How would I convert decimal into binary? - c++

All I really know is PHP and I used the decbin function etc, It was fairly easy to do. In this C++ program I want to do the same thing, just a simple number or string how would I do this?

A simple function could be defined such as this:
void binary(int decimal) {
int remainder;
if(decimal <= 1) {
std::cout << decimal;
return;
}
remainder = decimal % 2;
binary(decimal >> 1);
std::cout << remainder;
}
Although there are many other resources on the web on how to do this..
A noteworthy question for efficiency of it here, as you may want more than just that:
Efficiently convert between Hex, Binary, and Decimal in C/C++

you can do this non-recursively using something like this:
std::string Dec2Bin(int nValue, bool bReverse = false)
{
std::string sBin;
while(nValue != 0)
{
sBin += (nValue & 1) ? '1' : '0';
nValue >>= 1;
}
if(!bReverse)
std::reverse(sBin.begin(),sBin.end());
return sBin;
}
of course this isn't too architucture friendly, but it avoids cout, just incase your not using a console. it also outputs in any bit ordering.

You can use itoa if it's available on your compiler. Just remember it's not standard and if you need a standard method you're better off using the other solutions posted.

If you want to print it, just use this code here. If you want to return a string, instead of using cout, append to a C++ string instead.

offering the iterative approach (pardon the #defines (but i'm quite sure they will be compiled to the expression's value), i don't quite remember predefined macro/constants in C):
#define INT_ARCH 32
#define ARCH_SHIFTABLE (INT_ARCH - 1)
#define ARCH_MAX_INT 1 << ARCH_SHIFTABLE
void dec_to_bin(int decimal)
{
int shifter = ARCH_MAX_INT;
for(; shifter > 0; shifter >>= 1)
cout << (decimal & shifter);
}

Similar to #Necrolis answer without the need for an if, and the reversal of the string.
string decimalToBinary(int decimal) {
string binary;
while(decimal) {
binary.insert(0, 1, (decimal & 1) + '0');
decimal >>= 1;
}
return binary;
}

Do with simple way in c++
#include <iostream>
using namespace std;
int main()
{
long n, rem, binary=0, i=1;
cout<<"Enter a int: ";
cin>>n;
while(n != 0)
{
rem = n%2;
n = n/2;
binary= binary + (rem*i);
i = i*10;
}
cout<< "\nAns: "<<binary <<endl;
return 0;
}

Related

C++ program for converting decimal to binary

I need to program a method that will pass two int numbers i1 and i2
and return the number that has more ones in its binary representation.
This thread should help you get the binary representations
C++ - Decimal to binary converting
later with your binary arrays you can use
#include <numeric>
std::accumulate(binaryArr, binaryArr + sizeof(binaryArr)/sizeof(binaryArr[0]), 0);
to count the number of ones.
Also this really looks like solve my homework for me type of question, try reaserching and solving the problem yourself, and then asking your question with some code samples. This way you actually learn
first of all you should find way to find how many ones contains number(count_ones_binary function), and then you just use this function to solve you problem
#include <iostream>
int count_ones_binary(int x)
{
int res = 0;
while (x != 0)
{
if (x % 2 != 0)
res++;
x /= 2;
}
return res;
}
void more_ones_binary(int i1, int i2)
{
int count_i1 = count_ones_binary(i1);
int count_i2 = count_ones_binary(i2);
if (count_i1 > count_i2)
std::cout << "i1 have more ones\n";
else if (count_i1 < count_i2)
std::cout << "i2 have more ones\n";
else std::cout << "equal\n";
}

Converting string using long arithmetic

I decided to implement addition using strings, as my numbers may be huge. The problem that I'm facing is how to convert from decimal numbers in strings to binary. If lol is the result of an addition, I'm trying to convert it to a binary form using:
unsigned long long function_arg = atoi( lol.c_str() );
As the number of digits grows, as for example n>14, it fails, so even long long is too short. What can you advise me to do? Here is actually the code of my program (working with decimal system):
#include <iostream>
#include <string>
#include <bitset>
#include <conio.h>
using namespace std;
string add (string &s1, string &s2) {
int carry=0,sum,i;
string min=s1,
max=s2,
result = "";
if (s1.length() > s2.length()) {
max = s1;
min = s2;
} else {
max = s2;
min = s1;
}
for (i = min.length()-1; i>=0; i--) {
sum = min[i] + max[i + max.length() - min.length()] + carry - 2*'0';
carry = sum/10;
sum %=10;
result = (char)(sum + '0') + result;
}
i = max.length() - min.length()-1;
while (i>=0) {
sum = max[i] + carry - '0';
carry = sum/10;
sum%=10;
result = (char)(sum + '0') + result;
i--;
}
if (carry!=0) {
result = (char)(carry + '0') + result;
}
return result;
}
string Dex_To_bin(unsigned long long number){
string result;
unsigned long long bitmask = 1ULL << 63;
do
result.push_back(static_cast<bool>(number & bitmask));
while (bitmask >>= 1);
return result;
}
int main () {
string a,b;
cin >> a >> b;
add(a,b);
cout << add(a,b) << endl;
cout << endl;
cout << endl;
string lol=add(a,b);
unsigned long long funtion_arg = atoi( lol.c_str() );
cout << Dex_To_bin(funtion_arg) << bitset<64>(funtion_arg) << endl;
cin.get();
cin.ignore();
getch();
return 0;
}
Function add works great, the problem is with Dec_to_Bin :(
You're using strings to represent very long numbers, right? Numbers that won't fit into standard numeric types? The result is no different. Think of making a set of functions that take numbers-represented-as-strings. That's the only way they're allowed to deal with the numbers.
So, write your decimal-to-binary function to take the string directly, and convert one digit of the string at a time.
What can you advise me to do?
Don't. A large value can't be converted to a type that is too small. You don't need this method at all in your API, or at least you shouldn't.
BTW the method signature you have devised doesn't make sense. The parameter should have been a 'string', and the result should have been a 'long long'. But don't provide it.

factorial of big numbers with strings in c++

I am doing a factorial program with strings because i need the factorial of Numbers greater than 250
I intent with:
string factorial(int n){
string fact="1";
for(int i=2; i<=n; i++){
b=atoi(fact)*n;
}
}
But the problem is that atoi not works. How can i convert my string in a integer.
And The most important Do I want to know if the program of this way will work with the factorial of 400 for example?
Not sure why you are trying to use string. Probably to save some space by not using integer vector? This is my solution by using integer vector to store factorial and print.Works well with 400 or any large number for that matter!
//Factorial of a big number
#include<iostream>
#include<vector>
using namespace std;
int main(){
int num;
cout<<"Enter the number :";
cin>>num;
vector<int> res;
res.push_back(1);
int carry=0;
for(int i=2;i<=num;i++){
for(int j=0;j<res.size();j++){
int tmp=res[j]*i;
res[j]=(tmp+carry)%10 ;
carry=(tmp+carry)/10;
}
while(carry!=0){
res.push_back(carry%10);
carry=carry/10;
}
}
for(int i=res.size()-1;i>=0;i--) cout<<res[i];
cout<<endl;
return 0;
}
Enter the number :400
Factorial of 400 :64034522846623895262347970319503005850702583026002959458684445942802397169186831436278478647463264676294350575035856810848298162883517435228961988646802997937341654150838162426461942352307046244325015114448670890662773914918117331955996440709549671345290477020322434911210797593280795101545372667251627877890009349763765710326350331533965349868386831339352024373788157786791506311858702618270169819740062983025308591298346162272304558339520759611505302236086810433297255194852674432232438669948422404232599805551610635942376961399231917134063858996537970147827206606320217379472010321356624613809077942304597360699567595836096158715129913822286578579549361617654480453222007825818400848436415591229454275384803558374518022675900061399560145595206127211192918105032491008000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
There's a web site that will calculate factorials for you: http://www.nitrxgen.net/factorialcalc.php. It reports:
The resulting factorial of 250! is 493 digits long.
The result also contains 62 trailing zeroes (which constitutes to 12.58% of the whole number)
3232856260909107732320814552024368470994843717673780666747942427112823747555111209488817915371028199450928507353189432926730931712808990822791030279071281921676527240189264733218041186261006832925365133678939089569935713530175040513178760077247933065402339006164825552248819436572586057399222641254832982204849137721776650641276858807153128978777672951913990844377478702589172973255150283241787320658188482062478582659808848825548800000000000000000000000000000000000000000000000000000000000000
Many systems using C++ double only work up to 1E+308 or thereabouts; the value of 250! is too large to store in such numbers.
Consequently, you'll need to use some sort of multi-precision arithmetic library, either of your own devising using C++ string values, or using some other widely-used multi-precision library (GNU GMP for example).
The code below uses unsigned double long to calculate very large digits.
#include<iostream.h>
int main()
{
long k=1;
while(k!=0)
{
cout<<"\nLarge Factorial Calculator\n\n";
cout<<"Enter a number be calculated:";
cin>>k;
if (k<=33)
{
unsigned double long fact=1;
fact=1;
for(int b=k;b>=1;b--)
{
fact=fact*b;
}
cout<<"\nThe factorial of "<<k<<" is "<<fact<<"\n";
}
else
{
int numArr[10000];
int total,rem=0,count;
register int i;
//int i;
for(i=0;i<10000;i++)
numArr[i]=0;
numArr[10000]=1;
for(count=2;count<=k;count++)
{
while(i>0)
{
total=numArr[i]*count+rem;
rem=0;
if(total>9)
{
numArr[i]=total%10;
rem=total/10;
}
else
{
numArr[i]=total;
}
i--;
}
rem=0;
total=0;
i=10000;
}
cout<<"The factorial of "<<k<<" is \n\n";
for(i=0;i<10000;i++)
{
if(numArr[i]!=0 || count==1)
{
cout<<numArr[i];
count=1;
}
}
cout<<endl;
}
cout<<"\n\n";
}//while
return 0;
}
Output:
![Large Factorial Calculator
Enter a number be calculated:250
The factorial of 250 is
32328562609091077323208145520243684709948437176737806667479424271128237475551112
09488817915371028199450928507353189432926730931712808990822791030279071281921676
52724018926473321804118626100683292536513367893908956993571353017504051317876007
72479330654023390061648255522488194365725860573992226412548329822048491377217766
50641276858807153128978777672951913990844377478702589172973255150283241787320658
18848206247858265980884882554880000000000000000000000000000000000000000000000000
000000000000][1]
You can make atoi compile by adding c_str(), but it will be a long way to go till getting factorial. Currently you have no b around. And if you had, you still multiply int by int. So even if you eventually convert that to string before return, your range is still limited. Until you start to actually do multiplication with ASCII or use a bignum library there's no point to have string around.
Your factorial depends on conversion to int, which will overflow pretty fast, so you want be able to compute large factorials that way. To properly implement computation on big numbers you need to implement logic as for computation on paper, rules that you were tought in primary school, but treat long long ints as "atoms", not individual digits. And don't do it on strings, it would be painfully slow and full of nasty conversions
If you are going to solve factorial for numbers larger than around 12, you need a different approach than using atoi, since that just gives you a 32-bit integer, and no matter what you do, you are not going to get more than 2 billion (give or take) out of that. Even if you double the size of the number, you'll only get to about 20 or 21.
It's not that hard (relatively speaking) to write a string multiplication routine that takes a small(ish) number and multiplies each digit and ripples the results through to the the number (start from the back of the number, and fill it up).
Here's my obfuscated code - it is intentionally written such that you can't just take it and hand in as school homework, but it appears to work (matches the number in Jonathan Leffler's answer), and works up to (at least) 20000! [subject to enough memory].
std::string operator*(const std::string &s, int x)
{
int l = (int)s.length();
std::string r;
r.resize(l);
std::fill(r.begin(), r.end(), '0');
int b = 0;
int e = ~b;
const int c = 10;
for(int i = l+e; i != e;)
{
int d = (s[i]-0x30) * x, p = i + b;
while (d && p > e)
{
int t = r[p] - 0x30 + (d % c);
r[p] = (t % c) + 0x30;
d = t / c + d / c;
p--;
}
while (d)
{
r = static_cast<char>((d % c) +0x30)+r;
d /= c;
b++;
}
i--;
}
return r;
}
In C++, the largest integer type is 'long long', and it hold 64 bits of memory, so obviously you can't store 250! in an integer type. It is a clever idea to use strings, but what you are basically doing with your code is (I have never used the atoi() function, so I don't know if it even works with strings larger than 1 character, but it doesn't matter):
covert the string to integer (a string that if this code worked well, in one moment contains the value of 249!)
multiply the value of the string
So, after you are done multiplying, you don't even convert the integer back to string. And even if you did that, at one moment when you convert the string back to an integer, your program will crash, because the integer won't be able to hold the value of the string.
My suggestion is, to use some class for big integers. Unfortunately, there isn't one available in C++, so you'll have to code it by yourself or find one on the internet. But, don't worry, even if you code it by yourself, if you think a little, you'll see it's not that hard. You can even use your idea with the strings, which, even tough is not the best approach, for this problem, will still yield the results in the desired time not using too much memory.
This is a typical high precision problem.
You can use an array of unsigned long long instead of string.
like this:
struct node
{
unsigned long long digit[100000];
}
It should be faster than string.
But You still can use string unless you are urgent.
It may take you a few days to calculate 10000!.
I like use string because it is easy to write.
#include <bits/stdc++.h>
#pragma GCC optimize (2)
using namespace std;
const int MAXN = 90;
int n, m;
int a[MAXN];
string base[MAXN], f[MAXN][MAXN];
string sum, ans;
template <typename _T>
void Swap(_T &a, _T &b)
{
_T temp;
temp = a;
a = b;
b = temp;
}
string operator + (string s1, string s2)
{
string ret;
int digit, up = 0;
int len1 = s1.length(), len2 = s2.length();
if (len1 < len2) Swap(s1, s2), Swap(len1, len2);
while(len2 < len1) s2 = '0' + s2, len2++;
for (int i = len1 - 1; i >= 0; i--)
{
digit = s1[i] + s2[i] - '0' - '0' + up; up = 0;
if (digit >= 10) up = digit / 10, digit %= 10;
ret = char(digit + '0') + ret;
}
if (up) ret = char(up + '0') + ret;
return ret;
}
string operator * (string str, int p)
{
string ret = "0", f; int digit, mul;
int len = str.length();
for (int i = len - 1; i >= 0; i--)
{
f = "";
digit = str[i] - '0';
mul = p * digit;
while(mul)
{
digit = mul % 10 , mul /= 10;
f = char(digit + '0') + f;
}
for (int j = 1; j < len - i; j++) f = f + '0';
ret = ret + f;
}
return ret;
}
int main()
{
freopen("factorial.out", "w", stdout);
string ans = "1";
for (int i = 1; i <= 5000; i++)
{
ans = ans * i;
cout << i << "! = " << ans << endl;
}
return 0;
}
Actually, I know where the problem raised At the point where we multiply , there is the actual problem ,when numbers get multiplied and get bigger and bigger.
this code is tested and is giving the correct result.
#include <bits/stdc++.h>
using namespace std;
#define mod 72057594037927936 // 2^56 (17 digits)
// #define mod 18446744073709551616 // 2^64 (20 digits) Not supported
long long int prod_uint64(long long int x, long long int y)
{
return x * y % mod;
}
int main()
{
long long int n=14, s = 1;
while (n != 1)
{
s = prod_uint64(s , n) ;
n--;
}
}
Expexted output for 14! = 87178291200
The logic should be:
unsigned int factorial(int n)
{
unsigned int b=1;
for(int i=2; i<=n; i++){
b=b*n;
}
return b;
}
However b may get overflowed. So you may use a bigger integral type.
Or you can use float type which is inaccurate but can hold much bigger numbers.
But it seems none of the built-in types are big enough.

Get the number of digits in an int

How do I detect the length of an integer? In case I had le: int test(234567545);
How do I know how long the int is? Like telling me there is 9 numbers inside it???
*I have tried:**
char buffer_length[100];
// assign directly to a string.
sprintf(buffer_length, "%d\n", 234567545);
string sf = buffer_length;
cout <<sf.length()-1 << endl;
But there must be a simpler way of doing it or more clean...
How about division:
int length = 1;
int x = 234567545;
while ( x /= 10 )
length++;
or use the log10 method from <math.h>.
Note that log10 returns a double, so you'll have to adjust the result.
Make a function :
int count_numbers ( int num) {
int count =0;
while (num !=0) {
count++;
num/=10;
}
return count;
}
Nobody seems to have mentioned converting it to a string, and then getting the length. Not the most performant, but it definitely does it in one line of code :)
int num = -123456;
int len = to_string(abs(num)).length();
cout << "LENGTH of " << num << " is " << len << endl;
// prints "LENGTH of 123456 is 6"
You can use stringstream for this as shown below
stringstream ss;
int i = 234567545;
ss << i;
cout << ss.str().size() << endl;
if "i" is the integer, then
int len ;
char buf[33] ;
itoa (i, buf, 10) ; // or maybe 16 if you want base-16 ?
len = strlen(buf) ;
if(i < 0)
len-- ; // maybe if you don't want to include "-" in length ?
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
int main() {
int i=2384995;
char buf[100];
itoa(i, buf, 10); // 10 is the base decimal
printf("Lenght: %d\n", strlen(buf));
return 0;
}
Beware that itoa is not a standard function, even if it is supported by many compilers.
len=1+floor(log10(n));//c++ code lib (cmath)
looking across the internet it's common to make the mistake of initializing the counter variable to 0 and then entering a pre-condition loop testing for as long as the count does not equal 0. a do-while loop is perfect to avoid this.
unsigned udc(unsigned u) //unsigned digit count
{
unsigned c = 0;
do
++c;
while ((u /= 10) != 0);
return c;
}
it's probably cheaper to test whether u is less than 10 to avoid the uneccessary division, increment, and cmp instructions for cases where u < 10.
but while on that subject, optimization, you could simply test u against constant powers of ten.
unsigned udc(unsigned u) //unsigned digit count
{
if (u < 10) return 1;
if (u < 100) return 2;
if (u < 1000) return 3;
//...
return 0; //number was not supported
}
which saves you 3 instructions per digit, but is less adaptable for different radixes inaddition to being not as attractive, and tedious to write by hand, in which case you'd rather write a routine to write the routine before inserting it into your program. because C only supports very finite numbers, 64bit,32bit,16bit,8bit, you could simply limit yourself to the maximum when generating the routine to benefit all sizes.
to account for negative numbers, you'd simply negate u if u < 0 before counting the number of digits. of course first making the routine support signed numbers.
if you know that u < 1000,
it's probably easier to just write, instead of writing the routine.
if (u > 99) len = 3;
else
if (u > 9) len = 2;
else len = 1;
Here are a few different C++ implementations* of a function named digits() which takes a size_t as argument and returns its number of digits. If your number is negative, you are going to have to pass its absolute value to the function in order for it to work properly:
The While Loop
int digits(size_t i)
{
int count = 1;
while (i /= 10) {
count++;
}
return count;
}
The Exhaustive Optimization Technique
int digits(size_t i) {
if (i > 9999999999999999999ull) return 20;
if (i > 999999999999999999ull) return 19;
if (i > 99999999999999999ull) return 18;
if (i > 9999999999999999ull) return 17;
if (i > 999999999999999ull) return 16;
if (i > 99999999999999ull) return 15;
if (i > 9999999999999ull) return 14;
if (i > 999999999999ull) return 13;
if (i > 99999999999ull) return 12;
if (i > 9999999999ull) return 11;
if (i > 999999999ull) return 10;
if (i > 99999999ull) return 9;
if (i > 9999999ull) return 8;
if (i > 999999ull) return 7;
if (i > 99999ull) return 6;
if (i > 9999ull) return 5;
if (i > 999ull) return 4;
if (i > 99ull) return 3;
if (i > 9ull) return 2;
return 1;
}
The Recursive Way
int digits(size_t i) { return i < 10 ? 1 : 1 + digits(i / 10); }
Using snprintf() as a Character Counter
⚠ Requires #include <stdio.h> and may incur a significant performance penalty compared to other solutions. This method capitalizes on the fact that snprintf() counts the characters it discards when the buffer is full. Therefore, with the right arguments and format specifiers, we can force snprintf() to give us the number of digits of any size_t.
int digits(size_t i) { return snprintf (NULL, 0, "%llu", i); }
The Logarithmic Way
⚠ Requires #include <cmath> and is unreliable for unsigned integers with more than 14 digits.
// WARNING! There is a silent implicit conversion precision loss that happens
// when we pass a large int to log10() which expects a double as argument.
int digits(size_t i) { return !i? 1 : 1 + log10(i); }
Driver Program
You can use this program to test any function that takes a size_t as argument and returns its number of digits. Just replace the definition of the function digits() in the following code:
#include <iostream>
#include <stdio.h>
#include <cmath>
using std::cout;
// REPLACE this function definition with the one you want to test.
int digits(size_t i)
{
int count = 1;
while (i /= 10) {
count++;
}
return count;
}
// driver code
int main ()
{
const int max = digits(-1ull);
size_t i = 0;
int d;
do {
d = digits(i);
cout << i << " has " << d << " digits." << '\n';
i = d < max ? (!i ? 9 : 10 * i - 1) : -1;
cout << i << " has " << digits(i) << " digits." << '\n';
} while (++i);
}
* Everything was tested on a Windows 10 (64-bit) machine using GCC 12.2.0 in Visual Studio Code .
As long as you are mixing C stdio and C++ iostream, you can use the snprintf NULL 0 trick to get the number of digits in the integer representation of the number. Specifically, per man 3 printf If the string exceeds the size parameter provided and is truncated snprintf() will return
... the number of characters (excluding the terminating null byte)
which would have been written to the final string if enough space
had been available.
This allows snprintf() to be called with the str parameter NULL and the size parameter 0, e.g.
int ndigits = snprintf (NULL, 0, "%d", 234567545)
In your case where you simply wish to output the number of digits required for the representation, you can simply output the return, e.g.
#include <iostream>
#include <cstdio>
int main() {
std::cout << "234567545 is " << snprintf (NULL, 0, "%d", 234567545) <<
" characters\n";
}
Example Use/Output
$ ./bin/snprintf_trick
234567545 is 9 characters
note: the downside to using the snprintf() trick is that you must provide the conversion specifier which will limit the number of digits representable. E.g "%d" will limit to int values while "%lld" would allow space for long long values. The C++ approach using std::stringstream while still limited to numeric conversion using the << operator handles the different integer types without manually specifying the conversion. Something to consider.
second note: you shouldn't dangle the "\n" of the end of your sprintf() conversion. Add the new line as part of your output and you don't have to subtract 1 from the length...

How to convert an int to a binary string representation in C++

I have an int that I want to store as a binary string representation. How can this be done?
Try this:
#include <bitset>
#include <iostream>
int main()
{
std::bitset<32> x(23456);
std::cout << x << "\n";
// If you don't want a variable just create a temporary.
std::cout << std::bitset<32>(23456) << "\n";
}
I have an int that I want to first convert to a binary number.
What exactly does that mean? There is no type "binary number". Well, an int is already represented in binary form internally unless you're using a very strange computer, but that's an implementation detail -- conceptually, it is just an integral number.
Each time you print a number to the screen, it must be converted to a string of characters. It just so happens that most I/O systems chose a decimal representation for this process so that humans have an easier time. But there is nothing inherently decimal about int.
Anyway, to generate a base b representation of an integral number x, simply follow this algorithm:
initialize s with the empty string
m = x % b
x = x / b
Convert m into a digit, d.
Append d on s.
If x is not zero, goto step 2.
Reverse s
Step 4 is easy if b <= 10 and your computer uses a character encoding where the digits 0-9 are contiguous, because then it's simply d = '0' + m. Otherwise, you need a lookup table.
Steps 5 and 7 can be simplified to append d on the left of s if you know ahead of time how much space you will need and start from the right end in the string.
In the case of b == 2 (e.g. binary representation), step 2 can be simplified to m = x & 1, and step 3 can be simplified to x = x >> 1.
Solution with reverse:
#include <string>
#include <algorithm>
std::string binary(unsigned x)
{
std::string s;
do
{
s.push_back('0' + (x & 1));
} while (x >>= 1);
std::reverse(s.begin(), s.end());
return s;
}
Solution without reverse:
#include <string>
std::string binary(unsigned x)
{
// Warning: this breaks for numbers with more than 64 bits
char buffer[64];
char* p = buffer + 64;
do
{
*--p = '0' + (x & 1);
} while (x >>= 1);
return std::string(p, buffer + 64);
}
AND the number with 100000..., then 010000..., 0010000..., etc. Each time, if the result is 0, put a '0' in a char array, otherwise put a '1'.
int numberOfBits = sizeof(int) * 8;
char binary[numberOfBits + 1];
int decimal = 29;
for(int i = 0; i < numberOfBits; ++i) {
if ((decimal & (0x80000000 >> i)) == 0) {
binary[i] = '0';
} else {
binary[i] = '1';
}
}
binary[numberOfBits] = '\0';
string binaryString(binary);
http://www.phanderson.com/printer/bin_disp.html is a good example.
The basic principle of a simple approach:
Loop until the # is 0
& (bitwise and) the # with 1. Print the result (1 or 0) to the end of string buffer.
Shift the # by 1 bit using >>=.
Repeat loop
Print reversed string buffer
To avoid reversing the string or needing to limit yourself to #s fitting the buffer string length, you can:
Compute ceiling(log2(N)) - say L
Compute mask = 2^L
Loop until mask == 0:
& (bitwise and) the mask with the #. Print the result (1 or 0).
number &= (mask-1)
mask >>= 1 (divide by 2)
I assume this is related to your other question on extensible hashing.
First define some mnemonics for your bits:
const int FIRST_BIT = 0x1;
const int SECOND_BIT = 0x2;
const int THIRD_BIT = 0x4;
Then you have your number you want to convert to a bit string:
int x = someValue;
You can check if a bit is set by using the logical & operator.
if(x & FIRST_BIT)
{
// The first bit is set.
}
And you can keep an std::string and you add 1 to that string if a bit is set, and you add 0 if the bit is not set. Depending on what order you want the string in you can start with the last bit and move to the first or just first to last.
You can refactor this into a loop and using it for arbitrarily sized numbers by calculating the mnemonic bits above using current_bit_value<<=1 after each iteration.
There isn't a direct function, you can just walk along the bits of the int (hint see >> ) and insert a '1' or '0' in the string.
Sounds like a standard interview / homework type question
Use sprintf function to store the formatted output in the string variable, instead of printf for directly printing. Note, however, that these functions only work with C strings, and not C++ strings.
There's a small header only library you can use for this here.
Example:
std::cout << ConvertInteger<Uint32>::ToBinaryString(21);
// Displays "10101"
auto x = ConvertInteger<Int8>::ToBinaryString(21, true);
std::cout << x << "\n"; // displays "00010101"
auto x = ConvertInteger<Uint8>::ToBinaryString(21, true, "0b");
std::cout << x << "\n"; // displays "0b00010101"
Solution without reverse, no additional copy, and with 0-padding:
#include <iostream>
#include <string>
template <short WIDTH>
std::string binary( unsigned x )
{
std::string buffer( WIDTH, '0' );
char *p = &buffer[ WIDTH ];
do {
--p;
if (x & 1) *p = '1';
}
while (x >>= 1);
return buffer;
}
int main()
{
std::cout << "'" << binary<32>(0xf0f0f0f0) << "'" << std::endl;
return 0;
}
This is my best implementation of converting integers(any type) to a std::string. You can remove the template if you are only going to use it for a single integer type. To the best of my knowledge , I think there is a good balance between safety of C++ and cryptic nature of C. Make sure to include the needed headers.
template<typename T>
std::string bstring(T n){
std::string s;
for(int m = sizeof(n) * 8;m--;){
s.push_back('0'+((n >> m) & 1));
}
return s;
}
Use it like so,
std::cout << bstring<size_t>(371) << '\n';
This is the output in my computer(it differs on every computer),
0000000000000000000000000000000000000000000000000000000101110011
Note that the entire binary string is copied and thus the padded zeros which helps to represent the bit size. So the length of the string is the size of size_t in bits.
Lets try a signed integer(negative number),
std::cout << bstring<signed int>(-1) << '\n';
This is the output in my computer(as stated , it differs on every computer),
11111111111111111111111111111111
Note that now the string is smaller , this proves that signed int consumes less space than size_t. As you can see my computer uses the 2's complement method to represent signed integers (negative numbers). You can now see why unsigned short(-1) > signed int(1)
Here is a version made just for signed integers to make this function without templates , i.e use this if you only intend to convert signed integers to string.
std::string bstring(int n){
std::string s;
for(int m = sizeof(n) * 8;m--;){
s.push_back('0'+((n >> m) & 1));
}
return s;
}