
cout << "-----------" << endl;
for(set<PropertyPtr>::iterator itr = mProperties.begin(); itr != mProperties.end(); itr++)
{
(*itr)->Print();
}
}
set<PropertyPtr> mProperties;
};

Implementing Observer pattern when observers wish to observe different items

Below I have attempted to write a sudo code for the Observer pattern when observers wish to observe different items.
Ignore the syntax errors. I wish to know if this is the correct way to implement this. If not, please suggest better ways.
// Used by the subject for keeping a track of what items the observer wants to observe
typedef struct observerListStruct
{
bool getTemperatureUpdate;
bool getHumidityUpdate;
bool getPressureUpdate;
observer's-function pointer's address;
};
// Subject's class
class weatherData
{
public:
// Observers will call this function to register themselves. The function pointer will point to the function which will get called when updates are available.
void registerObservers (observer obj, observer's-FunctionPointer)
{
// This observer's function returns which items to observe.
char* f = obj.returnItemsToObserve ();
if f[0] = `1`
observerListStruct.getTemperatureUpdate = true;
}
void unregisterObservers (observer obj) {}
private:
vector <observerListStruct> observerList;
float temperature;
float humidity;
float pressure;
void notifyObservers () {}
float getTemperature () {}
float getHumidity () {}
float getPressure () {}
} weatherDataObject;
// Base class for observers containing common functions
class observers
{
char ItemsToObserve [3] = {1, 2, 3};
// This observer's function returns which items to observe. Default - return all items
virtual char* returnItemsToObserve ()
{
return ItemsToObserve;
}
};
class observerDisplayElementCurrentConditions : public observers
{
char ItemsToObserve [3] = {1, 2};
char* returnItemsToObserve ()
{
return ItemsToObserve;
}
// this function will be used as a function pointer for getting updates
void getUpdatesAndDisplayWeatherData (float, float) {}
};
A more pattern oriented solution (but without function pointers) could be the following. You could parametrize the WeatherObserver-Class to get only the values, you want.
#include <list>
#include <iostream>
class Observable; //forward declaration
//Base class for all observers
class Observer {
friend class Observable; //allow access to observedSubject
protected:
Observable *observedSubject;
public:
virtual void update(){};
};
//Base class for all observables
class Observable {
private:
std::list<Observer * const> m_registeredObservers;
public:
~Observable()
{
//delete the observers
std::list<Observer * const>::iterator it = m_registeredObservers.begin();
while (it != m_registeredObservers.end())
{
delete *it;
it = m_registeredObservers.erase(it);
}
}
void addObserver(Observer * const _pObserver)
{
_pObserver->observedSubject = this;
m_registeredObservers.push_back(_pObserver);
}
void removeObserver(Observer * const _pObserver)
{
m_registeredObservers.remove(_pObserver);
delete _pObserver;
}
void notifyObservers()
{
std::list<Observer * const>::iterator it = m_registeredObservers.begin();
while (it != m_registeredObservers.end())
{
(*it)->update();
it++;
}
}
};
//Concrete Observable
class WeatherData : public Observable {
private:
float temperature;
float humidity;
float pressure;
public:
WeatherData(): temperature(0), humidity(0), pressure(0)
{};
float getTemperature () const
{
return temperature;
}
float getHumidity () const
{
return humidity;
}
float getPressure () const
{
return pressure;
}
void setTemperature(float _temperature)
{
if (temperature != _temperature)
{
temperature = _temperature;
notifyObservers();
}
}
void setHumidity(float _humidity)
{
if (humidity != _humidity)
{
humidity = _humidity;
notifyObservers();
}
}
void setPressure(float _pressure)
{
if (pressure != _pressure)
{
pressure = _pressure;
notifyObservers();
}
}
};
//Concrete implementation of an weather observer
class WeatherObserver : public Observer
{
public:
WeatherObserver():Observer(){};
void update()
{
WeatherData* pWeatherPtr = static_cast<WeatherData*>(observedSubject);
if (pWeatherPtr != 0)
{
float actHumidity = pWeatherPtr->getHumidity();
float actPressure = pWeatherPtr->getPressure();
float actTemperature = pWeatherPtr->getTemperature();
//do something with the data
std::cout << "WeatherObserver update" << std::endl;
std::cout << "Temperature : " << actTemperature << std::endl;
std::cout << "Humidity : " << actHumidity << std::endl;
std::cout << "Pressure : " << actPressure << std::endl;
}
}
};
int main()
{
WeatherData weatherData;
Observer * pObserver = new WeatherObserver();
weatherData.addObserver(pObserver);
weatherData.setHumidity(100);
weatherData.setTemperature(100);
}
#include <algorithm>
#include <vector>
class WeatherFlags
{
public:
WeatherFlags()
: mask_(0)
{}
union {
struct {
unsigned int temperature_ : 1;
unsigned int humidity_ : 1;
unsigned int pressure_ : 1;
};
unsigned int mask_;
};
};
class WeatherData;
class WeatherEvent
{
public:
WeatherEvent(WeatherData* data, WeatherFlags const& flags)
: data_(data)
, flags_(flags)
{}
double getTemperature() const;
WeatherData* data_;
WeatherFlags flags_;
};
class WeatherListener
{
public:
virtual ~WeatherListener() = 0;
virtual void onWeatherUpdate(WeatherEvent& e) = 0;
};
inline WeatherListener::~WeatherListener() {}
class WeatherListenerEntry
{
public:
WeatherListenerEntry()
: listener_(0)
{}
WeatherListenerEntry(WeatherListener* listener, WeatherFlags const& flags)
: listener_(listener)
, flags_(flags)
{}
WeatherListener* listener_;
WeatherFlags flags_;
};
class WeatherData
{
public:
WeatherData();
void addListener(WeatherListener* listener, WeatherFlags const& flags);
void removeListener(WeatherListener* listener);
void notify(WeatherFlags const& flags);
double getTemperature() const { return temperature_; }
private:
typedef std::vector<WeatherListenerEntry> Listeners;
Listeners listeners_;
double temperature_;
};
WeatherData::WeatherData()
: temperature_(0)
{}
void WeatherData::addListener(WeatherListener* listener, WeatherFlags const& flags)
{
// TODO Could maybe check for the addition of duplicates here...
listeners_.push_back(WeatherListenerEntry(listener, flags));
}
void WeatherData::removeListener(WeatherListener* listener)
{
struct ListenerEquals {
WeatherListener* listener_;
ListenerEquals(WeatherListener* listener)
: listener_(listener)
{}
bool operator()(WeatherListenerEntry const& e) const {
return (e.listener_ == listener_);
}
};
listeners_.erase(
std::remove_if(listeners_.begin(), listeners_.end(), ListenerEquals(listener)),
listeners_.end());
}
void WeatherData::notify(WeatherFlags const& flags)
{
WeatherEvent evt(this, flags);
for (Listeners::iterator i = listeners_.begin(); i != listeners_.end(); ++i)
{
if (0 != (i->flags_.mask_ & flags.mask_)) {
i->listener_->onWeatherUpdate(evt);
}
}
}
double
WeatherEvent::getTemperature() const
{
return data_->getTemperature();
}
#include <iostream>
class WeatherObserverStdout : public WeatherListener
{
public:
void observe(WeatherData& data) {
WeatherFlags flags;
flags.temperature_ = true; // interested in temperature only.
data.addListener(this, flags);
}
virtual void onWeatherUpdate(WeatherEvent& e);
};
void
WeatherObserverStdout::onWeatherUpdate(WeatherEvent& e)
{
double temp = e.getTemperature();
std::cout << "Temperatrure: " << temp << std::endl;
}
int _tmain(int argc, _TCHAR* argv[])
{
WeatherData wdata;
WeatherObserverStdout obs;
obs.observe(wdata);
WeatherFlags flags;
wdata.notify(flags);
flags.temperature_ = true;
wdata.notify(flags);
return 0;
}
I think it is easier, and more scalable, to define a set of event types that each observer can listen to. Then you register the observer to listen to that particular event type. The observed then keeps a list of observers registered for each event, and notifies them if and when the event occurs. Using a combination of std::function, std::bind (or boost equivalents), it is easy to register callbacks for a given event type. You could put the callbacks in a map of event type to callback.
For example, something along these lines (almost pseudo-code, has not been tested)
class Publisher {
public :
void subscribe(const std::string& event,
std::function<void(double)> callback) {
m_subscribers[s].push_back(callback);
}
void publish(const std::string& event) const {
for (auto& f : m_subscribers[event]) f( some double );}
void event(const std::string& event) const { publish(event);}
private:
// map of event types (here simply strings) to list of callbacks
std::map<std::string&,
std::list<std::function<void(const std::string&)>>> m_subscribers;
};
struct Foo {
void foo(double x) {
std::cout << "Foo received message: " << x << "\n";
}
};
struct Bar {
void bar(double x) {
std::cout << "Bar received message: " << x << "\n";
}
};
int main() {
Publisher pub;
Foo f0;
Foo f1;
Bar bar0;
pub.subscribe("RED", std::bind(&Foo::foo, &foo0, _1));
pub.subscribe("GREEN", std::bind(&Foo::foo, &foo1, _1));
pub.subscribe("WHITE", std::bind(&Foo::foo, &foo1, _1));
pub.subscribe("RED", std::bind(&Bar::bar, &bar0, _1));
pub.subscribe("BLUE", std::bind(&Bar::bar, &bar0, _1));
pub.subscribe("MAGENTA", std::bind(&Bar::bar, &bar0, _1));
// trigger a "GREEN" event
pub.event("GREEN");
}
Here, the observers (or subscribers) register to some events, represented by strings here, and their registered callbacks get called when this event happens. In the example above I manually trigger an event to illustrate the mechanism.
This event-callback mechanism allows to decouple the actual items from the callback action. The Observed (or publisher) knows what parameter to pass the callback for a given event, and which callbacks to call, so the observers are not dependent on the internal data of the observed object.
I write a lot of C++ code and needed to create an Observer for some game components I was working on. I needed something to distribute "start of frame", "user input", etc., as events in the game to interested parties.
I also wanted more granularity in the events that could be handled. I have a lot of little things that go off...I don't need to have the parts that are interested in resetting for the next frame worried about a change in the user input.
I also wanted it to be straight C++, not dependent on the platform or a specific technology (such as boost, Qt, etc.) because I often build and re-use components (and the ideas behind them) across different projects.
Here is the rough sketch of what I came up with as a solution:
The Observer is a singleton with keys (enumerated values, not strings; this is a speed tradeoff since the keys are not searched hashed, but it means no easy "string" names and you have to define them ahead of time) for Subjects to register interest in. Because it is a singleton, it always exists.
Each subject is derived from a common base class. The base class has an abstract virtual function Notify(...) which must be implemented in derived classes, and a destructor that removes it from the Observer (which it can always reach) when it is deleted.
Inside the Observer itself, if Detach(...) is called while a Notify(...) is in progress, any detached Subjects end up on a list.
When Notify(...) is called on the Observer, it creates a temporary copy of the Subject list. As it iterates over it, it compare it to the recently detached. If the target is not on it, Notify(...) is called on the target. Otherwise, it is skipped.
Notify(...) in the Observer also keeps track of the depth to handle cascading calls (A notifies B, C, D, and the D.Notify(...) triggers a Notify(...) call to E, etc.)
This is what the interface ended up looking like:
/*
The Notifier is a singleton implementation of the Subject/Observer design
pattern. Any class/instance which wishes to participate as an observer
of an event can derive from the Notified base class and register itself
with the Notiifer for enumerated events.
Notifier derived classes MUST implement the notify function, which has
a prototype of:
void Notify(const NOTIFIED_EVENT_TYPE_T& event)
This is a data object passed from the Notifier class. The structure
passed has a void* in it. There is no illusion of type safety here
and it is the responsibility of the user to ensure it is cast properly.
In most cases, it will be "NULL".
Classes derived from Notified do not need to deregister (though it may
be a good idea to do so) as the base class destructor will attempt to
remove itself from the Notifier system automatically.
The event type is an enumeration and not a string as it is in many
"generic" notification systems. In practical use, this is for a closed
application where the messages will be known at compile time. This allows
us to increase the speed of the delivery by NOT having a
dictionary keyed lookup mechanism. Some loss of generality is implied
by this.
This class/system is NOT thread safe, but could be made so with some
mutex wrappers. It is safe to call Attach/Detach as a consequence
of calling Notify(...).
*/
class Notified;
class Notifier : public SingletonDynamic<Notifier>
{
public:
typedef enum
{
NE_MIN = 0,
NE_DEBUG_BUTTON_PRESSED = NE_MIN,
NE_DEBUG_LINE_DRAW_ADD_LINE_PIXELS,
NE_DEBUG_TOGGLE_VISIBILITY,
NE_DEBUG_MESSAGE,
NE_RESET_DRAW_CYCLE,
NE_VIEWPORT_CHANGED,
NE_MAX,
} NOTIFIED_EVENT_TYPE_T;
private:
typedef vector<NOTIFIED_EVENT_TYPE_T> NOTIFIED_EVENT_TYPE_VECTOR_T;
typedef map<Notified*,NOTIFIED_EVENT_TYPE_VECTOR_T> NOTIFIED_MAP_T;
typedef map<Notified*,NOTIFIED_EVENT_TYPE_VECTOR_T>::iterator NOTIFIED_MAP_ITER_T;
typedef vector<Notified*> NOTIFIED_VECTOR_T;
typedef vector<NOTIFIED_VECTOR_T> NOTIFIED_VECTOR_VECTOR_T;
NOTIFIED_MAP_T _notifiedMap;
NOTIFIED_VECTOR_VECTOR_T _notifiedVector;
NOTIFIED_MAP_ITER_T _mapIter;
// This vector keeps a temporary list of observers that have completely
// detached since the current "Notify(...)" operation began. This is
// to handle the problem where a Notified instance has called Detach(...)
// because of a Notify(...) call. The removed instance could be a dead
// pointer, so don't try to talk to it.
vector<Notified*> _detached;
int32 _notifyDepth;
void RemoveEvent(NOTIFIED_EVENT_TYPE_VECTOR_T& orgEventTypes, NOTIFIED_EVENT_TYPE_T eventType);
void RemoveNotified(NOTIFIED_VECTOR_T& orgNotified, Notified* observer);
public:
virtual void Reset();
virtual bool Init() { Reset(); return true; }
virtual void Shutdown() { Reset(); }
void Attach(Notified* observer, NOTIFIED_EVENT_TYPE_T eventType);
// Detach for a specific event
void Detach(Notified* observer, NOTIFIED_EVENT_TYPE_T eventType);
// Detach for ALL events
void Detach(Notified* observer);
/* The design of this interface is very specific. I could
* create a class to hold all the event data and then the
* method would just have take that object. But then I would
* have to search for every place in the code that created an
* object to be used and make sure it updated the passed in
* object when a member is added to it. This way, a break
* occurs at compile time that must be addressed.
*/
void Notify(NOTIFIED_EVENT_TYPE_T, const void* eventData = NULL);
/* Used for CPPUnit. Could create a Mock...maybe...but this seems
* like it will get the job done with minimal fuss. For now.
*/
// Return all events that this object is registered for.
vector<NOTIFIED_EVENT_TYPE_T> GetEvents(Notified* observer);
// Return all objects registered for this event.
vector<Notified*> GetNotified(NOTIFIED_EVENT_TYPE_T event);
};
/* This is the base class for anything that can receive notifications.
*/
class Notified
{
public:
virtual void Notify(Notifier::NOTIFIED_EVENT_TYPE_T eventType, const void* eventData) = 0;
virtual ~Notified();
};
typedef Notifier::NOTIFIED_EVENT_TYPE_T NOTIFIED_EVENT_TYPE_T;
NOTE: The Notified class has a single function, Notify(...) here. Because the void* is not type safe, I created other versions where notify looks like:
virtual void Notify(Notifier::NOTIFIED_EVENT_TYPE_T eventType, int value);
virtual void Notify(Notifier::NOTIFIED_EVENT_TYPE_T eventType, const string& str);
Corresponding Notify(...) methods were added to the Notifier itself. All these used a single function to get the "target list" then called the appropriate function on the targets. This works well and keeps the receiver from having to do ugly casts.
This seems to work well. The solution is posted on the web here along with the source code. This is a relatively new design, so any feedback is greatly appreciated.
My two cents...
Classic (Gang of Four) implementation of Observer pattern notifies observer on changes in any property of the subject. In your question you want to register observer to particular properties, not to a subject as a whole. You can move Observer pattern one level down and take properties as concrete subjects and define their observers (per property) but there is one nicer way to solve this problem.
In C# Observer pattern is implemented through events and delegates. Delegates represent event handlers - functions that should be executed when an event is fired. Delegates can be added (registered) or removed(unregistered) from events.
In C++, functors act as delegates - they can store all necessary information to call some global function or class method in a different context. Events are collections of (registered) functors and when event is raised (called) it basically goes through that list and calls all functors (see Publisher::publish method in juanchopanza's solution).
I tried to implement C++ version of events and delegates and use them in modified Observer pattern which could be applied in your case. This is what I came up with:
#include <list>
#include <iostream>
#include <algorithm>
// use base class to resolve the problem of how to put into collection objects of different types
template <typename TPropertyType>
struct PropertyChangedDelegateBase
{
virtual ~PropertyChangedDelegateBase(){};
virtual void operator()(const TPropertyType& t) = 0;
};
template <typename THandlerOwner, typename TPropertyType>
struct PropertyChangedDelegate : public PropertyChangedDelegateBase<TPropertyType>
{
THandlerOwner* pHandlerOwner_;
typedef void (THandlerOwner::*TPropertyChangeHandler)(const TPropertyType&);
TPropertyChangeHandler handler_;
public:
PropertyChangedDelegate(THandlerOwner* pHandlerOwner, TPropertyChangeHandler handler) :
pHandlerOwner_(pHandlerOwner), handler_(handler){}
void operator()(const TPropertyType& t)
{
(pHandlerOwner_->*handler_)(t);
}
};
template<typename TPropertyType>
class PropertyChangedEvent
{
public:
virtual ~PropertyChangedEvent(){};
void add(PropertyChangedDelegateBase<TPropertyType>* const d)
{
std::list<PropertyChangedDelegateBase<TPropertyType>* const>::const_iterator it = std::find(observers_.begin(), observers_.end(), d);
if(it != observers_.end())
throw std::runtime_error("Observer already registered");
observers_.push_back(d);
}
void remove(PropertyChangedDelegateBase<TPropertyType>* const d)
{
std::list<PropertyChangedDelegateBase<TPropertyType>* const>::const_iterator it = std::find(observers_.begin(), observers_.end(), d);
if(it != observers_.end())
observers_.remove(d);
}
// notify
void operator()(const TPropertyType& newValue)
{
std::list<PropertyChangedDelegateBase<TPropertyType>* const>::const_iterator it = observers_.begin();
for(; it != observers_.end(); ++it)
{
(*it)->operator()(newValue);
}
}
protected:
std::list<PropertyChangedDelegateBase<TPropertyType>* const> observers_;
};
// class that owns concrete subjects
class PropertyOwner1
{
int property1_;
float property2_;
public:
PropertyChangedEvent<int> property1ChangedEvent;
PropertyChangedEvent<float> property2ChangedEvent;
PropertyOwner1() :
property1_(0),
property2_(0.0f)
{}
int property1() const {return property1_;}
void property1(int n)
{
if(property1_ != n)
{
property1_ = n;
std::cout << "PropertyOwner1::property1(): property1_ set to " << property1_ << std::endl;
property1ChangedEvent(property1_);
}
}
float property2() const {return property2_;}
void property2(float n)
{
if(property2_ != n)
{
property2_ = n;
std::cout << "PropertyOwner1::property2(): property2_ set to " << property2_ << std::endl;
property2ChangedEvent(property2_);
}
}
};
// class that owns concrete subjects
class PropertyOwner2
{
bool property1_;
double property2_;
public:
PropertyChangedEvent<bool> property1ChangedEvent;
PropertyChangedEvent<double> property2ChangedEvent;
PropertyOwner2() :
property1_(false),
property2_(0.0)
{}
bool property1() const {return property1_;}
void property1(bool n)
{
if(property1_ != n)
{
property1_ = n;
std::cout << "PropertyOwner2::property1(): property1_ set to " << property1_ << std::endl;
property1ChangedEvent(property1_);
}
}
double property2() const {return property2_;}
void property2(double n)
{
if(property2_ != n)
{
property2_ = n;
std::cout << "PropertyOwner2::property2(): property2_ set to " << property2_ << std::endl;
property2ChangedEvent(property2_);
}
}
};
// class that observes changes in property1 of PropertyOwner1 and property1 of PropertyOwner2
struct PropertyObserver1
{
void OnPropertyOwner1Property1Changed(const int& newValue)
{
std::cout << "\tPropertyObserver1::OnPropertyOwner1Property1Changed(): \n\tnew value is: " << newValue << std::endl;
}
void OnPropertyOwner2Property1Changed(const bool& newValue)
{
std::cout << "\tPropertyObserver1::OnPropertyOwner2Property1Changed(): \n\tnew value is: " << newValue << std::endl;
}
};
// class that observes changes in property2 of PropertyOwner1 and property2 of PropertyOwner2
struct PropertyObserver2
{
void OnPropertyOwner1Property2Changed(const float& newValue)
{
std::cout << "\tPropertyObserver2::OnPropertyOwner1Property2Changed(): \n\tnew value is: " << newValue << std::endl;
}
void OnPropertyOwner2Property2Changed(const double& newValue)
{
std::cout << "\tPropertyObserver2::OnPropertyOwner2Property2Changed(): \n\tnew value is: " << newValue << std::endl;
}
};
int main(int argc, char** argv)
{
PropertyOwner1 propertyOwner1;
PropertyOwner2 propertyOwner2;
PropertyObserver1 propertyObserver1;
PropertyObserver2 propertyObserver2;
// register observers
PropertyChangedDelegate<PropertyObserver1, int> delegate1(&propertyObserver1, &PropertyObserver1::OnPropertyOwner1Property1Changed);
propertyOwner1.property1ChangedEvent.add(&delegate1);
PropertyChangedDelegate<PropertyObserver2, float> delegate2(&propertyObserver2, &PropertyObserver2::OnPropertyOwner1Property2Changed);
propertyOwner1.property2ChangedEvent.add(&delegate2);
PropertyChangedDelegate<PropertyObserver1, bool> delegate3(&propertyObserver1, &PropertyObserver1::OnPropertyOwner2Property1Changed);
propertyOwner2.property1ChangedEvent.add(&delegate3);
PropertyChangedDelegate<PropertyObserver2, double> delegate4(&propertyObserver2, &PropertyObserver2::OnPropertyOwner2Property2Changed);
propertyOwner2.property2ChangedEvent.add(&delegate4);
propertyOwner1.property1(1);
propertyOwner1.property2(1.2f);
propertyOwner2.property1(true);
propertyOwner2.property2(3.4);
// unregister PropertyObserver1
propertyOwner1.property1ChangedEvent.remove(&delegate1);
propertyOwner2.property1ChangedEvent.remove(&delegate3);
propertyOwner1.property1(2);
propertyOwner1.property2(4.5f);
}
Output:
PropertyOwner1::property1(): property1_ set to 1
PropertyObserver1::OnPropertyOwner1Property1Changed():
new value is: 1
PropertyOwner1::property2(): property2_ set to 1.2
PropertyObserver2::OnPropertyOwner1Property2Changed():
new value is: 1.2
PropertyOwner2::property1(): property1_ set to 1
PropertyObserver1::OnPropertyOwner2Property1Changed():
new value is: 1
PropertyOwner2::property2(): property2_ set to 3.4
PropertyObserver2::OnPropertyOwner2Property2Changed():
new value is: 3.4
PropertyOwner1::property1(): property1_ set to 2
PropertyOwner1::property2(): property2_ set to 4.5
PropertyObserver2::OnPropertyOwner1Property2Changed():
new value is: 4.5
Each observer is registered with a particular property and when notified, each observer knows exactly who is the owner of the property and what's property's new value.