I can find many examples on how to do this in managed c++ but none for unmanaged.
I want to get all the pixel data as efficiently as possible, but some of the scan0 stuff I would need more info about so I can properly iterate through the pixel data and get each rgba value from it.
right now I have this:
Bitmap *b = new Bitmap(filename);
if(b == NULL)
{
return 0;
}
UINT w,h;
w = b->GetWidth();
h = b->GetHeight();
Rect *r = new Rect(0,0,w,h);
BitmapData *lockdat;
b->LockBits(r,ImageLockModeRead,PixelFormatDontCare,lockdat);
delete(r);
if(w == 0 && h == 0)
{
return 0;
}
Color c;
std::vector<GLubyte> pdata(w * h * 4,0.0);
for (unsigned int i = 0; i < h; i++) {
for (unsigned int j = 0; j < w; j++) {
b->GetPixel(j,i,&c);
pdata[i * 4 * w + j * 4 + 0] = (GLubyte) c.GetR();
pdata[i * 4 * w + j * 4 + 1] = (GLubyte) c.GetG();
pdata[i * 4 * w + j * 4 + 2] = (GLubyte) c.GetB();
pdata[i * 4 * w + j * 4 + 3] = (GLubyte) c.GetA();
}
}
delete(b);
return CreateTexture(pdata,w,h);
How do I use lockdat to do the equivalent of getpixel?
Thanks
lockdat->Scan0 is a pointer to the pixel data of the bitmap. Note that you really do care what pixel format you ask for, PixelFormatDontCare won't do. Because how you use the pointer is affected by the pixel format. PixelFormat32bppARGB is the easiest, one pixel will be the size of an int, 4 bytes representing alpha, red, green and blue. And the stride will be equal to the width of the bitmap. Making it likely that a simple memcpy() will get the job done. Beware the bitmaps are stored upside-down.
Bitmap *m_image = new Bitmap(...) // a 24-bit RGB bitmap
BitmapData bmData;
Rect rect(0, 0, m_image->GetWidth(), m_image->GetHeight());
m_image->LockBits(&rect , ImageLockModeRead , PixelFormat24bppRGB,&bmData );
memcpy(your_bytes_buffer, bmData.Scan0, min(bmData.Height * bmData.Stride, your_buffer_size));
m_image->UnlockBits(&bmData);
Related
Im working on resizing bitmap image and converting bitmap image to 8-bit (grayscale). But I have the problem that when I convert 32-bit image to 8-bit image, the result has another color overlay while it works perfectly on 24-bit. I guess the cause is in the alpha color. but I dont know where the problem exactly is.
This is my code to generate 8-bit palette color and write it after DIB part:
char* palette = new char[1024];
for (int i = 0; i < 256; i++) {
palette[i * 4] = palette[i * 4 + 1] = palette[i * 4 + 2] = (char)i;
palette[i * 4 + 3] = 255;
}
fout.write(palette, 1024);
delete[] palette;
As I said, my code works perfectly on 24-bit. In 32-bit the color is still kept after resizing, but when converting to 8-bit, it will look like this:
expected image (when converted from 24-bit) //
unexpected image (when converted from 32-bit)
This is how I get the colors and save it to srcPixel[]:
int i = 0;
for (int y = 0; y < height; y++) {
for (int x = 0; x < width; x++) {
int index = getIndex(width, x, y);
srcPixel[index].A = srcBMP.pImageData[i];
i += alpha;
srcPixel[index].B = srcBMP.pImageData[i++];
srcPixel[index].G = srcBMP.pImageData[i++];
srcPixel[index].R = srcBMP.pImageData[i++];
}
i += padding;
}
And this is the code I converted it by getting average of 4 colors A, B, G and R from that srcPixel[]:
int i = 0;
for (int y = 0; y < dstHeight; y++) {
for (int x = 0; x < dstWidth; x++) {
int index = getIndex(dstWidth, x, y);
dstBMP.pImageData[i++] = (srcPixel[index].A + srcPixel[index].B + srcPixel[index].G + srcPixel[index].R) / 4;
}
i += dstPadding;
}
If I remove and skip all alpha bytes in my code, when converting my image is still like that and I will have another problem is when resizing, my image will have another color overlay like the problem when converting to 8-bit: resizing without alpha channel.
If I skip the alpha channel while getting average (change into dstBMP.pImageData[i++] = (srcPixel[index].B + srcPixel[index].G + srcPixel[index].R) / 3, there is almost nothing different, the overlay still exists.
If I remove palette[i * 4 + 3] = 255; or doing anything with it, the result is still not affected.
Thank you very much.
You add alpha channel to the color and that's why it becomes brighter. From here I found that opaque is 255 and transparent 0 - therefore you add another channel which is set to 'white' to your result.
Remove alpha channel from your equation and see if I'm right.
As context, I'm working with building a topographic program which needs relatively extreme detail. I do not expect the files to be small, and they do not formally need to be viewed on a monitor, they just need to have very high resolution.
I know that most image formats are limited to 8 bpp, on account of the standard limits on both monitors (at a reasonable price) and on human perception. However, 2⁸ is just 256 possible values, which induces plateauing artifacts in a reconstructed displacement. 2¹⁶ may be close enough at 65,536 possible values, which I have achieved.
I'm using FreeImage and DLang to construct the data, currently on a Linux Mint machine.
However, when I went on to 2³², software support seemed to fade on me. I tried a TIFF of this form and nothing seemed to be able to interpret it, either showing a completely (or mostly) transparent image (remembering that I didn't expect any monitor to really support 2³² shades of a channel) or complaining about being unable to decode the RGB data. I imagine that it's because it was assumed to be an RGB or RGBA image.
FreeImage is reasonably well documented for most purposes, but I'm now wondering, what is the highest-precision single-channel format I can export, and how would I do it? Can anyone provide an example? Am I really limited, in any typical and not-home-rolled image format, to 16-bit? I know that's high enough for, say, medical imaging, but I'm sure I'm not the first person to try to aim higher and we science-types can be pretty ambitious about our precision-level…
Did I make a glaring mistake in my code? Is there something else I should try instead for this kind of precision?
Here's my code.
The 16-bit TIFF that worked
void writeGrayscaleMonochromeBitmap(const double width, const double height) {
FIBITMAP *bitmap = FreeImage_AllocateT(FIT_UINT16, cast(int)width, cast(int)height);
for(int y = 0; y < height; y++) {
ubyte *scanline = FreeImage_GetScanLine(bitmap, y);
for(int x = 0; x < width; x++) {
ushort v = cast(ushort)((x * 0xFFFF)/width);
ubyte[2] bytes = nativeToLittleEndian(cast(ushort)(x/width * 0xFFFF));
scanline[x * ushort.sizeof + 0] = bytes[0];
scanline[x * ushort.sizeof + 1] = bytes[1];
}
}
FreeImage_Save(FIF_TIFF, bitmap, "test.tif", TIFF_DEFAULT);
FreeImage_Unload(bitmap);
}
The 32-bit TIFF that didn't really work
void writeGrayscaleMonochromeBitmap32(const double width, const double height) {
FIBITMAP *bitmap = FreeImage_AllocateT(FIT_UINT32, cast(int)width, cast(int)height);
writeln(width, ", ", height);
writeln("Width: ", FreeImage_GetWidth(bitmap));
for(int y = 0; y < height; y++) {
ubyte *scanline = FreeImage_GetScanLine(bitmap, y);
writeln(y, ": ", scanline);
for(int x = 0; x < width; x++) {
//writeln(x, " < ", width);
uint v = cast(uint)((x/width) * 0xFFFFFFFF);
writeln("V: ", v);
ubyte[4] bytes = nativeToLittleEndian(v);
scanline[x * uint.sizeof + 0] = bytes[0];
scanline[x * uint.sizeof + 1] = bytes[1];
scanline[x * uint.sizeof + 2] = bytes[2];
scanline[x * uint.sizeof + 3] = bytes[3];
}
}
FreeImage_Save(FIF_TIFF, bitmap, "test32.tif", TIFF_NONE);
FreeImage_Unload(bitmap);
}
Thanks for any pointers.
For a single channel, the highest available from FreeImage is 32-bit, as FIT_UINT32. However, the file format must be capable of this, and as of the moment, only TIFF appears to be up to the task (See page 104 of the Stanford Documentation). Additionally, most monitors are incapable of representing more than 8-bits-per-sample, 12 in extreme cases, so it is very difficult to read data back out and have it render properly.
A unit test involving comparing bytes before marshaling to the bitmap, and sampled from the same bitmap afterward, show that the data is in fact being encoded.
To imprint data to a 16-bit gray scale (currently supported by J2K, JP2, PGM, PGMRAW, PNG and TIF), you would do something like this:
void toFreeImageUINT16PNG(string fileName, const double width, const double height, double[] data) {
FIBITMAP *bitmap = FreeImage_AllocateT(FIT_UINT16, cast(int)width, cast(int)height);
for(int y = 0; y < height; y++) {
ubyte *scanline = FreeImage_GetScanLine(bitmap, y);
for(int x = 0; x < width; x++) {
//This magic has to happen with the y-coordinate in order to keep FreeImage from following its default behavior, and generating
//the image upside down.
ushort v = cast(ushort)(data[cast(ulong)(((height - 1) - y) * width + x)] * 0xFFFF); //((x * 0xFFFF)/width);
ubyte[2] bytes = nativeToLittleEndian(v);
scanline[x * ushort.sizeof + 0] = bytes[0];
scanline[x * ushort.sizeof + 1] = bytes[1];
}
}
FreeImage_Save(FIF_PNG, bitmap, fileName.toStringz);
FreeImage_Unload(bitmap);
}
Of course you would want to make adjustments for your target file type. To export as 48-bit RGB16, you would do this.
void toFreeImageColorPNG(string fileName, const double width, const double height, double[] data) {
FIBITMAP *bitmap = FreeImage_AllocateT(FIT_RGB16, cast(int)width, cast(int)height);
uint pitch = FreeImage_GetPitch(bitmap);
uint bpp = FreeImage_GetBPP(bitmap);
for(int y = 0; y < height; y++) {
ubyte *scanline = FreeImage_GetScanLine(bitmap, y);
for(int x = 0; x < width; x++) {
ulong offset = cast(ulong)((((height - 1) - y) * width + x) * 3);
ushort r = cast(ushort)(data[(offset + 0)] * 0xFFFF);
ushort g = cast(ushort)(data[(offset + 1)] * 0xFFFF);
ushort b = cast(ushort)(data[(offset + 2)] * 0xFFFF);
ubyte[6] bytes = nativeToLittleEndian(r) ~ nativeToLittleEndian(g) ~ nativeToLittleEndian(b);
scanline[(x * 3 * ushort.sizeof) + 0] = bytes[0];
scanline[(x * 3 * ushort.sizeof) + 1] = bytes[1];
scanline[(x * 3 * ushort.sizeof) + 2] = bytes[2];
scanline[(x * 3 * ushort.sizeof) + 3] = bytes[3];
scanline[(x * 3 * ushort.sizeof) + 4] = bytes[4];
scanline[(x * 3 * ushort.sizeof) + 5] = bytes[5];
}
}
FreeImage_Save(FIF_PNG, bitmap, fileName.toStringz);
FreeImage_Unload(bitmap);
}
Lastly, to encode a UINT32 greyscale image (limited purely to TIFF at the moment), you would do this.
void toFreeImageTIF32(string fileName, const double width, const double height, double[] data) {
FIBITMAP *bitmap = FreeImage_AllocateT(FIT_UINT32, cast(int)width, cast(int)height);
//DEBUG
int xtest = cast(int)(width/2);
int ytest = cast(int)(height/2);
uint comp1a = cast(uint)(data[cast(ulong)(((height - 1) - ytest) * width + xtest)] * 0xFFFFFFFF);
writeln("initial: ", nativeToLittleEndian(comp1a));
for(int y = 0; y < height; y++) {
ubyte *scanline = FreeImage_GetScanLine(bitmap, y);
for(int x = 0; x < width; x++) {
//This magic has to happen with the y-coordinate in order to keep FreeImage from following its default behavior, and generating
//the image upside down.
ulong i = cast(ulong)(((height - 1) - y) * width + x);
uint v = cast(uint)(data[i] * 0xFFFFFFFF);
ubyte[4] bytes = nativeToLittleEndian(v);
scanline[x * uint.sizeof + 0] = bytes[0];
scanline[x * uint.sizeof + 1] = bytes[1];
scanline[x * uint.sizeof + 2] = bytes[2];
scanline[x * uint.sizeof + 3] = bytes[3];
}
}
//DEBUG
ulong index = cast(ulong)(xtest * uint.sizeof);
writeln("Final: ", FreeImage_GetScanLine(bitmap, ytest)
[index .. index + uint.sizeof]);
FreeImage_Save(FIF_TIFF, bitmap, fileName.toStringz);
FreeImage_Unload(bitmap);
}
I've yet to find a program, built by anyone else, which will readily render a 32-bit gray-scale image on a monitor's available palette. However, I left my checking code in which will consistently write out the same array both at the top DEBUG and the bottom one, and that's consistent enough for me.
Hopefully this will help someone else out in the future.
I have a image with 4 channels that i need to overlay it over a bunch of pictures. Over the pictures with 3 channels, the overlaying works great, but over the pictures that have an alpha channel, the background of the picture changes to black.
Original picture: http://img.blog.csdn.net/20130610074054484
Overlayed picture: http://imgur.com/mlVAN0A
This is the code that does the overlaying:
void overlayImage(const cv::Mat &background, const cv::Mat &foreground,
cv::Mat &output, cv::Point2i location)
{
background.copyTo(output);
for(int y = std::max(location.y , 0); y < background.rows; ++y)
{
int fY = y - location.y;
if(fY >= foreground.rows)
break;
for(int x = std::max(location.x, 0); x < background.cols; ++x)
{
int fX = x - location.x;
if(fX >= foreground.cols)
break;
double opacity = ((double)foreground.data[fY * foreground.step + fX * foreground.channels() + 3]) / 255.;
for(int c = 0; opacity > 0 && c < output.channels(); ++c)
{
unsigned char foregroundPx = foreground.data[fY * foreground.step + fX * foreground.channels() + c];
unsigned char backgroundPx = background.data[y * background.step + x * background.channels() + c];
output.data[y*output.step + output.channels()*x + c] =
backgroundPx * (1.-opacity) + foregroundPx * opacity;
}
}
}
}
This is because you use 1-opacity for the background image. If the opacity of the forground image is 0, the opacity of your backgroundpixel will be 1 instead of 0 which it is before.
You have to calc the result opacity fpr both images which can be 0 for both too.
Claus
Below is my program. I am trying to apply grayscale filter using bitmapdata class in visual c++. I am getting AccessViolationException at 11, tagged by the comment. I have tried using CLR:Safe and CLR:pure but no use. In c# this would be solved by using unsafe block. Any suggestions? None of the other solutions on related questions worked.
Bitmap^ bmp = gcnew Bitmap(pictureBox1->Image);
BitmapData^ data = bmp->LockBits(Rectangle(0,0,bmp->Width,bmp->Height), ImageLockMode::ReadWrite, PixelFormat::Format24bppRgb);
int blue=0, green=0, red=0;
System::IntPtr s = data->Scan0;
int* P = (int*)(void*)s;
for (int i =0; i<bmp->Height;i++)
{
for (int j = 0; j < bmp->Width*3; j++)
{
blue = (int)P[0]; //access violation exception
green =(int )P[1];
red = (int)P[2];
int avg = (int)((blue + green + red) / 3);
P[0] = avg;
P[1] = avg;
P[2] = avg;
P +=3;
}
}
bmp->UnlockBits(data);
pictureBox1->Image = bmp;
You are using an int* when you should be using a byte*. Your pixels are three bytes each, one byte per channel. Your int is (likely) 4 bytes, so p[0] returns an entire pixel plus on byte past it. This is why you get an access violation; you are overrunning the bounds of the image buffer.
When you increment a pointer, you are adding sizeof *p bytes to it. In this case, P += 3 increments the pointer P by 12 bytes. Much too much, and you'll never be able to read a single pixel (or channel) of a 24bpp image with an int*. You are also assuming that your stride is Width * 3, which may or may not be correct (bitmaps are 4 byte aligned.)
Byte* base = (Byte*)data->Scan0;
int stride = data->Stride;
for(int y = 0; y < data->Height; ++y) {
Byte* src = base + y * stride;
for(int x = 0; x < data->Width; ++x, src += 3) {
// bitmaps are stored in BGR order (though not really important here).
// I'm assuming a 24bpp bitmap.
Byte b = src[0];
Byte g = src[1];
Byte r = src[2];
int average = (r + g + b) / 3;
src[0] = src[1] = src[2] = (Byte)average;
}
}
I'm looking for an example of how to save a YUYV format frame to a JPEG file using the libjpeg library.
In typical computer APIs, "YUV" actually means YCbCr, and "YUYV" means "YCbCr 4:2:2" stored as Y0, Cb01, Y1, Cr01, Y2 ...
Thus, if you have a "YUV" image, you can save it to libjpeg using the JCS_YCbCr color space.
When you have a 422 image (YUYV) you have to duplicate the Cb/Cr values to the two pixels that need them before writing the scanline to libjpeg. Thus, this write loop will do it for you:
// "base" is an unsigned char const * with the YUYV data
// jrow is a libjpeg row of samples array of 1 row pointer
cinfo.image_width = width & -1;
cinfo.image_height = height & -1;
cinfo.input_components = 3;
cinfo.in_color_space = JCS_YCbCr;
jpeg_set_defaults(&cinfo);
jpeg_set_quality(&cinfo, 92, TRUE);
jpeg_start_compress(&cinfo, TRUE);
unsigned char *buf = new unsigned char[width * 3];
while (cinfo.next_scanline < height) {
for (int i = 0; i < cinfo.image_width; i += 2) {
buf[i*3] = base[i*2];
buf[i*3+1] = base[i*2+1];
buf[i*3+2] = base[i*2+3];
buf[i*3+3] = base[i*2+2];
buf[i*3+4] = base[i*2+1];
buf[i*3+5] = base[i*2+3];
}
jrow[0] = buf;
base += width * 2;
jpeg_write_scanlines(&cinfo, jrow, 1);
}
jpeg_finish_compress(&cinfo);
delete[] buf;
Use your favorite auto-ptr to avoid leaking "buf" if your error or write function can throw / longjmp.
Providing YCbCr to libjpeg directly is preferrable to converting to RGB, because it will store it directly in that format, thus saving a lot of conversion work. When the image comes from a webcam or other video source, it's also usually most efficient to get it in YCbCr of some sort (such as YUYV.)
Finally, "U" and "V" mean something slightly different in analog component video, so the naming of YUV in computer APIs that really mean YCbCr is highly confusing.
libjpeg also has a raw data mode, whereby you can directly supply the raw downsampled data (which is almost what you have in the YUYV format). This is more efficient than duplicating the UV values only to have libjpeg downscale them again internally.
To do so, you use jpeg_write_raw_data instead of jpeg_write_scanlines, and by default it will process exactly 16 scanlines at a time. JPEG expects the U and V planes to be 2x downsampled by default. YUYV format already has the horizontal dimension downsampled but not the vertical, so I skip U and V every other scanline.
Initialization:
cinfo.image_width = /* width in pixels */;
cinfo.image_height = /* height in pixels */;
cinfo.input_components = 3;
cinfo.in_color_space = JCS_YCbCr;
jpeg_set_defaults(&cinfo);
cinfo.raw_data_in = true;
JSAMPLE y_plane[16][cinfo.image_width];
JSAMPLE u_plane[8][cinfo.image_width / 2];
JSAMPLE v_plane[8][cinfo.image_width / 2];
JSAMPROW y_rows[16];
JSAMPROW u_rows[8];
JSAMPROW v_rows[8];
for (int i = 0; i < 16; ++i)
{
y_rows[i] = &y_plane[i][0];
}
for (int i = 0; i < 8; ++i)
{
u_rows[i] = &u_plane[i][0];
}
for (int i = 0; i < 8; ++i)
{
v_rows[i] = &v_plane[i][0];
}
JSAMPARRAY rows[] { y_rows, u_rows, v_rows };
Compressing:
jpeg_start_compress(&cinfo, true);
while (cinfo.next_scanline < cinfo.image_height)
{
for (JDIMENSION i = 0; i < 16; ++i)
{
auto offset = (cinfo.next_scanline + i) * cinfo.image_width * 2;
for (JDIMENSION j = 0; j < cinfo.image_width; j += 2)
{
y_plane[i][j] = image.data[offset + j * 2 + 0];
y_plane[i][j + 1] = image.data[offset + j * 2 + 2];
if (i % 2 == 0)
{
u_plane[i / 2][j / 2] = image_data[offset + j * 2 + 1];
v_plane[i / 2][j / 2] = image_data[offset + j * 2 + 3];
}
}
}
jpeg_write_raw_data(&cinfo, rows, 16);
}
jpeg_finish_compress(&cinfo);
I was able to get about a 33% decrease in compression time with this method compared to the one in #JonWatte's answer. This solution isn't for everyone though; some caveats:
You can only compress images with dimensions that are a multiple of 8. If you have different-sized images, you will have to write code to pad in the edges. If you're getting the images from a camera though, they will most likely be this way.
The quality is somewhat impaired by the fact that I simply skip color values for alternating scanlines instead of something fancier like averaging them. For my application though, speed was more important than quality.
The way it's written right now it allocates a ton of memory on the stack. This was acceptable for me because my images were small (640x480) and enough memory was available.
Documentation for libjpeg-turbo: https://raw.githubusercontent.com/libjpeg-turbo/libjpeg-turbo/master/libjpeg.txt