Calling C++ static member functions from C code - c++

I have a bunch of C code. I have no intention to convert them into C++ code.
Now, I would like to call some C++ code (I don't mind to modify the C++ code so that they are callable by C code).
class Utils {
public:
static void fun();
}
class Utils2 {
public:
static std::wstring fun();
}
If I tend to call them with the following syntax, they wont compiled (I am using VC++ 2008, with C code files with .c extension)
Utils::fun();
// Opps. How I can access std::wstring in C?
Utils2::fun();
Any suggestion?

// c_header.h
#if defined(__cplusplus)
extern "C" {
#endif
void Utils_func();
size_t Utils2_func(wchar_t* data, size_t size);
#if defined(__cplusplus)
}
#endif
//eof
// c_impl.cpp
// Beware, brain-compiled code ahead!
void Utils_func()
{
Utils::func();
}
size_t Utils2_func(wchar_t* data, size_t size)
{
std::wstring wstr = Utsls2::func();
if( wstr.size() >= size ) return wstr.size();
std::copy( wstr.begin(), wstr.end(), data );
data[wstr.size()] = 0;
return str.size();
}
//eof

What about a wrapper
extern "C" void Utilsfun(int i){Utils::fun(i);}
Update:
That is how you can call C++ functions from C, but accessing std::wstring from C is a different matter.
If you really wanted to manipulate C++ classes from C code then you could create an API where the classes are operated on with C++ functions, and passed back to C using void pointers. I've seen it done, but it's not ideal
extern "C"
{
void * ObjectCreate(){return (void *) new Object();}
void ObjectOperate(void *object, char *parameter){((Object*)object)->Operate(parameter);}
void ObjectDelete(void *object){delete ((Object*)object);}
}
You will have to be very careful about managing creating and deleting.

The most common solution is to write a C interface to your C++ functions. That is C++ code which are declared using extern "C" { ... }. These wrapper functions are free to call any C++ code they like, but since they're declared extern "C", they won't be subject to name mangling (you can't do namespaces or overloading here).
That ought to be linkable with your C file and you're good to go.
That is, the header file contains
#ifdef __cplusplus
extern "C" {
#endif
void wrapper1(void);
int wrapper2(int x);
char* wrapper3(int y);
#ifdef __cplusplus
}
#endif
The ifdefs are required to shield the C compiler from the extern "C".
And you implement those in your C++ source
void wrapper1(void) { Util::funcOne(); }
int wrapper2(int x) { return Util::funcTwo(x); }
char* wrapper3(int y) { return Util::funcThree(y); }

Create a wrapper function in your C++ code:
extern "C" void Wrapper() {
Utils2::fun();
}
and then in your C code:
extern void Wrapper();
int main() {
Wrapper();
return 0;
}

I think the only solution is to wrap them in C style global functions in the C++ code like:
extern "C" int Util2_Fun() { return Util2::Fun(); }
I suppose you could also declare global function pointers as externs using some nasty variation of:
extern int (*Utils2_Fun)()=(int *())(Util2::Fun);
And then call the function pointer directly from the C package using this pointer but there is little to recommend this approach.

You can make C++ callable from C by using the extern "C" construct.

If you do as ppl say here (using extern "C") beware that you only pass objects to the C function that would compile in C.

You won't have any practical use for c++ objects in your C code, so you'll probably want to create some sort of "C Binding" for your C++ code which consists of some number of ordinary functions that are callable from the C, and only return ordinary C data types. Your wrapper functions can then call all sorts of classes and objects, etc. But, they provide a simpler C-Style interface for the objects that you can use from C to bridge the gap. You can also use function pointers in some cases to give the C access to static methods, but it's usually easiest just to create the wrapper, IMHO.

You can either write global extern "C" wrapper functions or use function pointers to additionally make static class functions known to C. The C++ code can put these pointers in a global structure or pass them to C while calling a C function as a parameter. Also, you could establish a registry where the C code can request function pointers from C++ by supplying a string id. I've these all these varieties being used.

If you have control of all of the source, I wouldn't bother trying to keep part of it as C. It should be compilable as C++ (or easily changed to make it so). That doesn't mean you need to rewrite it as C++, just compile it as such. This way you can use whatever parts of C++ make sense. Over time, the C code make turn more C++ like, but this will happen slowly as the need arises.
Of course, if you need it to remain compilable in C for other reasons, this doesn't apply.

C is a subset of C++ ..
So u can not call c++ Class members and namespaces in C.

Related

how to call C++ functions in C layer within the same project?

I have a C++ header and cpp files like abc.hpp and abc.cpp which has 2 classes that is class A and class B, am trying to write a C layer containing different methods which calls the C++ layer methods, to call the C++ methods I need to create the instance of Class A and then use this instance to call C++ methods, I have created a C layer but tried different ways to create an instance of class B but it was not possible.
This is ABC.hpp
#ifndef ABC_HPP
#define ABC_HPP
namespace utils {
using std::vector;
using std::string;
class __declspec(dllexport) A
{
protected:
string m_color;
string m_type;
public:
A() {
// TODO: Complete the constructor by intializing everything
m_color = "";
m_type = "";
}
void setColor(string icolor){m_color = icolor;}
void setType(string itype){m_type = itype;}
string getColor(){return m_color;}
string getType() {return m_type;}
virtual ~A() {};
};
class __declspec(dllexport) B
{
// Member Variables
protected:
string file_name;
string place_name;
public:
void setFilename(fname){file_name = fname;}
void setPlaceName(pname){place_name = pname;}
string getFilename(){return file_name;}
string getplaceName() {return place_name;}
void getRes();
};
};
#endif
Similarly we have ABC.cpp
Next I create the C layer xyz_c.h
#ifndef XYZ_H
#define XYZ_H
#ifdef __cplusplus
extern "C"
{
#endif
__declspec(dllexport) int getPlaceNames(char** oNames);
#ifdef __cplusplus
}
#endif
#endif
Next I create XYZ.cpp
#include "XYZ.h"
#include "ABC.h"
#ifdef __cplusplus
extern "C" {
#endif
int getResults(char** oNames)
{
//here I need to create the instance of B to Call C++ layer getRes()
}
#ifdef __cplusplus
}
#endif
You cannot. C++ was designed to allow it to use the whole set of C legacy code already written, but the other side is not possible... simply because when C was designed there was no C++ available, and C doesn't have constructs as C++ has to be able to link routines written in C.
This means that if you want to combine C and C++ code, the program must be linked as a C++ program (built as) and you can include every routine you want (you can compile individual modules as C modules) but you have to access them from the C++ code including a extern "C" linkage statement in the C++ code (and never the reverse)
C++ has a naming convention for methods and c++ functions that includes information in the name about the types and number of parameters to allow for overloading and to include the object instance in the parameter list. This is simply unknown for a C compiler, so you cannot easily guess the name that the linker uses for something so simple as a void f(void) function (it can be something like 1f4void (yes, starting with a digit) making it impossible to be accessed from C (as C identifiers must start with a letter or underscore). If you declare f as extern "C" f(void), then you can call it from C modules, and it can even be implemented in C (and compiled in c), and the linker will know it as _f (or f is in use today also, depending on the compiler)
You can even write the int main(int argc, char **argv) funtion as a C function, but when you link it, you will need to use the C++ linker, if you want your program to include C++ code.
The proper way to do this is as follows. In your "C" interface code, you should have functions matching the c++ interface with the addition of a void* parameter. This parameter will be used to hold the instance for future usage by XYZ.
SO I would add a abc.c, with definitions as:
void setFilename(void* b, char *fname){
((B*)b)->setFilename(fname);
};
of course you will need to define also creator function such as:
void* CreateB(){
return (void*)new B();
}

How do I call C++ functions from C?

I'm writing a C program (myapp) which needs to use a particular api; the api is written in C++. I've worked with C and C++, but never both at once, and I'm getting confused.
So, the api provides the following directory, which I've placed in a folder called include, at the same level as my makefile:
libmyapi.a
api/api.h
My main source file is src/myapp.c, and it includes the api using #include "api/api.h".
My make command is (plus some flags, which I haven't listed because I don't think they're relevant here):
gcc -Linclude -lmyapi -Iinclude src/myapp.c -o lib/myapp.sp -lrt
The problem I'm having is that the api.h file contains references to namespaces etc. Eg at one point it has:
namespace MyAPI {
namespace API {
typedef SimpleProxyServer SimpleConnection;
}
}
and obviously the C compiler doesn't know what this means.
So, I assumed I'd need to compile using a C++ compiler, but then someone said I didn't, and I could just "wrap" the code in "extern 'C'", but I don't really understand. Having read around online, I'm not any further on.
Do I need to compile in C++ (ie using g++)?
Do I need to "wrap" the code, and what does that mean? Do I just do
#ifdef __cplusplus
extern "C" {
namespace MyAPI {
namespace API {
typedef SimpleProxyServer SimpleConnection;
}
}
}
#endif
or do I just wrap the lines
namespace MyAPI {
namespace API {
and then their corresponding }}?
The header file calls other header files, so potentially I'll need to do this in quite a lot of places.
So far I've got errors and warnings with all the variations I've tried, but I don't know whether I'm doing the wrapping wrong, setting g++ compiler flags wrong, using the wrong compiler, or what! If I know the method to use, I can at least start debugging. Thank you!
You can write a small C++ program that creates a C binding for the API.
Gvien this API:
namespace MyAPI {
namespace API {
typedef SimpleProxyServer SimpleConnection;
}
}
you can create c_api.h
#ifdef __cplusplus
extern "C" {
#endif
struct api_handle_t;
typedef struct api_handle_t* api_handle;
api_handle myapi_api_create();
void myapi_api_some_function_using_api(api_handle h);
void myapi_api_destroy(api_handle h);
#ifdef __cplusplus
}
#endif
and c_api.cpp
#include "c_api.h"
#include <myapi/api/stuff.hpp>
struct api_handle_t
{
MyAPI::API::SimpleConnection c;
};
api_handle myapi_api_create()
{
return new api_handle_t;
}
void myapi_api_some_function_using_api(api_handle h)
{
//implement using h
}
void myapi_api_destroy(api_handle h)
{
delete h;
}
compile that with a C++ compiler and include the c_api.h file in the C project and link to the library you created with the C++ compiler and the original library.
Basically, your C++ library needs to export a pure C API. That is, it must provide an interface that relies solely on typedef, struct, enum, preprocessor directives/macros (and maybe a few things I forgot to mention, it must all be valid C code, though). Without such an interface, you cannot link C code with a C++ library.
The header of this pure C API needs to be compilable both with a C and a C++ compiler, however, when you compile it as C++, you must tell the C++ compiler that it is a C interface. That is why you need to wrap the entire API within
extern "C" {
//C API
}
when compiling as C++. However, that is not C code at all, so you must hide the extern "C" from the C compiler. This is done by adding the preprocessor directives
#ifdef __cplusplus1
extern "C" {
#endif
//C API
#ifdef __cplusplus1
}
#endif
If you cannot change your libraries header, you need to create a wrapper API that offers this pure C API and calls through to the respective C++ code.
How do I call C++ functions from C?
By writing calling functions whose declarations are valid in the common subset of C and C++. And by declaring the functions with C language linkage in C++.
The problem I'm having is that the api.h file contains references to namespaces
Such header is not written in common subset of C and C++, and therefore it cannot be used from C. You need to write a header which is valid C in order to use it in C.
Do I need to compile in C++ (ie using g++)?
If you have function definitions written in C++, then you need to compile those C++ functions with a C++ compiler. If you have C functions calling those C++ functions, then you need to compile those C functions with C compiler.
A minimal example:
// C++
#include <iostream>
extern "C" void function_in_cpp() {
std::cout << "Greetings from C++\n";
}
// C
void function_in_cpp(void);
void function_in_c(void) {
function_in_cpp();
}
You cannot. You can use C functions in your C++ program. But you cannot use C++ stuff from C. When C++ was invented, it allowed for compatibility and reuse of C functions, so it was written as a superset of C, allowing C++ to call all the C library functions.
But the reverse is not true. When C was invented, there was no C++ language defined.
The only way you can call C++ functions is to convert your whole project into a C++ one... you need to compile your C functions with a C++ compiler (or a C compiler if they are plain C) but for a C function to call a C++ function it must be compiled as C++. You should declare it with:
extern "C" {
void my_glue_func(type1 param1, type2 param2, ...)
{
/* ... */
}
} /* extern "C" */
and link the whole thing as a C++ program (calling the c++ linker)
This is because C doesn't know anything about function overloading, class initializacion, instance constructor calls, etc. So if you even can demangle the names of the C++ functions to be able to call them from C (you had better not to try this), they will probably run uninitialized, so your program may (most) probably crash.
If your main() function happens to be a C function, then there's no problem. C++ was designed with this thing in mind, and so, main() is declared implicitly as extern "C". :)

Impact of using extern "C" { on C++ code when using g++

When using G++ (e.g. version 4.5 on Linux) can anyone explain what will/can happen if a user writes a header file for a mixed C/C++ system like this:
#ifdef __cplusplus
extern "C" {
int myCPPfunc(some_arg_list....); /* a C++ function */
}
#endif
but here myCPPfunc() is a normal C++ function with a class def inside - i.e. it was wrongly labeled as a C function.
What is the impact of this?
The main impact of this is that you cannot overload it, e.g. this is legal:
int myCPPfunc(int a);
int myCPPfunc(char a);
But this is not:
extern "C"
{
int myCPPfunc(int a);
int myCPPfunc(char a);
}
It is perfectly legitimate to have the implementation of an extern "C" function use arbitrary C++ features. What you can't do is have its interface be something you couldn't do in C, e.g. argument overloading, methods (virtual or otherwise), templates, etc.
Be aware that a lot of the "something you couldn't do in C" cases provoke undefined behavior rather than prompt compile errors.
This tells the C++ compiler that the functions declared in the header file are C functions.
http://www.parashift.com/c++-faq-lite/mixing-c-and-cpp.html#faq-32.2
This is exactly what extern "C" is for - it allows you to write a C++ function that can be called from C.
Essentially, that declaration is telling the C++ compiler that you want the C++ function myCPPfunc() to have an external interface that is linkable (and therefore callable) from C.
The implementation of the function is still C++ and can still use C++ features.
Typically, the declaration of the function in the header file might look more like:
#ifdef __cplusplus
extern "C" {
#endif
int myCPPfunc(some_arg_list....); /* a C++ function */
#ifdef __cplusplus
}
#endif
That lets the same header file be used by either the C++ compiler or the C compiler, and each will see it as declaring a C callable function.

How can I call a C++ function from C? [duplicate]

This question already has answers here:
How to call C++ function from C?
(7 answers)
Closed 5 years ago.
I have a header declaring functions that take pointers to C++ objects as parameters. The implementaton is in a seperate C++ file. How can I include this header in C and use the functions in C even though the arguments need to be C++ object pointers?
Unfortunately, my first attempt answered the wrong question....
For the question you did ask...
You can, as someone point out, pass around void *'s. And that's what I would also recommend. As far as C is concerned, pointers to C++ objects should be totally opaque.
C++ functions can be labeled extern "C" as well if they are in the global namespace. Here is an example:
myfunc.hpp:
#ifdef __cplusplus
extern "C" {
#endif
extern int myfunction(int, void *ob);
#ifdef __cplusplus
}
#endif
myfunc.cpp:
#include "myfunc.hpp"
void myfunction(int x, void *vobptr)
{
ClassType *ob = static_cast<ClassType *>(vobptr);
}
afoofile.c
#include "myfunc.hpp"
void frobble(int x, void *opaque_classtype_ptr) {
myfunction(x, opaque_classtype_ptr);
/* do stuff with buf */
}
The other option is to do basically the same thing with creative use of typedefs in C. This, IMHO, is quite ugly, but here is an example anyway:
myfunc.hpp:
#ifdef __cplusplus
extern "C" {
#else
typedef void ClassType; /* This is incredibly ugly. */
#endif
extern int myfunction(int, ClassType *ob);
#ifdef __cplusplus
}
#endif
myfunc.cpp:
#include "myfunc.hpp"
void myfunction(int x, ClassType *ob)
{
// Do stuff with ob
}
afoofile.c
#include "myfunc.hpp"
void frobble(int x, ClassType *opaque_classtype_ptr) {
myfunction(x, opaque_classtype_ptr);
/* do stuff with buf */
}
If your C code just needs to pass the pointers around, and eventually pass it back to some C++ that'll actually deal with the object it points to, you should be able to use a void * in the C code, and cast back to T * when it goes back into C++.
If you plan on the C code actually using the pointer, you're pretty much stuck with reverse engineering what your compiler happens to do, and trying to emulate it closely enough to make things work. Even at best, this is going to be ugly and fragile.
Make a wrapper module that's C++ but whose external functions are declared extern "C". This will allow you to access C++ code cleanly from C. Naturally the wrapper should replace any pointers to types not representable in C (i.e. classes) with either void pointers (the quick and dirty solution) or pointers to incomplete struct types (which would provide some level of type-safety as long as they're used consistently.
The secret is "extern C", whose primary purpose is the prevention of name decoration.
You can't. You'll have to create a C-compatible abstraction layer:
typedef struct foowrapper *foohandle;
foohandle foo_create();
void foo_delete(foohandle);
int foo_getvalue(foohandle);
void foo_dosomething(foohandle, const char* str);
Leaving this as after reading allsorts of posts on this topic, this was the easiest to follow.
http://research.engineering.wustl.edu/~beardj/Mixed_C_C++.html
Also, in netbeans the example ran out of the box without having to touch the makefile.
Check out this link:-
http://developers.sun.com/solaris/articles/mixing.html
The link contains the following topics:
Using Compatible Compilers
Accessing C Code From Within C++ Source
- Accessing C++ Code From Within C Source
Mixing IOstream and C Standard I/O
Working with Pointers to Functions
Working with C++ Exceptions
Linking the Program

Best way to use a single C++ class in a C program

I have to import/translate the code from one C++ class so that I may use it in a C program.
The C program is large and has lots of dependencies on C libraries both open and closed.
The C++ Class .cpp file is 650 lines
I have no experience mixing C and C++ so even though I have looked at one guide on how to do it, I am not convinced which way to go.
I only have to use the C++ code in a few spots (fairly isolated useage
I am using gcc (gcc/g++)
It is a linux environment
So what do I have to do to import it? and will it be less time than translating?
Thanks,
Mike
Hmm, 650 lines is not too long - I'd re-write it. You will probably spend at least as much time trying to wrap it, and you may find maintaining the result difficult.
This might be useful: http://www.parashift.com/c++-faq-lite/mixing-c-and-cpp.html
You need to create functions in C++ that are 'extern "C"', so they are callable from C.
You can get OO by making the this pointer explicit (and of type void *), with the implementation casting the pointer and forwarding to the real member function.
In your C++ code, you must use the extern "C" construct to instruct the compiler/linker to generate compatible linkage so that the C code can call your C++ code.
extern "C"
{
void my_function_that_can_be_called_from_c()
{
// ...
}
}
C code doesn't know anything about objects, so you can't easily use C++ objects from C. A common technique is to manipulate C++ objects inside the "externed" function.
Say you have the following C++ class:
#if __cplusplus // only C++ programs see this part of foo.h
class foo {
public:
// a couple constructors
foo();
foo( int);
// and a couple methods
bool dosomething();
bool doSomethingElse( std::string const&);
private:
// a bunch of private stuff which is immaterial to the C interface
}
#endif
What you can do is have a set of C-callable functions that wrap the C++ interface:
// both C and C++ programs can see this part of foo.h
#if __cplusplus // but C++ programs need to know that no name mangling should occur
extern "C" {
#endif
struct CFoo_struct;
typedef struct CFoo_struct foo_t; // used as a handle to a foo class pointer
// constructors
foo_t* CreateFoo( void);
foo_t* CreateFoo_int( int);
int CFooDoSomething( foo_t*);
int CFooDoSomethingElse( foo_t*, char const*);
#if __cplusplus
} // end the extern "C" block
#endif
Then the implementation in foo.cpp might look something like:
// in foo.cpp
extern "C" {
struct CFoo_struct {
};
// constructors
foo_t* CreateFoo( void)
{
foo* pFoo = new Foo;
// a bit of ugliness - the need for this cast could be
// avoided with some overhead by having the foo_t
// struct contain a foo* pointer, and putting a foo_t
// structure inside the foo class initialized with
// the this pointer.
return reinterpret_cast<foo_t*>( pFoo);
}
// something similar for CreateFoo_int()...
// method wrappers
int CFooDoSomethingElse( foo_t* pHandle, char const* s)
{
foo* pFoo = reinterpret_cast<foo*>( pHandle);
std::string str( s);
return pFoo->doSomethingElse( str);
}
// something similar for CFooDoSomething()
} // end extern "C" block
If you want to turn the C++ class into a Linux shared library accessible to your C programs, this answer to a previous question shows you how with a small example class.
There's various things you can do.
You can rewrite it in C. Without actually seeing the code, I don't know how much trouble that would be. Much C++ code is simply C with a few addons, and some makes heavy use of templates and overloaded functions and such.
If you're not doing this, you need to make it communicate well with C. This means providing an interface for C, and surrounding it with extern "C"{ ... } so the C++ compiler will know to make the interface C-compatible. Again, without knowing something of the C++ code, I can't tell how much work this would be. You'll need the wrapper for either of the following solutions.
You can make this a C++ project, surround every C file with extern"C" { ... }, and just link it in. If you have any C++ files, the whole compilation has to be C++.
You can make a separate library to be linked in.
What you can't do is compile C and C++ together with a C main() function, or with a C compiler. C++ is more demanding, and requires more from the main() function.
You could always try recompiling the C files you're using as C++, and wrapping the .h files for the libraries in extern "C" { ... }. Well-written C90 isn't that far from being legal C++ (although the C99 standard moved away from that some), and the compiler will flag any conversion problems you find.
Which of these is the best idea for you depends on questions like:
How easy is the C++ code to convert?
How easy is it to write a C wrapper for the C++ functionality you want?
How many changes are you willing to make to the C code?
How familiar are you with making a Linux library?