Binding arguments to signals/slots - c++

I basically have multiple events signals which I want to connect to the same slot. What I want to know is how can I pass string based parameters to that same slot so that the slot knows which is this signal coming from. One alternative is to make as many slots as there are signals and then connect them in a 1:1 manner, but this is efficient, considering that the code for all the processing is very similar. I tried doing this but I'm getting some errors:
connect(selecter1,SIGNAL(selected(QString)),this,SLOT(backgroundTypeChoiceMade(QString)));
connect(button1,SIGNAL(clicked()),this,SLOT(backgroundTypeChoiceMade("button1")));
connect(button2,SIGNAL(clicked()),this,SLOT(backgroundTypeChoiceMade("button2")));
The error is related to the parameters I'm passing in the last 2 commands .. And backgroundTypeChoiceMade is declared like this:
void backgroundTypeChoiceMade(QString);
Can someone tell me what the error is in the above code ?

You can use QSignalMapper. Although the QSignalMapper is the answer to your question, I think jon hanson's answer is the way you should take. You get much more cleaner code that way.

Four methods. One doesn't suck.
QSignalMapper. Works, but makes for messy code.
Named slots. Messy for any significant number of senders, and doesn't work for dynamically-generated senders (e.g., buttons in a list).
sender()-compare. Can handle dynamic senders, but is still kinda ugly.
Subclass the sender. Doesn't suck. Gives you what you really wanted all along: parameterized signals.
Especially when you're using a small number of signals and sender types and when the senders are dynamically generated, subclassing the sender is the cleanest way. This lets you overload the existing signals to contain whatever parameters you need.
And now, wiring up the signals and slots just works:
Keypad::Keypad(QWidget *parent) : QWidget(parent)
{
for (int i = 0; i < 10; ++i)
{
// KeypadButton keeps track of the identifier you give it
buttons[i] = new KeypadButton(i, this);
// And passes it as a signal parameter. Booyah.
connect(buttons[i], SIGNAL(clicked(int)), this, SIGNAL(digitClicked(int)));
}
createLayout();
}
void Keypad::digitClicked(int digit)
{
// The slot can find the clicked button with ease:
dial(button[i]); // or whatever
//...
}
and the extra code is out-of-sight in a subclass you'll never have to touch again.
See http://doc.qt.digia.com/qq/qq10-signalmapper.html#thesubclassapproach for an example implementation of subclassing QPushButton to emit clicked(int) signals. Also discusses all four methods - named slots ("the trivial solution"), sender(), subclassing, and signal mapper.
Caveat: Obviously works best for small numbers of sender types. But that's usually the case. And in that case, it's worth it.

What is inefficient about using separate slots? If there's commonality in the slot handlers then move that into a function, e.g. extending ereOn's example:
void YourClass::YourClass() :
m_button1(new QPushButton()),
m_button2(new QPushButton())
{
connect(m_button1, SIGNAL(clicked()), this, SLOT(yourSlot1()));
connect(m_button2, SIGNAL(clicked()), this, SLOT(yourSlot2()));
}
void YourClass::common(int n)
{
}
void YourClass::yourSlot1()
{
common (1);
}
void YourClass::yourSlot2()
{
common (2);
}

You can't pass constants to connect() because the effective parameters are deduced at execution time, not compile time.
However, while this is against the OO principle, you can use QObject::sender() which gives a pointer to the emitter QObject.
Example below:
void YourClass::YourClass() :
m_button1(new QPushButton()),
m_button2(new QPushButton())
{
connect(m_button1, SIGNAL(clicked()), this, SLOT(yourSlot()));
connect(m_button2, SIGNAL(clicked()), this, SLOT(yourSlot()));
}
void YourClass::yourSlot()
{
if ((QPushButton* button = dynamic_cast<QPushButton*>(sender()))
{
// Now button points to a QPushButton* that you can compare with the pointers you already have
if (button == m_button1)
{
// Whatever
} else
if (button == m_button2)
{
// Whatever
}
}
}
If you have many buttons, you may also use a QSignalMapper by providing an identifier for each button.

You can now really bind a value when connecting. Qt5 added support for that.
Example:
connect(sender, &Sender::valueChanged,
tr1::bind(receiver, &Receiver::updateValue, "senderValue", tr1::placeholder::_1));
See more info.
NB: you can of course use std::bind or boost::bind instead of tr1::bind.

If you really don't want to use QSignalMapper, you could do something like this:
class SignalForwarderWithString: public QObject
{
Q_OBJECT
public:
SignalForwarderWithString(QString data = "", QObject *parent = 0) : QObject(parent), _data(data) {}
QString _data;
signals:
void forward(QString);
public slots:
void receive() { emit forward(_data); }
};
...
connect(selecter1,SIGNAL(selected(QString)),this,SLOT(backgroundTypeChoiceMade(QString)));
SignalForwarderWithString *sfws;
sfws = new SignalForwarderWithString("button1", this);
connect(button1,SIGNAL(clicked()), sfws, SLOT(receive(QString)));
connect(sfws, SIGNAL(forward(QString)), this,SLOT(backgroundTypeChoiceMade(QString)));
sfws = new SignalForwarderWithString("button2", this);
connect(button2,SIGNAL(clicked()), sfws, SLOT(receive(QString)));
connect(sfws, SIGNAL(forward(QString)), this,SLOT(backgroundTypeChoiceMade(QString)));
but QSignalMapper is just as easy...
QSignalMapper *mapper = new QSignalMapper(this);
connect(button1, SIGNAL(clicked()), mapper, SLOT(map()));
mapper->setMapping(button1, "button 1");
connect(button2, SIGNAL(clicked()), mapper, SLOT(map()));
mapper->setMapping(button2, "button 2");
// you might have to tweak the argument type for your slot...
connect(mapper, SIGNAL(mapped(const QString &), this, SLOT(backgroundTypeChoiceMade(QString)));

Related

How can I emit a signal of another instance from _clicked() event?

the runnable project is here:
enter link description here
I sincerely glad to have your detail answers to solve this, but I am still confusing on this issue:
case 1: changing socket_session as a member variable of mainwindow
class MainWindow : public QMainWindow
{
Q_OBJECT
public:
explicit MainWindow(QWidget *parent = 0);
~MainWindow();
SocketThread* socket_session;
private:
...
But this is not the solution to access setFlag, even after I change the `Form1::on_qpushButton__set_white_level_0_clicked()' function like this:
void Form1::on_qpushButton__set_white_level_0_clicked() {
qDebug() <<"clicked()";
socket_session->setThreadFlag(true);
}
Still it doesn't make sense because form1 instance doesn't have "the" instance of socket_thread which has been instantiated from mainwindow.
There's a solution I think is making another class that includes all instances that I want to use from inside of mainwindow but I don't think that is a good one because I am using thread and accessing a global big instance class that includes all of them to be "shared" is not a good idea for someone like me.
#include <form1.h>
#include <ui_form1.h>
#include "socketthread.h"
Form1::Form1(QWidget *parent) :
QWidget(parent),
ui(new Ui::Form1) {
ui->setupUi(this);
}
Form1::~Form1() {
delete ui;
}
void Form1::on_qpushButton__set_white_level_0_clicked() {
qDebug() <<"clicked()";
socket_session->setThreadFlag(true);
}
enter image description here
I know I am lack of understanding about this but, do I wanna make something nobody does...? I think everyone wants to separate all objects and their methods clearly and communicate via signals or calling functions from delivered object instances...
case 2: ... let me try how you suggested make possible first...
I can read C++ code and overall structure, but I don't know why I have to struggle with this, so please help me, dear Guru.
On socketthread.h :
class SocketThread : public QThread {
Q_OBJECT
public:
QTcpSocket *socket_session;
SocketThread();
~SocketThread(){}
bool connectToServer(QString, int);
void sendData(const char*, int, int);
void run(void);
private:
QString message;
volatile bool threadFlag;
signals:
void changedThreadFlag(void);
void changedMessageStr(void);
void setThreadFlag(bool);
void setMessageStr(QString);
private slots:
void setStr(QString);
void setFlag(bool);
void socketError(QAbstractSocket::SocketError);
};
And its implementation is...
SocketThread::SocketThread() {
socket_session = NULL;
threadFlag = false;
message = "NULL";
connect(this, SIGNAL(setThreadFlag(bool)), this, SLOT(setFlag(bool)));
}
...
void SocketThread::setStr(QString str) {
message = str;
}
void SocketThread::setFlag(bool flag) {
threadFlag = flag;
}
void SocketThread::run() {
while(true) {
if(threadFlag) {
QThread::msleep(100);
qDebug() << message;
} else
break;
}
qDebug() << "loop ended";
}
And I have one form which has a button, and I put a clicked() slot of it like this...
void Form1::on_qpushButton__set_white_level_0_clicked() {
qDebug() <<"clicked()";
--how can I emit the signal of the one of socketthread from here??
}
Now, the mainwindow is like this:
MainWindow::MainWindow(QWidget *parent) :
QMainWindow(parent),
ui(new Ui::MainWindow) {
QString addr_server = "223.194.32.106";
int port = 11000;
SocketThread* socket_session = new SocketThread();
socket_session->connectToServer(addr_server, port);
ui->setupUi(this);
Form1* form1;
form1 = new Form1();
ui->stackedWidget_mainwindow->addWidget(form1);
ui->stackedWidget_mainwindow->setCurrentWidget(form1);
socket_session->run();
...
I just simply want to emit the signal setThreadFlag of the socketthread from inside of QPushbutton_clicked() slot.
Once the socket_session->run() started, I need to change the threadFlag by clicking the button by emitting setThreadFlag() of one's from the running thread. And I just stuck in here.
Does it possible even?
Or am I doing this all wrong from the beginning?
As mentioned in this post:
"Emitting a signal" == "calling a function"
So all you really have to do is call the signal function, and all connected slots should be called.
This of course means that the Form1 object needs a pointer to the thread object, i.e. it needs a copy of socket_session. Then you can simply call the signal on the object
socket_session->setThreadFlag(your_flag);
Of course, if the Form1 have a copy of the socket_session pointer, it might as well call setFlag directly, if it was public.
I just simply want to emit the signal setThreadFlag of the socketthread from inside of QPushbutton_clicked() slot.
No signal is needed – just call the function.
void Form1::on_qpushButton__set_white_level_0_clicked() {
qDebug() <<"clicked()";
// --how can I emit the signal of the one of socketthread from here??
// E.g. this way:
socket_session->setThreadFlag(true);
}
To make this possible, another fix is needed:
socket_session is a local variable in OP's exposed code.
To make it "persistent", it has to become e.g. a member variable.
So, the constructor MainWindow::MainWindow() has to be changed:
// Nope: SocketThread* socket_session = new SocketThread();
// Instead:
socket_session = new SocketThread();
and SocketThread* socket_session; has to be added to member variables of class MainWindow.
To make it accessible in Form1, it has to be passed to Form1 as well.
This could be done e.g. by making it a member variable in Form1 also which is initialized with a constructor argument (or set from MainWindow afterwards).
(I must admit that I never have used the Qt UI builder QtDesigner but build all my UIs by C++ code exclusively.)
But, now, another fix is necessary:
volatile doesn't make a variable suitable for interthread communication.
(This was used in ancient times before multi-threading started to be supported by C++11.)
However, this is wrong: Is volatile useful with threads?
An appropriate fix would be to use std::atomic instead:
// Wrong for interthread-com.
//volatile bool threadFlag;
// Correct:
std::atomic<bool> threadFlag; // #include <atomic> needed
FYI: SO: Multithreading program stuck in optimized mode but runs normally in -O0
And, finally, in SocketThread::SocketThread():
connect(this, SIGNAL(setThreadFlag(bool)), this, SLOT(setFlag(bool)));
is not necessary in this case.
SocketThread::setThreadFlag() could call SocketThread::setFlag() directly, or even write threadFlag itself:
void setThreadFlag(bool flag) { threadFlag = flag; }
As I (recommended to) make threadFlag atomic, it can be accessed from any thread without causing a data race.
Update:
After OP has updated the question:
I just simply want to emit the signal setThreadFlag of the socketthread from inside of QPushbutton_clicked() slot.
The button (created from UI Form1) can be connected in the MainWindow as well (without using any method of Form1):
QObject::connect(form1->button1, &QPushButton::clicked,
socket_session, &SocketThread::setThreadFlag,
Qt::QueuedConnection);
Notes:
About form1->button1, I'm not quite sure.
I noticed that widgets in UI generated forms can be accessed this way but I don't know the exact details (as I never used the Qt UI builder on my own).
I used the Qt5 style of QObject::connect().
This is what I would recommend in any case.
The Qt5 style is verified at compile time. –
Wrong connections are detected by the C++ type checking.
Additionally, any function with matching signature can be used – no explicit exposure of slots is anymore necessary.
Even conversion of non-matching signature or adding additional parameters becomes possible by using C++ lambdas which are supported as well.
Qt: Differences between String-Based and Functor-Based Connections
It is possible to connect signals and slots of distinct threads.
I used Qt::QueuedConnection to remark this as interthread communication.
(However, I roughly remember that Qt might be able to detect it itself.
See the doc. for Qt::AutoConnection which is the default.
Further reading: Qt: Signals & Slots
Btw. using the Qt signals for inter-thread communication would exclude the necissity to make SocketThread::threadFlag() atomic. It could become a simple plain bool threadFlag; instead. The slot SocketThread::setThreadFlag() is called in the Qt event loop of QThread, in this case.

QGraphicsScene selectionChanged() event

I need to know when a QGraphicItem is selected from my Scene. I'm using the signal from the method selectionChange() but this does nothing. This my code:
scene.h
class Scene : public QGraphicsScene{
public:
Scene(QGraphicsScene *scene = 0);
~Scene();
private slots:
void test();
};
scene.cpp
Scene::Scene(QGraphicsScene* scene):QGraphicsScene(scene)
{
connect(this, SIGNAL(QGraphicsScene::selectionChanged()), this, SLOT(test()));
}
void Scene::test() {
qDebug() << "I'm here ";
}
I suppose that the problem is that my scene inherits from QGraphicScene, or that it's a bad idea define the connection in the constructor.
SIGNAL and SLOT are macros and thus text-based processing, which makes them quite picky. It's generally a good idea to assert that all your connections succeed. In your case, the problem is the extraneous qualification. Drop it:
connect(this, SIGNAL(selectionChanged()), this, SLOT(test()));
As mentioned by #Angew, the problem is in the text passed to the SIGNAL macro.
If you're using Qt 5, the preferred method would be to use the newer connection syntax, which benefits from compile time error checking
connect(this, &GraphicsScene::SelectionChanged, this, &Scene::Test);
This connection method uses addresses of functions, which has the additional benefit of being able to connect to functions that haven't been declared as a SLOT. However, it may be desirable to still define slots, as discussed here.

Can Qt signals return a value?

Boost.Signals allows various strategies of using the return values of slots to form the return value of the signal. E.g. adding them, forming a vector out of them, or returning the last one.
The common wisdom (expressed in the Qt documentation [EDIT: as well as some answers to this question ]) is that no such thing is possible with Qt signals.
However, when I run the moc on the following class definition:
class Object : public QObject {
Q_OBJECT
public:
explicit Object( QObject * parent=0 )
: QObject( parent ) {}
public Q_SLOTS:
void voidSlot();
int intSlot();
Q_SIGNALS:
void voidSignal();
int intSignal();
};
Not only doesn't moc complain about the signal with the non-void return type, it seems to actively implement it in such a way as to allow a return value to pass:
// SIGNAL 1
int Object::intSignal()
{
int _t0;
void *_a[] = { const_cast<void*>(reinterpret_cast<const void*>(&_t0)) };
QMetaObject::activate(this, &staticMetaObject, 1, _a);
return _t0;
}
So: according to the docs, this thing isn't possible. Then what is moc doing here?
Slots can have return values, so can we connect a slot with a return value to a signal with a return value now? May that be possible, after all? If so, is it useful?
EDIT: I'm not asking for workarounds, so please don't provide any.
EDIT: It obviously isn't useful in Qt::QueuedConnection mode (neither is the QPrintPreviewWidget API, though, and still it exists and is useful). But what about Qt::DirectConnection and Qt::BlockingQueuedConnection (or Qt::AutoConnection, when it resolves to Qt::DirectConnection).
OK. So, I did a little more investigating. Seems this is possible. I was able to emit a signal, and receive value from the slot the signal was connected to. But, the problem was that it only returned the last return value from the multiple connected slots:
Here's a simple class definition (main.cpp):
#include <QObject>
#include <QDebug>
class TestClass : public QObject
{
Q_OBJECT
public:
TestClass();
Q_SIGNALS:
QString testSignal();
public Q_SLOTS:
QString testSlot1() {
return QLatin1String("testSlot1");
}
QString testSlot2() {
return QLatin1String("testSlot2");
}
};
TestClass::TestClass() {
connect(this, SIGNAL(testSignal()), this, SLOT(testSlot1()));
connect(this, SIGNAL(testSignal()), this, SLOT(testSlot2()));
QString a = emit testSignal();
qDebug() << a;
}
int main() {
TestClass a;
}
#include "main.moc"
When main runs, it constructs one of the test classes. The constructor wires up two slots to the testSignal signal, and then emits the signal. It captures the return value from the slot(s) invoked.
Unfortunately, you only get the last return value. If you evaluate the code above, you'll get: "testSlot2", the last return value from the connected slots of the signal.
Here's why. Qt Signals are a syntax sugared interface to the signaling pattern. Slots are the recipients of a signal. In a direct connected signal-slot relationship, you could think of it similar to (pseudo-code):
foreach slot in connectedSlotsForSignal(signal):
value = invoke slot with parameters from signal
return value
Obviously the moc does a little more to help in this process (rudimentary type checking, etc), but this helps paint the picture.
No, they can't.
Boost::signals are quite different from those in Qt. The former provide an advanced callback mechanism, whereas the latter implement the signaling idiom. In the context of multithreading, Qt's (cross-threaded) signals depend on message queues, so they are called asynchronously at some (unknown to the emitter's thread) point in time.
Qt's qt_metacall function returns an integer status code. Because of this, I believe this makes an actual return value impossible (unless you fudge around with the meta object system and moc files after precompilation).
You do, however, have normal function parameters at your disposal. It should be possible to modify your code in such a way to use "out" parameters that act as your "return".
void ClassObj::method(return_type * return_)
{
...
if(return_) *return_ = ...;
}
// somewhere else in the code...
return_type ret;
emit this->method(&ret);
You may get a return value from Qt signal with the following code:
My example shows how to use a Qt signal to read the text of a QLineEdit.
I'm just extending what #jordan has proposed:
It should be possible to modify your code in such a way to use "out" parameters that act as your "return".
#include <QtCore>
#include <QtGui>
class SignalsRet : public QObject
{
Q_OBJECT
public:
SignalsRet()
{
connect(this, SIGNAL(Get(QString*)), SLOT(GetCurrentThread(QString*)), Qt::DirectConnection);
connect(this, SIGNAL(GetFromAnotherThread(QString*)), SLOT(ReadObject(QString*)), Qt::BlockingQueuedConnection);
edit.setText("This is a test");
}
public slots:
QString call()
{
QString text;
emit Get(&text);
return text;
}
signals:
void Get(QString *value);
void GetFromAnotherThread(QString *value);
private slots:
void GetCurrentThread(QString *value)
{
QThread *thread = QThread::currentThread();
QThread *mainthread = this->thread();
if(thread == mainthread) //Signal called from the same thread that SignalsRet class was living
ReadObject(value);
else //Signal called from another thread
emit GetFromAnotherThread(value);
}
void ReadObject(QString *value)
{
QString text = edit.text();
*value = text;
}
private:
QLineEdit edit;
};
To use this, just request call();.
You can try to workaround this with following:
All your connected slots must save their results in some place (container) accessible from signaling object
The last connected slot should somehow (select max or last value) process collected values and expose the only one
The emitting object can try to access this result
Just as an idea.

How to pass variables to slot methods in QT?

I'm making a little chat messenger program, which needs a list of chat channels the user has joined. To represent this list graphically, I have made a list of QPushButtons, which all represent a different channel. These buttons are made with the following method, and that's where my problem kicks in:
void Messenger::addToActivePanels(std::string& channel)
{
activePanelsContents = this->findChild<QWidget *>(QString("activePanelsContents"));
pushButton = new QPushButton(activePanelsContents);
pushButton->setObjectName("pushButton");
pushButton->setGeometry(QRect(0, 0, 60, 60));
pushButton->setText("");
pushButton->setToolTip(QString(channel.c_str()));
pushButton->setCheckable(true);
pushButton->setChecked(false);
connect(pushButton, SIGNAL(clicked()), this, SLOT(switchTab(channel)));
}
(activePanelContents is a QWidget that holds the list.)
The point is that each button should call the switchTab(string& tabname) method when clicked, including the specific channel's name as variable. This implementation doesn't work though, and I haven't been able to find out how to properly do this.
For strings and integers, you can use QSignalMapper. In your Messenger class, you would add a QSignalMapper mapper object, and your function would look like:
void Messenger::addToActivePanels(std::string& channel)
{
activePanelsContents = this->findChild<QWidget *>(QString("activePanelsContents"));
pushButton = new QPushButton(activePanelsContents);
// ...
connect(pushButton, SIGNAL(clicked()), &mapper, SLOT(map()));
mapper.setMapping(pushButton, QString(channel.c_str()));
}
and after you have added all channels to your active panels, you call
connect(&mapper, SIGNAL(mapped(const QString &)), this, SLOT(switchTab(const QString &)));
Use QSignalMapper to pass variables;
QSignalMapper* signalMapper = new QSignalMapper (this) ;
QPushButton *button = new QPushButton();
signalMapper -> setMapping (button, <data>) ;
connect (signalMapper, SIGNAL(mapped(QString)), this,
SLOT(buttonClicked(QString))) ;
in slot i.e
void class::buttonClicked(QString data){
//use data
// to get sender
QSignalMapper *temp = (QSignalMapper *)this->sender();
QPushButton *btn = (QPushButton *)temp->mapping(data);
// use btn
}
Hope my ans may help you
Don't use the sender method unless you absolutely have to. It ties the function directly to being used only as a slot (can't be called directly). Retain the behavior of having the function accept a string and simply make a mechanism by which you can call it.
One method, among others you might find, is to leverage use of QSignalMapper. It will map objects to values and regenerate signals of the appropriate signature.
I would do it with "relay" objects:
Create TabSwitchRelay which is a sub-class of QObject with this constructor:
TabSwitchRelay::TabSwitchRelay(QObject *parent, Messanger * m, const QString & c)
: QObject(parent), m_messanger(m), m_channel(c)
{
}
It also has a slot clicked():
void TabSwitchRelay::clicked()
{
m_messager->switchTab(m_channel);
}
Now replace the line in your code that does connect with this:
TabSwitchRelay * tabRelay = new TabSwitchRelay(pushButton, this, channel);
connect(pushButton, SIGNAL(clicked()), tabRelay, SLOT(clicked()));
It's not tested but you get teh basic idea.
You could try having your switchTab slot take no argument and use QObject::sender to get the object that sent the signal.
Messenger::switchTab()
{
QObject* sender = this->sender();
QPushButton* button = qobject_cast<QPushButton*>(sender);
if(button)
{
// Do stuff...
}
}
if you're using Qt5, you can do it through lambda:
connect( sender, &Sender::valueChanged, [=](){ myMethod(5); } );
void myMethod(int value)
{
// do stuff
}

Dynamic Creation in Qt of QSlider with associated QLCDNumber

I was wondering what's the best way to go about the following scenario?
I am dynamically creating QSliders that I wish to link to an associated QLCDNumber for display. The thing is I would like to have tenths available, so I would like to have a conversion between the QSLider and the QLCDNumber to divide by 10. At this point all I keep really is the QSlider, the QLCDNumbers I just create and forgot about. Is there an easy way of doing the conversion and connection without having to keep too much information?
Thanks in advance.
I'd try something along the following lines:
// create a new signal in your parent widget
signals:
void updateLCDNumber(double);
// and a slot which performs the conversion
private slots:
void performConversion(int value)
{
double convertedValue = value * 0.1;
emit(updateLCDNumber(convertedValue));
}
// then set the signals/slots up like this
connect(mySlider, SIGNAL(valueChanged(int)), this, SLOT(performConversion(int)));
connect(this, SIGNAL(updateLCDNumber(double)), myLCDNumber, SLOT(display(double)));
Afterwards you can completely "forget" about your LCD number, i.e. you don't need to keep a pointer or reference.
EDIT: A solution for several sliders:
class MySlider : public QSlider
{
Q_OBJECT
public:
MySlider(QWidget *parent=0) : QSlider(parent)
{
connect(this, SIGNAL(valueChanged(int)), this, SLOT(performConversion(int)));
}
signals:
void updateLCDNumber(double);
private slots:
void performConversion(int value)
{
double convertedValue = value * 0.1;
emit(updateLCDNumber(convertedValue));
}
};
Now create MySlider instances instead of QSlider ones and connect your QLCDNumbers:
connect(mySlider1, SIGNAL(updateLCDNumber(double)), myLCDNumber1, SLOT(display(double)));
connect(mySlider2, SIGNAL(updateLCDNumber(double)), myLCDNumber2, SLOT(display(double)));
...
This way you can also implement different conversion factors and the like, just modify the MySlider implementation.
I hope that helps.
This is basically what I ended up using; it seems to work (though it violates the whole object oriented philosophy).
signalMapper= new QSignalMapper(this);
QObject::connect(tmpSlider, SIGNAL(valueChanged(int)), signalMapper, SLOT(map()));
sliderMapper->setMapping(tmpSLider, tmpLCDNumber);
QObject::connect(signalMapper, SIGNAL(mapped(QWidget*)), this, SLOT(updateLCD(QWidget*)))
...
void MyClass::updateLCD(QWidget* lcdNum){
((QLCDNumber*)lcdNum)->display(((QSlider*)(signalMapper->mapping(lcdNum)))->value()*.1);
}