I wanted a non recursive approach to the problem of generating combination of certain set of characters or numbers.
So, given a subset k of numbers n, generate all the possible combination n!/k!(n-k)!
The recursive method would give a combination, given the previous one combination.
A non recursive method would generate a combination of a given value of loop index i.
I approached the problem with this code:
Tested with n = 4 and k = 3, and it works, but if I change k to a number > 3 it does not work.
Is it due to the fact that (n-k)! in case of n = 4 and k = 3 is 1. and if k > 3 it will be more than 1?
Thanks.
int facto(int x);
int len,fact,rem=0,pos=0;
int str[7];
int avail[7];
str[0] = 1;
str[1] = 2;
str[2] = 3;
str[3] = 4;
str[4] = 5;
str[5] = 6;
str[6] = 7;
int tot=facto(n) / facto(n-k) / facto(k);
for (int i=0;i<tot;i++)
{
avail[0]=1;
avail[1]=2;
avail[2]=3;
avail[3]=4;
avail[4]=5;
avail[5]=6;
avail[6]=7;
rem = facto(i+1)-1;
cout<<rem+1<<". ";
for(int j=len;j>0;j--)
{
int div = facto(j);
pos = rem / div;
rem = rem % div;
cout<<avail[pos]<<" ";
avail[pos]=avail[j];
}
cout<<endl;
}
int facto(int x)
{
int fact=1;
while(x>0) fact*=x--;
return fact;
}
Err.. why not use std::next_permutation? It does exactly what you're looking for and doesn't require you to write (and debug and maintain) your own.
This is about as fast as it can be calculated - the actual combination function is done using two lines of code.
However, this isn't the most intuitively easy to understand!
The work is done by implementing a Gray code sequence.
#include <iostream>
#include <iomanip>
#include <cstdlib>
#include <stdint.h>
using namespace std;
//'Combinations' over a set of n objects with k bins, eg n=3,k=2 = 3
//The combination function.
//It takes a combination and returns the next combination.
//It uses GCC's '__builtin_ctzll' which returns the number of
//trailing 0-bits in v, starting at the least significant bit position.
uint64_t combination(uint64_t v) {
uint64_t t = v | (v - 1ULL); // t gets v's least significant 0 bits set to 1
return (t + 1ULL) | (((~t & -~t) - 1ULL) >> (__builtin_ctzll(v) + 1ULL));
}
//arg 1 is number of bins (n) arg 2 is number of samples (k/r)
int main (int argc, char *argv[]) {
uint64_t n = min(64ULL,argc > 1ULL ? atoi(argv[1]) : 3ULL); //max bins = 63
uint64_t k = min( n,argc > 2 ? atoi(argv[2]) : 2ULL); //max samples = bins.
uint64_t v = (1ULL << k) - 1; //start value;
uint64_t m = n == 64 ? UINT64_MAX: (1ULL << n) - 1ULL; //size of n is used as a mask.
string index = "ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789abcdefghijklmnopqrstuvwxyz+*";
cout << index.substr(0,n) << endl;
do {
cout << bitset<64>(v & m).to_string().substr(64ULL-n) << endl;
v=combination(v);
} while (v < m);
return 0;
}
Consider that your iterator is a number of k digits in base n. In C/C++ you can represent it as an array of ints of size k where every element is in the range from 0 to n-1).
Then, to iterate from one position to the next you only need to increment the number.
That will give you all the permutations. In order to get combinations you have to impose an additional condition that is that digits must be in ascending order.
For instance with k = 3, n = 3: 000 001 002 011 012 022 111 112 122 222
Implementing that constraint in C is also pretty simple, on the increment operation used to iterate, instead of setting the rightmost digits to zero when there is a carry, you have to set them to the same value as the leftmost digit changed.
update: some code:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define MAXK 100
int
main(int argc, char *argv[]) {
int digits[MAXK];
int k = atol(argv[1]);
int n = atol(argv[2]);
int i, left;
memset(digits, 0, sizeof(digits));
while(1) {
for (i = k; i--; ) {
printf("%d", digits[i]);
printf((i ? "-" : "\n"));
}
for (i = k; i--; ) {
left = ++digits[i];
if (left < n) {
while (++i < k) digits[i] = left;
break;
}
}
if (i < 0) break;
}
}
Related
Consistently comparing digits symmetrically to its middle digit. If first number is bigger than the last , first is wining and I have to display it else I display last and that keep until I reach middle digit(this is if I have odd number of digits), if digit don't have anything to be compared with it wins automatically.
For example number is 13257 the answer is 7 5 2.
Another one 583241 the answer is 5 8 3.
For now I am only trying to catch when number of digits is odd. And got stuck.. This is my code. The problem is that this code don't display any numbers, but it compares them in the if statement(I checked while debugging).
#include <iostream>
using namespace std;
int countDigit(int n) {
int count = 0;
while (n != 0) {
count++;
n /= 10;
}
return count;
}
int main() {
int n;
cin >> n;
int middle;
int count = countDigit(n);
if (count % 2 == 0) {
cout<<"No mid digit exsist!!";
}
else {
int lastDigit = n % 10;
middle = (count + 1) / 2;
for (int i = 0; i < middle; i++) {
for (int j = lastDigit; j<middle; j--) {
if (i > j) {
cout << i <<' ';
}
else {
cout << j;
}
}
}
}
return 0;
}
An easier approach towards this, in my opinion, would be using strings. You can check the size of the string. If there are even number of characters, you can just compare the first half characters, with the last half. If there are odd numbers, then do the same just print the middle character.
Here's what I'd do for odd number of digits:
string n;
cin>>n;
int i,j;
for(i=0,j=n.size()-1;i<n.size()/2,j>=(n.size()+1)/2;i++,j--)
{
if(n[i]>n[j]) cout<<n[i]<<" ";
else cout<<n[j]<<" ";
}
cout<<n[n.size()/2]<<endl;
We analyze the requirements and then come up with a design.
If we have a number, consisting of digits, we want to compare "left" values with "right" values. So, start somehow at the left and the right index of digits in a number.
Look at this number: 123456789
Index: 012345678
Length: 9
in C and C++ indices start with 0.
So, what will we do?
Compare index 0 with index 8
Compare index 1 with index 7
Compare index 2 with index 6
Compare index 3 with index 5
Compare index 4 with index 4
So, the index from the left is running up and the index from the right is running down.
We continue as long as the left index is less than or equal the right index. All this can be done in a for or while loop.
It does not matter, wether the number of digits is odd or even.
Of course we also do need functions that return the length of a number and a digit of the number at a given position. But I see that you know already how to write these functions. So, I will not explain it further here.
I show you 3 different examples.
Ultra simple and very verbose. Very inefficient, because we do not have arrays.
Still simple, but more compressed. Very inefficient, because we do not have arrays.
C++ solution, not allowed in your case
Verbose
#include <iostream>
// Get the length of a number
unsigned int length(unsigned long long number) {
unsigned int length = 0;
while (number != 0) {
number /= 10;
++length;
}
return length;
}
// Get a digit at a given index of a number
unsigned int digitAt(unsigned int index, unsigned long long number) {
index = length(number) - index - 1;
unsigned int result = 0;
unsigned int count = 0;
while ((number != 0) && (count <= index)) {
result = number % 10;
number /= 10;
++count;
}
return result;
}
// Test
int main() {
unsigned long long number;
if (std::cin >> number) {
unsigned int indexLeft = 0;
unsigned int indexRight = length(number) - 1;
while (indexLeft <= indexRight) {
if (digitAt(indexLeft, number) > digitAt(indexRight, number)) {
std::cout << digitAt(indexLeft, number);
}
else {
std::cout << digitAt(indexRight, number);
}
++indexLeft;
--indexRight;
}
}
}
Compressed
#include <iostream>
// Get the length of a number
size_t length(unsigned long long number) {
size_t length{};
for (; number; number /= 10) ++length;
return length;
}
// Get a digit at a given index of a number
unsigned int digitAt(size_t index, unsigned long long number) {
index = length(number) - index - 1;
unsigned int result{}, count{};
for (; number and count <= index; ++count, number /= 10)
result = number % 10;
return result;
}
// Test
int main() {
if (unsigned long long number; std::cin >> number) {
// Iterate from left and right at the same time
for (size_t indexLeft{}, indexRight{ length(number) - 1 }; indexLeft <= indexRight; ++indexLeft, --indexRight)
std::cout << ((digitAt(indexLeft,number) > digitAt(indexRight, number)) ? digitAt(indexLeft, number) : digitAt(indexRight, number));
}
}
More modern C++
#include <iostream>
#include <string>
#include <algorithm>
#include <cctype>
int main() {
if (std::string numberAsString{}; std::getline(std::cin, numberAsString) and not numberAsString.empty() and
std::all_of(numberAsString.begin(), numberAsString.end(), std::isdigit)) {
for (size_t indexLeft{}, indexRight{ numberAsString.length() - 1 }; indexLeft <= indexRight; ++indexLeft, --indexRight)
std::cout << ((numberAsString[indexLeft] > numberAsString[indexRight]) ? numberAsString[indexLeft] : numberAsString[indexRight]);
}
}
You are trying to do something confusing with nested for-cycles. This is obviously wrong, because there is nothing “quadratic” (with respect to the number of digits) in the entire task. Also, your code doesn’t seem to contain anything that would determine the highest-order digit.
I would suggest that you start with something very simple: string’ify the number and then iterate over the digits in the string. This is obviously neither elegant nor particularly fast, but it will be a working solution to start with and you can improve it later.
BTW, the sooner you get out of the bad habit of using namespace std; the better. It is an antipattern, please avoid it.
Side note: There is no need to treat odd and even numbers of digits differently. Just let the algorithm compare the middle digit (if it exists) against itself and select it; no big deal. It is a tiny efficiency drawback in exchange for a big code simplicity benefit.
#include <cstdint>
#include <iostream>
#include <string>
using std::size_t;
using std::uint64_t;
uint64_t extract_digits(uint64_t source) {
const std::string digits{std::to_string(source)};
auto i = digits.begin();
auto j = digits.rbegin();
const auto iend = i + (digits.size() + 1) / 2;
uint64_t result{0};
for (; i < iend; ++i, ++j) {
result *= 10;
result += (*i > *j ? *i : *j) - '0';
}
return result;
}
int main() {
uint64_t n;
std::cin >> n;
std::cout << extract_digits(n) << std::endl;
}
If the task disallows the use of strings and arrays, you could try using pure arithmetics by constructing a “digit-inverted” version of the number and then iterating over both numbers using division and modulo. This will (still) have obvious limitations that stem from the data type size, some numbers cannot be inverted properly etc. (Use GNU MP for unlimited integers.)
#include <cstdint>
#include <iostream>
using std::size_t;
using std::uint64_t;
uint64_t extract_digits(uint64_t source) {
uint64_t inverted{0};
size_t count{0};
for (uint64_t div = source; div; div /= 10) {
inverted *= 10;
inverted += div % 10;
++count;
}
count += 1;
count /= 2;
uint64_t result{0};
if (count) for(;;) {
const uint64_t a{source % 10}, b{inverted % 10};
result *= 10;
result += a > b ? a : b;
if (!--count) break;
source /= 10;
inverted /= 10;
}
return result;
}
int main() {
uint64_t n;
std::cin >> n;
std::cout << extract_digits(n) << std::endl;
}
Last but not least, I would strongly suggest that you ask questions after you have something buildable and runnable. Having homework solved by someone else defeats the homework’s purpose.
void decimaltobin()
{
binaryNum = 0;
m = 1;
while (num != 0)
{
rem = num % 2;
num /= 2;
binaryNum += rem * m;
m *= 10;
}
}
Just wondering if there was an easy fix to get this function to print an 8-bit binary number instead of a 4-bit number, e.g. 0000 0101 instead of 0101.
As mentioned in the comments, your code does not print anything yet and the data type of binaryNum is not clear. Here is a working solution.
#include <iostream>
using namespace std;
void decToBinary(int n)
{
// array to store binary number
int binaryNum[32];
// counter for binary array
int i = 0;
while (n > 0) {
// storing remainder in binary array
binaryNum[i] = n % 2;
n = n / 2;
i++;
}
// printing the required number of zeros
int zeros = 8 - i;
for(int m = 0; m < zeros; m++){
cout<<0;
}
// printing binary array in reverse order
for (int j = i - 1; j >= 0; j--)
cout << binaryNum[j];
}
// Driver program to test above function
int main()
{
int n = 17;
decToBinary(n);
return 0;
}
The code implements the following:
Store the remainder when the number is divided by 2 in an array.
Divide the number by 2
Repeat the above two steps until the number is greater than zero.
Print the required number of zeros. That is 8 - length of the binary number. Note that this code will work for numbers that can be expressed in 8 bits only.
Print the array in reverse order now
Ref
Maybe I am missing your reason but why do you want to code from scratch instead of using a standard library?
You may use standard c++ without having to code a conversion from scratch using for instance std::bitset<NB_OF_BITS>.
Here is a simple example:
#include <iostream>
#include <bitset>
std::bitset<8> decimalToBin(int numberToConvert)
{
return std::bitset<8>(numberToConvert);
}
int main() {
int a = 4, b=8, c=12;
std::cout << decimalToBin(a)<< std::endl;
std::cout << decimalToBin(b)<< std::endl;
std::cout << decimalToBin(c)<< std::endl;
}
It outputs:
00000100
00001000
00001100
I am getting a timeout for several test cases of a programming challenge. Any help will be appreciated.
That's the exercise:
A palindromic number reads the same both ways. The smallest 6 digit palindrome made from the product of two 3-digit numbers is 101101 = 143 * 707.
Find the largest palindrome made from the product of two 3-digit numbers which is less than N (any input greater than 101101 and less than 1000000).
What I have is this:
#include<bits/stdc++.h>
using namespace std;
bool check_palindrome(unsigned int a)
{
unsigned int temp = a;
unsigned int digit ; //used for reversing
unsigned int rev_a = 0; //final reversed number
int power = 5; //used for reversing
unsigned int modulo; //used for reversing
while(temp > 0)
{
digit = temp / int(pow(10,power));
temp = temp % int(pow(10 , power));
rev_a = rev_a + digit * (pow(10 , 5 - power));
power--;
}
return (a == rev_a) ? true : false ;
}
int main()
{
int T;
unsigned int n;
scanf("%d" , &T);
for(int i = 0 ; i < T ; i++) //for entering number of test cases
{
unsigned int max_palindrome=0;
scanf("%d" , &n); //Input the number
for(int p = 101 ; p <= 999 ; p++)
{
int m ;
int other_number = int(n/p);
if(other_number > 999 )
m = 999;
else
m = other_number;
for( int q = m ; q >100 ; q--)
{
if( p*q < 101101)
break;
bool palindrome = check_palindrome(p*q);
if(palindrome)
{
if(p*q > max_palindrome)
max_palindrome = p*q;
break;
}
}
}
printf("%d\n" , max_palindrome);
}
return 0;
}
Rather than trying all reasonable pairs of factors you could start from the given number and count down. Each time you come to a palindromic number, see if it can be expressed as a suitable product (checking all possible factors from sqrt(palindrome) down to 101).
The advantage is that as soon as you find a suitable palindrome you're done, you don't have to keep searching.
EDIT: You don't even have to search for palindromes, you can just enumerate them by working through all possible front halves and computing the corresponding back halves.
As #AlanStokes said, you're checking more values than you need. In addition, here's a more reasonable palindrome check.
bool is_palindrome(unsigned n) {
unsigned rn = 0;
for (unsigned x = n; x; x /= 10)
rn = 10 * rn + x % 10;
return rn == n;
}
I'm currently learning C++.
I am looking for Hamming numbers (numbers whose prime divisors are less or equal to 5).
When I input a number n, the program should output the n-th Hamming number.
Following numbers are input, and output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...
1 2 3 4 5 6 8 9 10 12 15 16 18 20 24 ...
Finding Hamming numbers looks easy, but increasing the input number increases run time cost exponentially.
If I input over 1000, it almost costs over 1 second,
and over 1200, it almost costs over 5 seconds.
This is the code I wrote:
while (th > 1)
{
h++;
x = h;
while (x % 2 == 0)
x /= 2;
while (x % 3 == 0)
x /= 3;
while (x % 5 == 0)
x /= 5;
if (x == 1)
th--;
}
So I would like to know how I can find the answer faster.
This algorithm doesn't seem to be very good.
Thanks in advance.
Your code is good if you want to check whether one particular number is a hamming number. When you want to build a list of hamming numbers, it is inefficient.
You can use a bottom-up approach: Start with 1 and then recursively multiply that with 2, 3, and 5 to get all hamming numbers up to a certain limit. You have to take care of duplicates, because you can get to 6 by way of 2·3 and 3·2. A set can take care of that.
The code below will generate all hamming numbers that fit into a 32-bit unsigned int. It fills a set by "spreading" to all hamming numbers. Then it constructs a sorted vector from the set, which you can use to find a hamming number at a certain index:
#include <iostream>
#include <algorithm>
#include <set>
#include <vector>
typedef unsigned int uint;
const uint umax = 0xffffffff;
void spread(std::set<uint> &hamming, uint n)
{
if (hamming.find(n) == hamming.end()) {
hamming.insert(n);
if (n < umax / 2) spread(hamming, n * 2);
if (n < umax / 3) spread(hamming, n * 3);
if (n < umax / 5) spread(hamming, n * 5);
}
}
int main()
{
std::set<uint> hamming;
spread(hamming, 1);
std::vector<uint> ordered(hamming.begin(), hamming.end());
for (size_t i = 0; i < ordered.size(); i++) {
std::cout << i << ' ' << ordered[i] << '\n';
}
return 0;
}
This code is faster than your linear method even if you end up creating more hamming numbers than you need.
You don't even need a set if you make sure that you don't construct a number twice. Every hamming number can be written as h = 2^n2 + 3^n3 + 5^n5, so if you find a means to iterate through these uniquely, you're done:
#include <iostream>
#include <algorithm>
#include <set>
#include <vector>
typedef unsigned int uint;
int main()
{
const uint umax = 0xffffffff;
std::vector<uint> hamming;
for (uint k = 1;; k *= 2) {
for (uint l = k;; l *= 3) {
for (uint m = l;; m *= 5) {
hamming.push_back(m);
if (m > umax / 5) break;
}
if (l > umax / 3) break;
}
if (k > umax / 2) break;
}
std::sort(hamming.begin(), hamming.end());
for (size_t i = 0; i < hamming.size(); i++) {
std::cout << i << ' ' << hamming[i] << '\n';
}
return 0;
}
The strange break syntax for the loops is required, because we have to check the size before the overflow. If umax*5 were guananteed not to overflow, these conditions could be written in the condition part of the loop.
The code examples in the Rosetta Code link Koshinae posted use similar strategies, but I'm surprised how lengthy some of them are.
In this link you can find two different solutions for finding the nth hamming number. The second method is the optimized one which can get the result in a few seconds.
/* Function to get the nth ugly number*/
unsigned getNthUglyNo(unsigned n)
{
unsigned ugly[n]; // To store ugly numbers
unsigned i2 = 0, i3 = 0, i5 = 0;
unsigned next_multiple_of_2 = 2;
unsigned next_multiple_of_3 = 3;
unsigned next_multiple_of_5 = 5;
unsigned next_ugly_no = 1;
ugly[0] = 1;
for (int i=1; i<n; i++)
{
next_ugly_no = min(next_multiple_of_2,
min(next_multiple_of_3,
next_multiple_of_5));
ugly[i] = next_ugly_no;
if (next_ugly_no == next_multiple_of_2)
{
i2 = i2+1;
next_multiple_of_2 = ugly[i2]*2;
}
if (next_ugly_no == next_multiple_of_3)
{
i3 = i3+1;
next_multiple_of_3 = ugly[i3]*3;
}
if (next_ugly_no == next_multiple_of_5)
{
i5 = i5+1;
next_multiple_of_5 = ugly[i5]*5;
}
} /*End of for loop (i=1; i<n; i++) */
return next_ugly_no;
}
The sequence of triangle numbers is
generated by adding the natural
numbers. So the 7th triangle number
would be 1 + 2 + 3 + 4 + 5 + 6 + 7 =
28. The first ten terms would be:
1, 3, 6, 10, 15, 21, 28, 36, 45, 55,
...
Let us list the factors of the first
seven triangle numbers:
1: 1
3: 1,3
6: 1,2,3,6
10: 1,2,5,10
15: 1,3,5,15
21: 1,3,7,21
28: 1,2,4,7,14,28
We can see that 28 is the first
triangle number to have over five
divisors.
Given an integer n, display the first
triangle number having at least n
divisors.
Sample Input: 5
Output 28
Input Constraints: 1<=n<=320
I was obviously able to do this question, but I used a naive algorithm:
Get n.
Find triangle numbers and check their number of factors using the mod operator.
But the challenge was to show the output within 4 seconds of input. On high inputs like 190 and above it took almost 15-16 seconds. Then I tried to put the triangle numbers and their number of factors in a 2d array first and then get the input from the user and search the array. But somehow I couldn't do it: I got a lot of processor faults. Please try doing it with this method and paste the code. Or if there are any better ways, please tell me.
Here's a hint:
The number of divisors according to the Divisor function is the product of the power of each prime factor plus 1. For example, let's consider the exponential prime representation of 28:
28 = 22 * 30 * 50 * 71 * 110...
The product of each exponent plus one is: (2+1)*(0+1)*(0+1)*(1+1)*(0+1)... = 6, and sure enough, 28 has 6 divisors.
Now, consider that the nth triangular number can be computed in closed form as n(n+1)/2. We can multiply numbers written in the exponential prime form simply by adding up the exponents at each position. Dividing by two just means decrementing the exponent on the two's place.
Do you see where I'm going with this?
Well, you don't go into a lot of detail about what you did, but I can give you an optimization that can be used, if you didn't think of it...
If you're using the straightforward method of trying to find factors of a number n, by using the mod operator, you don't need to check all the numbers < n. That obviously would take n comparisons...you can just go up to floor(sqrt(n)). For each factor you find, just divide n by that number, and you'll get the conjugate value, and not need to find it manually.
For example: say n is 15.
We loop, and try 1 first. Yep, the mod checks out, so it's a factor. We divide n by the factor to get the conjugate value, so we do (15 / 1) = 15...so 15 is a factor.
We try 2 next. Nope. Then 3. Yep, which also gives us (15 / 3) = 5.
And we're done, because 4 is > floor(sqrt(n)). Quick!
If you didn't think of it, that might be something you could leverage to improve your times...overall you go from O(n) to O(sqrt (n)) which is pretty good (though for numbers this small, constants may still weigh heavily.)
I was in a programming competition way back in school where there was some similar question with a run time limit. the team that "solved" it did as follows:
1) solve it with a brute force slow method.
2) write a program to just print out the answer (you found using the slow method), which will run sub second.
I thought this was bogus, but they won.
see Triangular numbers: a(n) = C(n+1,2) = n(n+1)/2 = 0+1+2+...+n. (Formerly M2535 N1002)
then pick the language you want implement it in, see this:
"... Python
import math
def diminishing_returns(val, scale):
if val < 0:
return -diminishing_returns(-val, scale)
mult = val / float(scale)
trinum = (math.sqrt(8.0 * mult + 1.0) - 1.0) / 2.0
return trinum * scale
..."
First, create table with two columns: Triangle_Number Count_of_Factors.
Second, derive from this a table with the same columns, but consisting only of the 320 rows of the lowest triangle number with a distinct number of factors.
Perform your speedy lookup to the second table.
If you solved the problem, you should be able to access the thread on Project Euler in which people post their (some very efficient) solutions.
If you're going to copy and paste a problem, please cite the source (unless it was your teacher who stole it); and I second Wouter van Niferick's comment.
Well, at least you got a good professor. Performance is important.
Since you have a program that can do the job, you can precalculate all of the answers for 1 .. 320.
Store them in an array, then simply subscript into the array to get the answer. That will be very fast.
Compile with care, winner of worst code of the year :D
#include <iostream>
bool isPrime( unsigned long long number ){
if( number != 2 && number % 2 == 0 )
return false;
for( int i = 3;
i < static_cast<unsigned long long>
( sqrt(static_cast<double>(number)) + 1 )
; i += 2 ){
if( number % i == 0 )
return false;
}
return true;
}
unsigned int p;
unsigned long long primes[1024];
void initPrimes(){
primes[0] = 2;
primes[1] = 3;
unsigned long long number = 5;
for( unsigned int i = 2; i < 1024; i++ ){
while( !isPrime(number) )
number += 2;
primes[i] = number;
number += 2;
}
return;
}
unsigned long long nextPrime(){
unsigned int ret = p;
p++;
return primes[ret];
}
unsigned long long numOfDivs( unsigned long long number ){
p = 0;
std::vector<unsigned long long> v;
unsigned long long prime = nextPrime(), divs = 1, i = 0;
while( number >= prime ){
i = 0;
while( number % prime == 0 ){
number /= prime;
i++;
}
if( i )
v.push_back( i );
prime = nextPrime();
}
for( unsigned n = 0; n < v.size(); n++ )
divs *= (v[n] + 1);
return divs;
}
unsigned long long nextTriNumber(){
static unsigned long long triNumber = 1, next = 2;
unsigned long long retTri = triNumber;
triNumber += next;
next++;
return retTri;
}
int main()
{
initPrimes();
unsigned long long n = nextTriNumber();
unsigned long long divs = 500;
while( numOfDivs(n) <= divs )
n = nextTriNumber();
std::cout << n;
std::cin.get();
}
def first_triangle_number_with_over_N_divisors(N):
n = 4
primes = [2, 3]
fact = [None, None, {2:1}, {3:1}]
def num_divisors (x):
num = 1
for mul in fact[x].values():
num *= (mul+1)
return num
while True:
factn = {}
for p in primes:
if p > n//2: break
r = n // p
if r * p == n:
factn = fact[r].copy()
factn[p] = factn.get(p,0) + 1
if len(factn)==0:
primes.append(n)
factn[n] = 1
fact.append(factn)
(x, y) = (n-1, n//2) if n % 2 == 0 else (n, (n-1)//2)
numdiv = num_divisors(x) * num_divisors(y)
if numdiv >= N:
print('Triangle number %d: %d divisors'
%(x*y, numdiv))
break
n += 1
>>> first_triangle_number_with_over_N_divisors(500)
Triangle number 76576500: 576 divisors
Dude here is ur code, go have a look. It calculates the first number that has divisors greater than 500.
void main() {
long long divisors = 0;
long long nat_num = 0;
long long tri_num = 0;
int tri_sqrt = 0;
while (1) {
divisors = 0;
nat_num++;
tri_num = nat_num + tri_num;
tri_sqrt = floor(sqrt((double)tri_num));
long long i = 0;
for ( i=tri_sqrt; i>=1; i--) {
long long remainder = tri_num % i;
if ( remainder == 0 && tri_num == 1 ) {
divisors++;
}
else if (remainder == 0 && tri_num != 1) {
divisors++;
divisors++;
}
}
if (divisors >100) {
cout <<"No. of divisors: "<<divisors<<endl<<tri_num<<endl;
}
if (divisors > 500)
break;
}
cout<<"Final Result: "<<tri_num<<endl;
system("pause");
}
Boojum's answer motivated me to write this little program. It seems to work well, although it does use a brute force method of computing primes. It's neat how all the natural numbers can be broken down into prime number components.
#include <stdio.h>
#include <stdlib.h>
#include <iostream>
#include <iomanip>
#include <vector>
//////////////////////////////////////////////////////////////////////////////
typedef std::vector<size_t> uint_vector;
//////////////////////////////////////////////////////////////////////////////
// add a prime number to primes[]
void
primeAdd(uint_vector& primes)
{
size_t n;
if (primes.empty())
{
primes.push_back(2);
return;
}
for (n = *(--primes.end()) + 1; ; ++n)
{
// n is even -> not prime
if ((n & 1) == 0) continue;
// look for a divisor in [2,n)
for (size_t i = 2; i < n; ++i)
{
if ((n % i) == 0) continue;
}
// found a prime
break;
}
primes.push_back(n);
}
//////////////////////////////////////////////////////////////////////////////
void
primeFactorize(size_t n, uint_vector& primes, uint_vector& f)
{
f.clear();
for (size_t i = 0; n > 1; ++i)
{
while (primes.size() <= i) primeAdd(primes);
while (f.size() <= i) f.push_back(0);
while ((n % primes[i]) == 0)
{
++f[i];
n /= primes[i];
}
}
}
//////////////////////////////////////////////////////////////////////////////
int
main(int argc, char** argv)
{
// allow specifying number of TN's to be evaluated
size_t lim = 1000;
if (argc > 1)
{
lim = atoi(argv[1]);
}
if (lim == 0) lim = 1000;
// prime numbers
uint_vector primes;
// factors of (n), (n + 1)
uint_vector* f = new uint_vector();
uint_vector* f1 = new uint_vector();
// sum vector
uint_vector sum;
// prime factorize (n)
size_t n = 1;
primeFactorize(n, primes, *f);
// iterate over triangle-numbers
for (; n <= lim; ++n)
{
// prime factorize (n + 1)
primeFactorize(n + 1, primes, *f1);
while (f->size() < f1->size()) f->push_back(0);
while (f1->size() < f->size()) f1->push_back(0);
size_t numTerms = f->size();
// compute prime factors for (n * (n + 1) / 2)
sum.clear();
size_t i;
for (i = 0; i < numTerms; ++i)
{
sum.push_back((*f)[i] + (*f1)[i]);
}
--sum[0];
size_t numFactors = 1, tn = 1;
for (i = 0; i < numTerms; ++i)
{
size_t exp = sum[i];
numFactors *= (exp + 1);
while (exp-- != 0) tn *= primes[i];
}
std::cout
<< n << ". Triangle number "
<< tn << " has " << numFactors << " factors."
<< std::endl;
// prepare for next iteration
f->clear();
uint_vector* tmp = f;
f = f1;
f1 = tmp;
}
delete f;
delete f1;
return 0;
}