c++ get milliseconds since some date - c++

I need some way in c++ to keep track of the number of milliseconds since program execution. And I need the precision to be in milliseconds. (In my googling, I've found lots of folks that said to include time.h and then multiply the output of time() by 1000 ... this won't work.)

clock has been suggested a number of times. This has two problems. First of all, it often doesn't have a resolution even close to a millisecond (10-20 ms is probably more common). Second, some implementations of it (e.g., Unix and similar) return CPU time, while others (E.g., Windows) return wall time.
You haven't really said whether you want wall time or CPU time, which makes it hard to give a really good answer. On Windows, you could use GetProcessTimes. That will give you the kernel and user CPU times directly. It will also tell you when the process was created, so if you want milliseconds of wall time since process creation, you can subtract the process creation time from the current time (GetSystemTime). QueryPerformanceCounter has also been mentioned. This has a few oddities of its own -- for example, in some implementations it retrieves time from the CPUs cycle counter, so its frequency varies when/if the CPU speed changes. Other implementations read from the motherboard's 1.024 MHz timer, which does not vary with the CPU speed (and the conditions under which each are used aren't entirely obvious).
On Unix, you can use GetTimeOfDay to just get the wall time with (at least the possibility of) relatively high precision. If you want time for a process, you can use times or getrusage (the latter is newer and gives more complete information that may also be more precise).
Bottom line: as I said in my comment, there's no way to get what you want portably. Since you haven't said whether you want CPU time or wall time, even for a specific system, there's not one right answer. The one you've "accepted" (clock()) has the virtue of being available on essentially any system, but what it returns also varies just about the most widely.

See std::clock()

Include time.h, and then use the clock() function. It returns the number of clock ticks elapsed since the program was launched. Just divide it by "CLOCKS_PER_SEC" to obtain the number of seconds, you can then multiply by 1000 to obtain the number of milliseconds.

Some cross platform solution. This code was used for some kind of benchmarking:
#ifdef WIN32
LARGE_INTEGER g_llFrequency = {0};
BOOL g_bQueryResult = QueryPerformanceFrequency(&g_llFrequency);
#endif
//...
long long osQueryPerfomance()
{
#ifdef WIN32
LARGE_INTEGER llPerf = {0};
QueryPerformanceCounter(&llPerf);
return llPerf.QuadPart * 1000ll / ( g_llFrequency.QuadPart / 1000ll);
#else
struct timeval stTimeVal;
gettimeofday(&stTimeVal, NULL);
return stTimeVal.tv_sec * 1000000ll + stTimeVal.tv_usec;
#endif
}

The most portable way is using the clock function.It usually reports the time that your program has been using the processor, or an approximation thereof. Note however the following:
The resolution is not very good for GNU systems. That's really a pity.
Take care of casting everything to double before doing divisions and assignations.
The counter is held as a 32 bit number in GNU 32 bits, which can be pretty annoying for long-running programs.
There are alternatives using "wall time" which give better resolution, both in Windows and Linux. But as the libc manual states: If you're trying to optimize your program or measure its efficiency, it's very useful to know how much processor time it uses. For that, calendar time and elapsed times are useless because a process may spend time waiting for I/O or for other processes to use the CPU.

Here is a C++0x solution and an example why clock() might not do what you think it does.
#include <chrono>
#include <iostream>
#include <cstdlib>
#include <ctime>
int main()
{
auto start1 = std::chrono::monotonic_clock::now();
auto start2 = std::clock();
sleep(1);
for( int i=0; i<100000000; ++i);
auto end1 = std::chrono::monotonic_clock::now();
auto end2 = std::clock();
auto delta1 = end1-start1;
auto delta2 = end2-start2;
std::cout << "chrono: " << std::chrono::duration_cast<std::chrono::duration<float>>(delta1).count() << std::endl;
std::cout << "clock: " << static_cast<float>(delta2)/CLOCKS_PER_SEC << std::endl;
}
On my system this outputs:
chrono: 1.36839
clock: 0.36
You'll notice the clock() method is missing a second. An astute observer might also notice that clock() looks to have less resolution. On my system it's ticking by in 12 millisecond increments, terrible resolution.
If you are unable or unwilling to use C++0x, take a look at Boost.DateTime's ptime microsec_clock::universal_time().

This isn't C++ specific (nor portable), but you can do:
SYSTEMTIME systemDT;
In Windows.
From there, you can access each member of the systemDT struct.
You can record the time when the program started and compare the current time to the recorded time (systemDT versus systemDTtemp, for instance).
To refresh, you can call GetLocalTime(&systemDT);
To access each member, you would do systemDT.wHour, systemDT.wMinute, systemDT.wMilliseconds.
To get more information on SYSTEMTIME.

Do you want wall clock time, CPU time, or some other measurement? Also, what platform is this? There is no universally portable way to get more precision than time() and clock() give you, but...
on most Unix systems, you can use gettimeofday() and/or clock_gettime(), which give at least microsecond precision and access to a variety of timers;
I'm not nearly as familiar with Windows, but one of these functions probably does what you want.

You can try this code (get from StockFish chess engine source code (GPL)):
#include <iostream>
#include <stdio>
#if !defined(_WIN32) && !defined(_WIN64) // Linux - Unix
# include <sys/time.h>
typedef timeval sys_time_t;
inline void system_time(sys_time_t* t) {
gettimeofday(t, NULL);
}
inline long long time_to_msec(const sys_time_t& t) {
return t.tv_sec * 1000LL + t.tv_usec / 1000;
}
#else // Windows and MinGW
# include <sys/timeb.h>
typedef _timeb sys_time_t;
inline void system_time(sys_time_t* t) { _ftime(t); }
inline long long time_to_msec(const sys_time_t& t) {
return t.time * 1000LL + t.millitm;
}
#endif
struct Time {
void restart() { system_time(&t); }
uint64_t msec() const { return time_to_msec(t); }
long long elapsed() const {
return long long(current_time().msec() - time_to_msec(t));
}
static Time current_time() { Time t; t.restart(); return t; }
private:
sys_time_t t;
};
int main() {
sys_time_t t;
system_time(&t);
long long currentTimeMs = time_to_msec(t);
std::cout << "currentTimeMs:" << currentTimeMs << std::endl;
Time time = Time::current_time();
for (int i = 0; i < 1000000; i++) {
//Do something
}
long long e = time.elapsed();
std::cout << "time elapsed:" << e << std::endl;
getchar(); // wait for keyboard input
}

Related

Stopwatch class in c++

I have to write a stopwatch class in c++. The way I am trying to do this is by defining a variable to save laps (named 'time') and a bool that I use to see if the watch is started or stopped. When entering a char the timer should start and set time1. When another char is entered the bool switches to false and sets time2 and then prints time2-time1. This should be repeatable until 'n' is entered
I also am not quite sure I understand what unit of time time_t is in. In my code i get a return value of ±40 units every time i try to measure the interval of a lap, which I am guessing is the runtime of the program and not actually the time of the interval.
#ifndef stoppuhr_hpp
#define stoppuhr_hpp
#include <iostream>
#include <time.h>
class Stoppuhr{
private:
bool running;
clock_t time;
public:
void pushButtonStartStop () {
char t=0;
running=false;
time=0;
std::cout << "to start/stop watch please press a key, to end
clock type 'n' " << std::endl;
clock_t time1=0;
clock_t time2=0;
std::cout << time;
while (t!='n') {
std::cin >> t;
running= !running;
if (running) {
time1=clock();
}
else {
time2=clock();
time+=time2-time1;
std::cout << time << std::endl;
}
}
}
};
#endif /* stoppuhr_hpp */
I also am not quite sure I understand what unit of time time_t is in.
The unit of time represented by time_t is implementation specified. Usually, it represents seconds, as specified by POSIX.
However, you don't use time_t anywhere in your program.
I am guessing is the runtime of the program
I recommend not to guess, but to read documentation instead. clock() returns the processor time used by the program since some point in time. So deducting two timepoints returned by clock() will give you the processor time used between those timepoints. The unit of clock_t is 1 / CLOCKS_PER_SEC seconds.
i get a return value of ±40 units every time
Granularity of clock is implementation specified. It might be 40 units on your system. The program consumes hardly any processor time while it waits for input.
I have to write a stopwatch class
Stopwatches typically measure real world time i.e. wall clock time. Measuring processor time would be futile for this task.
I recommend using std::chrono::steady_clock::now instead.
If you insist on using time.h, then you can use time(nullptr) to get the wall clock time but I don't recommend it.

Windows: how to get the current time in milliseconds in c++? [duplicate]

How can I get the Windows system time with millisecond resolution?
If the above is not possible, then how can I get the operating system start time? I would like to use this value together with timeGetTime() in order to compute a system time with millisecond resolution.
Try this article from MSDN Magazine. It's actually quite complicated.
Implement a Continuously Updating, High-Resolution Time Provider for Windows
(archive link)
This is an elaboration of the above comments to explain the some of the whys.
First, the GetSystemTime* calls are the only Win32 APIs providing the system's time. This time has a fairly coarse granularity, as most applications do not need the overhead required to maintain a higher resolution. Time is (likely) stored internally as a 64-bit count of milliseconds. Calling timeGetTime gets the low order 32 bits. Calling GetSystemTime, etc requests Windows to return this millisecond time, after converting into days, etc and including the system start time.
There are two time sources in a machine: the CPU's clock and an on-board clock (e.g., real-time clock (RTC), Programmable Interval Timers (PIT), and High Precision Event Timer (HPET)). The first has a resolution of around ~0.5ns (2GHz) and the second is generally programmable down to a period of 1ms (though newer chips (HPET) have higher resolution). Windows uses these periodic ticks to perform certain operations, including updating the system time.
Applications can change this period via timerBeginPeriod; however, this affects the entire system. The OS will check / update regular events at the requested frequency. Under low CPU loads / frequencies, there are idle periods for power savings. At high frequencies, there isn't time to put the processor into low power states. See Timer Resolution for further details. Finally, each tick has some overhead and increasing the frequency consumes more CPU cycles.
For higher resolution time, the system time is not maintained to this accuracy, no more than Big Ben has a second hand. Using QueryPerformanceCounter (QPC) or the CPU's ticks (rdtsc) can provide the resolution between the system time ticks. Such an approach was used in the MSDN magazine article Kevin cited. Though these approaches may have drift (e.g., due to frequency scaling), etc and therefore need to be synced to the system time.
In Windows, the base of all time is a function called GetSystemTimeAsFiletime.
It returns a structure that is capable of holding a time with 100ns resoution.
It is kept in UTC
The FILETIME structure records the number of 100ns intervals since January 1, 1600; meaning its resolution is limited to 100ns.
This forms our first function:
A 64-bit number of 100ns ticks since January 1, 1600 is somewhat unwieldy. Windows provides a handy helper function, FileTimeToSystemTime that can decode this 64-bit integer into useful parts:
record SYSTEMTIME {
wYear: Word;
wMonth: Word;
wDayOfWeek: Word;
wDay: Word;
wHour: Word;
wMinute: Word;
wSecond: Word;
wMilliseconds: Word;
}
Notice that SYSTEMTIME has a built-in resolution limitation of 1ms
Now we have a way to go from FILETIME to SYSTEMTIME:
We could write the function to get the current system time as a SYSTEIMTIME structure:
SYSTEMTIME GetSystemTime()
{
//Get the current system time utc in it's native 100ns FILETIME structure
FILETIME ftNow;
GetSytemTimeAsFileTime(ref ft);
//Decode the 100ns intervals into a 1ms resolution SYSTEMTIME for us
SYSTEMTIME stNow;
FileTimeToSystemTime(ref stNow);
return stNow;
}
Except Windows already wrote such a function for you: GetSystemTime
Local, rather than UTC
Now what if you don't want the current time in UTC. What if you want it in your local time? Windows provides a function to convert a FILETIME that is in UTC into your local time: FileTimeToLocalFileTime
You could write a function that returns you a FILETIME in local time already:
FILETIME GetLocalTimeAsFileTime()
{
FILETIME ftNow;
GetSystemTimeAsFileTime(ref ftNow);
//convert to local
FILETIME ftNowLocal
FileTimeToLocalFileTime(ftNow, ref ftNowLocal);
return ftNowLocal;
}
And lets say you want to decode the local FILETIME into a SYSTEMTIME. That's no problem, you can use FileTimeToSystemTime again:
Fortunately, Windows already provides you a function that returns you the value:
Precise
There is another consideration. Before Windows 8, the clock had a resolution of around 15ms. In Windows 8 they improved the clock to 100ns (matching the resolution of FILETIME).
GetSystemTimeAsFileTime (legacy, 15ms resolution)
GetSystemTimeAsPreciseFileTime (Windows 8, 100ns resolution)
This means we should always prefer the new value:
You asked for the time
You asked for the time; but you have some choices.
The timezone:
UTC (system native)
Local timezone
The format:
FILETIME (system native, 100ns resolution)
SYTEMTIME (decoded, 1ms resolution)
Summary
100ns resolution: FILETIME
UTC: GetSytemTimeAsPreciseFileTime (or GetSystemTimeAsFileTime)
Local: (roll your own)
1ms resolution: SYSTEMTIME
UTC: GetSystemTime
Local: GetLocalTime
GetTickCount will not get it done for you.
Look into QueryPerformanceFrequency / QueryPerformanceCounter. The only gotcha here is CPU scaling though, so do your research.
Starting with Windows 8 Microsoft has introduced the new API command GetSystemTimePreciseAsFileTime
Unfortunately you can't use that if you create software which must also run on older operating systems.
My current solution is as follows, but be aware: The determined time is not exact, it is only near to the real time. The result should always be smaller or equal to the real time, but with a fixed error (unless the computer went to standby). The result has a millisecond resolution. For my purpose it is exact enough.
void GetHighResolutionSystemTime(SYSTEMTIME* pst)
{
static LARGE_INTEGER uFrequency = { 0 };
static LARGE_INTEGER uInitialCount;
static LARGE_INTEGER uInitialTime;
static bool bNoHighResolution = false;
if(!bNoHighResolution && uFrequency.QuadPart == 0)
{
// Initialize performance counter to system time mapping
bNoHighResolution = !QueryPerformanceFrequency(&uFrequency);
if(!bNoHighResolution)
{
FILETIME ftOld, ftInitial;
GetSystemTimeAsFileTime(&ftOld);
do
{
GetSystemTimeAsFileTime(&ftInitial);
QueryPerformanceCounter(&uInitialCount);
} while(ftOld.dwHighDateTime == ftInitial.dwHighDateTime && ftOld.dwLowDateTime == ftInitial.dwLowDateTime);
uInitialTime.LowPart = ftInitial.dwLowDateTime;
uInitialTime.HighPart = ftInitial.dwHighDateTime;
}
}
if(bNoHighResolution)
{
GetSystemTime(pst);
}
else
{
LARGE_INTEGER uNow, uSystemTime;
{
FILETIME ftTemp;
GetSystemTimeAsFileTime(&ftTemp);
uSystemTime.LowPart = ftTemp.dwLowDateTime;
uSystemTime.HighPart = ftTemp.dwHighDateTime;
}
QueryPerformanceCounter(&uNow);
LARGE_INTEGER uCurrentTime;
uCurrentTime.QuadPart = uInitialTime.QuadPart + (uNow.QuadPart - uInitialCount.QuadPart) * 10000000 / uFrequency.QuadPart;
if(uCurrentTime.QuadPart < uSystemTime.QuadPart || abs(uSystemTime.QuadPart - uCurrentTime.QuadPart) > 1000000)
{
// The performance counter has been frozen (e. g. after standby on laptops)
// -> Use current system time and determine the high performance time the next time we need it
uFrequency.QuadPart = 0;
uCurrentTime = uSystemTime;
}
FILETIME ftCurrent;
ftCurrent.dwLowDateTime = uCurrentTime.LowPart;
ftCurrent.dwHighDateTime = uCurrentTime.HighPart;
FileTimeToSystemTime(&ftCurrent, pst);
}
}
GetSystemTimeAsFileTime gives the best precision of any Win32 function for absolute time. QPF/QPC as Joel Clark suggested will give better relative time.
Since we all come here for quick snippets instead of boring explanations, I'll write one:
FILETIME t;
GetSystemTimeAsFileTime(&t); // unusable as is
ULARGE_INTEGER i;
i.LowPart = t.dwLowDateTime;
i.HighPart = t.dwHighDateTime;
int64_t ticks_since_1601 = i.QuadPart; // now usable
int64_t us_since_1601 = (i.QuadPart * 1e-1);
int64_t ms_since_1601 = (i.QuadPart * 1e-4);
int64_t sec_since_1601 = (i.QuadPart * 1e-7);
// unix epoch
int64_t unix_us = (i.QuadPart * 1e-1) - 11644473600LL * 1000000;
int64_t unix_ms = (i.QuadPart * 1e-4) - 11644473600LL * 1000;
double unix_sec = (i.QuadPart * 1e-7) - 11644473600LL;
// i.QuadPart is # of 100ns ticks since 1601-01-01T00:00:00Z
// difference to Unix Epoch is 11644473600 seconds (attention to units!)
No idea how drifting performance-counter-based answers went up, don't do slippage bugs, guys.
QueryPerformanceCounter() is built for fine-grained timer resolution.
It is the highest resolution timer that the system has to offer that you can use in your application code to identify performance bottlenecks
Here is a simple implementation for C# devs:
[DllImport("kernel32.dll")]
extern static short QueryPerformanceCounter(ref long x);
[DllImport("kernel32.dll")]
extern static short QueryPerformanceFrequency(ref long x);
private long m_endTime;
private long m_startTime;
private long m_frequency;
public Form1()
{
InitializeComponent();
}
public void Begin()
{
QueryPerformanceCounter(ref m_startTime);
}
public void End()
{
QueryPerformanceCounter(ref m_endTime);
}
private void button1_Click(object sender, EventArgs e)
{
QueryPerformanceFrequency(ref m_frequency);
Begin();
for (long i = 0; i < 1000; i++) ;
End();
MessageBox.Show((m_endTime - m_startTime).ToString());
}
If you are a C/C++ dev, then take a look here: How to use the QueryPerformanceCounter function to time code in Visual C++
Well, this one is very old, yet there is another useful function in Windows C library _ftime, which returns a structure with local time as time_t, milliseconds, timezone, and daylight saving time flag.
In C11 and above (or C++17 and above) you can use timespec_get() to get time with higher precision portably
#include <stdio.h>
#include <time.h>
int main(void)
{
struct timespec ts;
timespec_get(&ts, TIME_UTC);
char buff[100];
strftime(buff, sizeof buff, "%D %T", gmtime(&ts.tv_sec));
printf("Current time: %s.%09ld UTC\n", buff, ts.tv_nsec);
}
If you're using C++ then since C++11 you can use std::chrono::high_resolution_clock, std::chrono::system_clock (wall clock), or std::chrono::steady_clock (monotonic clock) in the new <chrono> header. No need to use Windows-specific APIs anymore
auto start1 = std::chrono::high_resolution_clock::now();
auto start2 = std::chrono::system_clock::now();
auto start3 = std::chrono::steady_clock::now();
// do some work
auto end1 = std::chrono::high_resolution_clock::now();
auto end2 = std::chrono::system_clock::now();
auto end3 = std::chrono::steady_clock::now();
std::chrono::duration<long long, std::milli> diff1 = end1 - start1;
std::chrono::duration<double, std::milli> diff2 = end2 - start2;
auto diff3 = std::chrono::duration_cast<std::chrono::milliseconds>(end3 - start3);
std::cout << diff.count() << ' ' << diff2.count() << ' ' << diff3.count() << '\n';

Benchmarking an application in a fully loaded machine

I need to "time" or benchmark a number crunching application written in C/C++. The problem is that the machine where I run the program is usually full of people doing similar things, so the CPUs are always at full load.
I thought about using functions from time.h liket "get time of the day" (don't remember the exact syntax, sorry) and similars, but I am afraid they would not be good for this case, am I right?
And the program "time" from bash, gave me some errors long time ago.
Also the problem is, that sometimes I need to get timings in the range of 0.5 secs and so on.
Anybody has a hint?
P.S.: compiler is gcc and in some cases nvcc (NVIDIA)
P.S.2: in my benchmarks I just want to measure the execution time between two parts of the main function
You didn't mention which compiler you are using, but with GNU's g++ I usually set the -pg flag to build with profiling informations.
Each time you run the application, it will create an output file that, parsed with gprof application, will give you lots of information about the performances.
See this for starters.
From your other recent questions, you seem to be using MPI for parallelisation. Assuming this question is within the same context, then the simplest way to time your application would be to use MPI_Wtime().
From the man page:
This subroutine returns the current
value of time as a double precision
floating point number of seconds. This
value represents elapsed time since
some point in the past. This time in
the past will not change during the
life of the task. You are responsible
for converting the number of seconds
into other units if you prefer.
Example usage:
#include "mpi.h"
int main(int argc, char **argv)
{
int rc, taskid;
double t_start, t_end;
MPI_Init(&argc,&argv);
MPI_Comm_rank(MPI_COMM_WORLD,&taskid);
t_start = MPI_Wtime();
/* .... your computation kernel .... */
t_end = MPI_Wtime();
/* make sure all processes have completed */
MPI_Barrier(MPI_COMM_WORLD);
if (taskid == 0) {
printf("Elapsed time: %1.2f seconds\n", t_start - t_end);
}
MPI_Finalize();
return 0;
}
The advantage of this is that we let the underlying MPI library handle platform specific ways of handling time, although you might want to use MPI_Wtick() to determine the resolution of the timer used on each platform.
It's hard to meaningfully compare timings from programs running for such a short time. Usually the solution is to run multiple times.
The time builtin in bash (or /usr/bin/time) will report time actually used by the processor, which will be more useful on a loaded machine than wall-clock time, but there is too much going on to really compare timings on a fine grain – huge differences of orders of magnitude will still be apparent.
You can also use clock to get a rough estimate:
#include <ctime>
#include <iostream>
struct Timer {
std::clock_t _start, _stop;
Timer() : _start(std::clock()) {}
void restart() { _start = std::clock(); }
void stop() { _stop = std::clock(); }
std::clock_t clocks() const { return _stop - _start; }
double secs() const { return double(clocks()) / CLOCKS_PER_SEC; }
};
int main() {
Timer t;
//run_some_code();
t.stop();
std::cout << "That took " << t.secs() << " seconds.\n";
return 0;
}

Portable way of counting milliseconds in C++?

Is there any portable (Windows & Linux) way of counting how many milliseconds elapsed between two calls ?
Basically, I want to achieve the same functionnality than the StopWatch class of .NET. (for those who already used it)
In a perfect world, I would have used boost::date_time but that's not an option here due to some silly rules I'm enforced to respect.
For those who better read code, this is what I'd like to achieve.
Timer timer;
timer.start();
// Some instructions here
timer.stop();
// Print out the elapsed time
std::cout << "Elapsed time: " << timer.milliseconds() << "ms" << std::endl;
So, if there is a portable (set of) function(s) that can help me implement the Timer class, what is it ? If there is no such function, what Windows & Linux API should I use to achieve this functionnality ? (using #ifdef WINDOWS-like macros)
Thanks !
On Linux (and generally in POSIX), you can use gettimeofday function, which returns number of microseconds since the Epoch. On Windows, there is GetTickCount function, that return number of milliseconds since the system was started.
clock() (in Time.h) returns a value which increases CLOCKS_PER_SEC every second, commonly 1000.
On Windows, use the High Performance Timer, it's a doddle.
LARGE_INTEGER frequency;
LARGE_INTEGER one;
LARGE_INTEGER two;
QueryPerformanceFrequency(&frequency);
QueryPerformanceCounter(&one);
// something
QueryPerformanceCounter(&two);
std::cout << (((double)two.QuadPart - (double)one.QuadPart) / (double)frequency.QuadPart) * (double)1000;
In theory, this can go up to per-clock-cycle accuracy, depending on the CPU in question.
This is my code for this task (Boost license)
Where ptime is class that represents time in seconds + nanoseconds ptime(int sec,int nano)
And ptime::microseconds create sec/nano pair from posix time microseconds.
It is quite easy to rewrite it for your needs and write such class.
ptime ptime::now()
{
#ifndef BOOSTER_WIN_NATIVE
struct timeval tv;
gettimeofday(&tv,0);
return ptime(tv.tv_sec,tv.tv_usec * 1000);
#else
FILETIME ft;
GetSystemTimeAsFileTime(&ft);
unsigned long long tt = ft.dwHighDateTime;
tt <<=32;
tt |= ft.dwLowDateTime;
tt /=10;
tt -= 11644473600000000ULL;
return ptime(ptime::microseconds(tt));
#endif
}
And there is no portable C++ function for this...

How to get system time in C++?

In fact i am trying to calculate the time a function takes to complete in my program.
So i am using the logic to get system time when i call the function and time when the function returns a value then by subtracting the values i get time it took to complete.
So if anyone can tell me some better approach or just how to get system time at an instance it would be quite a help
The approach I use when timing my code is the time() function. It returns a single numeric value to you representing the epoch which makes the subtraction part easier for calculation.
Relevant code:
#include <time.h>
#include <iostream>
int main (int argc, char *argv[]) {
int startTime, endTime, totalTime;
startTime = time(NULL);
/* relevant code to benchmark in here */
endTime = time(NULL);
totalTime = endTime - startTime;
std::cout << "Runtime: " << totalTime << " seconds.";
return 0;
}
Keep in mind this is user time. For CPU, time see Ben's reply.
Your question is totally dependant on WHICH system you are using. Each system has its own functions for getting the current time. For finding out how long the system has been running, you'd want to access one of the "high resolution performance counters". If you don't use a performance counter, you are usually limited to microsecond accuracy (or worse) which is almost useless in profiling the speed of a function.
In Windows, you can access the counter via the 'QueryPerformanceCounter()' function. This returns an arbitrary number that is different on each processor. To find out how many ticks in the counter == 1 second, call 'QueryPerformanceFrequency()'.
If you're coding under a platform other than windows, just google performance counter and the system you are coding under, and it should tell you how you can access the counter.
Edit (clarification)
This is c++, just include windows.h and import the "Kernel32.lib" (seems to have removed my hyperlink, check out the documentation at: http://msdn.microsoft.com/en-us/library/ms644904.aspx). For C#, you can use the "System.Diagnostics.PerformanceCounter" class.
You can use time_t
Under Linux, try gettimeofday() for microsecond resolution, or clock_gettime() for nanosecond resolution.
(Of course the actual clock may have a coarser resolution.)
In some system you don't have access to the time.h header. Therefore, you can use the following code snippet to find out how long does it take for your program to run, with the accuracy of seconds.
void function()
{
time_t currentTime;
time(&currentTime);
int startTime = currentTime;
/* Your program starts from here */
time(&currentTime);
int timeElapsed = currentTime - startTime;
cout<<"It took "<<timeElapsed<<" seconds to run the program"<<endl;
}
You can use the solution with std::chrono described here: Getting an accurate execution time in C++ (micro seconds) you will have much better accuracy in your measurement. Usually we measure code execution in the round of the milliseconds (ms) or even microseconds (us).
#include <chrono>
#include <iostream>
...
[YOUR METHOD/FUNCTION STARTING HERE]
auto start = std::chrono::high_resolution_clock::now();
[YOUR TEST CODE HERE]
auto elapsed = std::chrono::high_resolution_clock::now() - start;
long long microseconds = std::chrono::duration_cast<std::chrono::microseconds>(elapsed).count();
std::cout << "Elapsed time: " << microseconds << " ms;