C++ dynamic type construction and detection - c++

There was an interesting problem in C++, but it was more about architecture.
There are many (10, 20, 40, etc) classes describing some characteristics (mix-in classes), for example:
struct Base { virtual ~Base() {} };
struct A : virtual public Base { int size; };
struct B : virtual public Base { float x, y; };
struct C : virtual public Base { bool some_bool_state; };
struct D : virtual public Base { string str; }
// ....
The primary module declares and exports a function (for simplicity just function declarations without classes):
// .h file
void operate(Base *pBase);
// .cpp file
void operate(Base *pBase)
{
// ....
}
Any other module can have code like this:
#include "mixing.h"
#include "primary.h"
class obj1_t : public A, public C, public D {};
class obj2_t : public B, public D {};
// ...
void Pass()
{
obj1_t obj1;
obj2_t obj2;
operate(&obj1);
operate(&obj2);
}
The question is how do you know what the real type of a given object in operate() is without using dynamic_cast and any type information in classes (constants, etc)? The operate() function is used with a big array of objects in small time periods and dynamic_cast is too slow for it and I don't want to include constants (enum obj_type { ... }) because this is not the OOP-way.
// module operate.cpp
void some_operate(Base *pBase)
{
processA(pBase);
processB(pBase);
}
void processA(A *pA)
{
}
void processB(B *pB)
{
}
I cannot directly pass a pBase to these functions. And it's impossible to have all possible combinations of classes, because I can add new classes just by including new header files.
One solution that came to mind, in the editor I can use a composite container:
struct CompositeObject
{
vector<Base *pBase> parts;
};
But the editor does not need time optimization and can use dynamic_cast for parts to determine the exact type. In operate() I cannot use this solution.
So, is it possible to avoid using a dynamic_cast and type information to solve this problem? Or maybe I should use another architecture?

The real problem here is about what you are trying to achieve.
Do you want something like:
void operate(A-B& ) { operateA(); operateB(); }
// OR
void operate(A-B& ) { operateAB(); }
That is, do you want to apply an operation on each subcomponent (independently), or do you wish to be able to apply operations depending on the combination of components (much harder).
I'll take the first approach here.
1. Virtual ?
class Base { public: virtual void operate() = 0; };
class A: virtual public Base { public virtual void operate() = 0; };
void A::operate() { ++size; } // yes, it's possible to define a pure virtual
class obj1_t: public A, public B
{
public:
virtual void operate() { A::operate(); B::operate(); }
};
Some more work, for sure. Notably I don't like the repetition much. But that's one call to the _vtable, so it should be one of the fastest solution!
2. Composite Pattern
That would probably be the more natural thing here.
Note that you can perfectly use a template version of the pattern in C++!
template <class T1, class T2, class T3>
class BaseT: public Base, private T1, private T2, private T3
{
public:
void operate() { T1::operate(); T2::operate(); T3::operate(); }
};
class obj1_t: public BaseT<A,B,C> {};
Advantages:
no more need to repeat yourself! write operate once and for all (baring variadic...)
only 1 virtual call, no more virtual inheritance, so even more efficient that before
A, B and C can be of arbitrary type, they should not inherit from Base at all
edit the operate method of A, B and C may be inlined now that it's not virtual
Disadvantage:
Some more work on the framework if you don't have access to variadic templates yet, but it's feasible within a couple dozen of lines.

First thing that comes to mind is asking what you really want to achieve... but then again the second thought is that you can use the visitor pattern. Runtime type information will implicitly be used to determine at what point in the hierarchy is the final overrider of the accept method, but you will not explicitly use that information (your code will not show any dynamic_cast, type_info, constants...)
Then again, my first thought comes back... since you are asking about the appropriateness of the architecture, what is it that you really want to achieve? --without knowledge of the problem you will only find generic answers as this one.

The usual object oriented way would be to have (pure) virtual functions in the base class that are called in operate() and that get overridden in the derived classes to execute code specific to that derived class.

Your problem is that you want to decide what to do based on more than one object's type. Virtual functions do this for one object (the one left of the . or ->) only. Doing so for more than one object is called multiple dispatch (for two objects it's also called double dispatch), and in C++ there's no built-in feature to deal with this.
Look at double dispatch, especially as done in the visitor pattern.

Related

C++ Functions Select Behavior Based on Passed Parameter Derived Class?

What I'm trying to do is to have a base class that has a primary functionality, as well as multiple derived classes that have various other additional functions/variables. The main functionality of all these derived classes will behave very similarly no matter what object of one of the derived classes is passed to it, but with slight changes based on what the derived class is.
So a background here is that I'm mostly experienced with Fortran programming but am trying to break into C++ more. I'm trying to do something here that is pretty easy in Fortran but am having trouble in C++. Basically my code defining my classes looks something like this
class base_class{
public:
void prim_func(base_class &my_obj);
};
class derived_class_1: public base_class{
public:
int a_func(int arg1);
};
class derived_class_2: public base_class{
public:
double a_func(double arg2);
};
And then the void class method looks something like (right now, I know this isn't right)
void base_class::prim_func(base_class &my_obj){
// a bunch of stuff for all classes
// if my_obj class is derived_class_1
my_obj.a_func(1);
// some more stuff specific to using derived_class_1
// if my_obj class is derived_class_2
my_obj.a_func(1.5);
// some more stuff specific to using derived_class_2
// a bunch of stuff for all classes
}
I want that prim_func to have (slightly) different behaviors based on what the actual derived class that is passed to it is. So the main code would look like this
derived_class_1 def_obj_1;
derived_class_2 def_obj_2;
main(){
def_obj_1.prim_func(def_obj_1);
def_obj_2.prim_func(def_obj_2);
}
So I would like to slightly modify the behavior in this primary functionality based on what the derived class of the passed object actually is. In Fortran there is a SELECT TYPE functionality (https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/language-reference/a-to-z-reference/s-1/select-type.html) that allows this, but I can't seem to find something similar in C++?
I know one workaround could be to just make one big class that contains overloaded versions of all the different functions, and all the different variables that the various derived class objects would need, and then just have an indicator variable to let it know which functionality it should be using. But this would be extremely inelegant and would potentially cause some other issues, so I would like to avoid it.
You can't do that with plain C++.
You can't have derived classes with overriden functions with different signatures.
What you can do is using templates.
Use a templated Base Class that provides the base function as a pure virtual.
You can then write a wrapper around that function as a template:
template<typename T>
class Base {
public:
virtual T func(T param) = 0;
};
class DerivedA : public Base<int> {
public:
int func(int param) override {
return param;
};
};
class DerivedB : public Base<double> {
public:
double func(double param) override {
return param;
};
};
template<typename T>
T prim_func(Base<T>& base, T param) {
return base.func(param);
}
int main() {
DerivedA a;
DerivedB b;
auto c = prim_func(a,4);
auto d = prim_func(b,4.0);
}
Ok, so it turns out there is a way to do this in C++ it just involves dynamic casting a pointer using the passed object (but it does have to be a polymorphic object). So the way I made it work was doing something like this (comparing to the previous incomplete code I had).
class base_class{
public:
virtual void a_func(){};
void prim_func(base_class &my_obj);
};
class derived_class_1: public base_class{
public:
int a_func(int arg1);
};
class derived_class_2: public base_class{
public:
double a_func(double arg2);
};
void base_class::prim_func(base_class &my_obj){
// a bunch of stuff for all classes
if(derived_class_1* class_ptr = dynamic_cast<derived_class_1*>(&my_obj)){
class_ptr.a_func(1);
// some more stuff specific to using derived_class_1
}
else if(derived_class_2* class_ptr = dynamic_cast<derived_class_2*>(&my_obj)){
class_ptr.a_func(1.5);
// some more stuff specific to using derived_class_2
}
// a bunch of stuff for all classes
}
derived_class_1 def_obj_1;
derived_class_2 def_obj_2;
main(){
def_obj_1.prim_func(def_obj_1);
def_obj_2.prim_func(def_obj_2);
}
To be clear, this still won't compile/work since some of the functions need definitions and what not, but this is a general description of how to do it. A working example can be found in MFEM's code here: https://docs.mfem.org/4.5/amgxsolver_8cpp_source.html#l00859

TinyGSM c++ CRTP implementation

I am trying to understand the internals of https://github.com/vshymanskyy/TinyGSM/tree/master/src and am confused with how the classes are constructed.
In particular I see that in TinyGsmClientBG96.h they define a class that inherits from multiple templated parent classes.
class TinyGsmBG96 : public TinyGsmModem<TinyGsmBG96>,
public TinyGsmGPRS<TinyGsmBG96>,
public TinyGsmTCP<TinyGsmBG96, TINY_GSM_MUX_COUNT>,
public TinyGsmCalling<TinyGsmBG96>,
public TinyGsmSMS<TinyGsmBG96>,
public TinyGsmTime<TinyGsmBG96>,
public TinyGsmGPS<TinyGsmBG96>,
public TinyGsmBattery<TinyGsmBG96>,
public TinyGsmTemperature<TinyGsmBG96>
Fair enough. If I look at one of these, for example TinyGsmTemperature, I find some confusing code.
It looks like the static cast is in place so the we can call the hardware agnostic interface getTemperature() and use the implementation defined in TinyGsmBG96.
Why not use function overriding in this case?
What is the thinking behind this implementation?
Is this a common pattern in c++?
template <class modemType>
class TinyGsmTemperature
{
public:
/*
* Temperature functions
*/
float getTemperature()
{
return thisModem().getTemperatureImpl();
}
/*
* CRTP Helper
*/
protected:
inline const modemType &thisModem() const
{
return static_cast<const modemType &>(*this);
}
inline modemType &thisModem()
{
return static_cast<modemType &>(*this);
}
float getTemperatureImpl() TINY_GSM_ATTR_NOT_IMPLEMENTED;
};
Is this a common pattern in c++?
Yes, it is called CRTP - curiously recurring template pattern.
Why not use function overriding in this case?
override relies on virtual tables, causing extra runtime overhead.
What is the thinking behind this implementation?
Say, we want a class hierarchy with overridable methods. The classic OOP approach is virtual functions. However, they aren't zero-cost: when you have
void foo(Animal& pet) { pet.make_noise(); }
you don't statically know (in general) which implementation has been passed to foo() because you've erased its type from Dog (or Cat? or something else?) to Animal. So, the OOP approach uses virtual tables to find the right function at runtime.
How do we avoid this? We can instead remember the derived type statically:
template<typename Derived /* here's where we keep the type */> struct Animal {
void make_noise() {
// we statically know we're a Derived - no runtime dispatch!
static_cast<Derived&>(*this).make_noise();
}
};
struct Dog: public Animal<Dog /* here's how we "remember" the type */> {
void make_noise() { std::cout << "Woof!"; }
};
Now, let's rewrite foo() in a zero-cost manner:
template<typename Derived> void foo(Animal<Derived>& pet) { pet.make_noise(); }
Unlike the first attempt, we haven't erased the type from ??? to Animal: we know Animal<Derived> is actually a Derived, which is a templated - therefore, fully known to the compiler - type. This turns the virtual function call into a direct one (so, even allows inlining).

Contravariant types and extensibility

I'm writing a C++ library for optimization, and I've encountered a curious issue with contra-variant types.
So, I define a hierarchy of "functions", based on what information they can compute.
class Function {
public:
double value()=0;
}
class DifferentiableFunction : public Function {
public:
const double* gradient()=0;
}
class TwiceDifferentiableFunction : public DifferentiableFunction {
public:
const double* hessian()=0;
}
Which is all well and good, but now I want to define interfaces for the optimizers. For example, some optimizers require gradient information, or hessian information in order to optimize, and some don't. So the types of the optimizers are contravariant to the types of the functions.
class HessianOptimizer {
public:
set_function(TwiceDifferentiableFunction* f)=0;
}
class GradientOptimizer : public HessianOptimizer {
public:
set_function(DifferentiableFunction* f)=0;
}
class Optimizer: public GradientOptimizer {
public:
set_function(TwiceDifferentiableFunction* f)=0;
}
Which I suppose makes sense from a type theoretic perspective, but the thing that is weird about it is that usually when people want to extend code, they will inherit the already existing classes. So for example, if someone else was using this library, and they wanted to create a new type of optimizer that requires more information than the hessian, they might create a class like
class ThriceDifferentiableFunction: public TwiceDifferentiableFunction }
public:
const double* thirdderivative()=0;
}
But then to create the corresponding optimizer class, we would have to make HessianOptimizer extend ThirdOrderOptimizer. But the library user would have to modify the library to do so! So while we can add on the ThriceDifferentiableFunction without having to modify the library, it seems like the contravariant types lose this property. This seems to just be an artifact of the fact the classes declare their parent types rather than their children types.
But how are you supposed to deal with this? Is there any way to do it nicely?
Since they're just interfaces, you don't have to be afraid of multiple inheritance with them. Why not make the optimiser types siblings instead of descendants?
class OptimizerBase
{
// Common stuff goes here
};
class HessianOptimizer : virtual public OptimizerBase {
public:
virtual set_function(TwiceDifferentiableFunction* f)=0;
}
class GradientOptimizer : virtual public OptimizerBase {
public:
virtual set_function(DifferentiableFunction* f)=0;
}
class Optimizer : virtual public OptimizerBase {
public:
virtual set_function(TwiceDifferentiableFunction* f)=0;
}
// impl
class MyGradientOptimizer : virtual public GradientOptimizer, virtual public HessianOptimizer
{
// ...
};

oop - C++ - Proper way to implement type-specific behavior?

Let's say I have a parent class, Arbitrary, and two child classes, Foo and Bar. I'm trying to implement a function to insert any Arbitrary object into a database, however, since the child classes contain data specific to those classes, I need to perform slightly different operations depending on the type.
Coming into C++ from Java/C#, my first instinct was to have a function that takes the parent as the parameter use something like instanceof and some if statements to handle child-class-specific behavior.
Pseudocode:
void someClass(Arbitrary obj){
obj.doSomething(); //a member function from the parent class
//more operations based on parent class
if(obj instanceof Foo){
//do Foo specific stuff
}
if(obj instanceof Bar){
//do Bar specific stuff
}
}
However, after looking into how to implement this in C++, the general consensus seemed to be that this is poor design.
If you have to use instanceof, there is, in most cases, something wrong with your design. – mslot
I considered the possibility of overloading the function with each type, but that would seemingly lead to code duplication. And, I would still end up needing to handle the child-specific behavior in the parent class, so that wouldn't solve the problem anyway.
So, my question is, what's the better way of performing operations that where all parent and child classes should be accepted as input, but in which behavior is dictated by the object type?
First, you want to take your Arbitrary by pointer or reference, otherwise you will slice off the derived class. Next, sounds like a case of a virtual method.
void someClass(Arbitrary* obj) {
obj->insertIntoDB();
}
where:
class Arbitrary {
public:
virtual ~Arbitrary();
virtual void insertIntoDB() = 0;
};
So that the subclasses can provide specific overrides:
class Foo : public Arbitrary {
public:
void insertIntoDB() override
// ^^^ if C++11
{
// do Foo-specific insertion here
}
};
Now there might be some common functionality in this insertion between Foo and Bar... so you should put that as a protected method in Arbitrary. protected so that both Foo and Bar have access to it but someClass() doesn't.
In my opinion, if at any place you need to write
if( is_instance_of(Derived1) )
//do something
else if ( is_instance_of(Derived2) )
//do somthing else
...
then it's as sign of bad design. First and most straight forward issue is that of "Maintainence". You have to take care in case further derivation happens. However, sometimes it's necessary. for e.g if your all classes are part of some library. In other cases you should avoid this coding as far as possible.
Most often you can remove the need to check for specific instance by introducing some new classes in the hierarchy. For e.g :-
class BankAccount {};
class SavingAccount : public BankAccount { void creditInterest(); };
class CheckingAccount : public BankAccount { void creditInterest(): };
In this case, there seems to be a need for if/else statement to check for actual object as there is no corresponsing creditInterest() in BanAccount class. However, indroducing a new class could obviate the need for that checking.
class BankAccount {};
class InterestBearingAccount : public BankAccount { void creditInterest(): } {};
class SavingAccount : public InterestBearingAccount { void creditInterest(): };
class CheckingAccount : public InterestBearingAccount { void creditInterest(): };
The issue here is that this will arguably violate SOLID design principles, given that any extension in the number of mapped classes would require new branches in the if statement, otherwise the existing dispatch method will fail (it won't work with any subclass, just those it knows about).
What you are describing looks well suited to inheritance polymorphicism - each of Arbitrary (base), Foo and Bar can take on the concerns of its own fields.
There is likely to be some common database plumbing which can be DRY'd up the base method.
class Arbitrary { // Your base class
protected:
virtual void mapFields(DbCommand& dbCommand) {
// Map the base fields here
}
public:
void saveToDatabase() { // External caller invokes this on any subclass
openConnection();
DbCommand& command = createDbCommand();
mapFields(command); // Polymorphic call
executeDbTransaction(command);
}
}
class Foo : public Arbitrary {
protected: // Hide implementation external parties
virtual void mapFields(DbCommand& dbCommand) {
Arbitrary::mapFields();
// Map Foo specific fields here
}
}
class Bar : public Arbitrary {
protected:
virtual void mapFields(DbCommand& dbCommand) {
Arbitrary::mapFields();
// Map Bar specific fields here
}
}
If the base class, Arbitrary itself cannot exist in isolation, it should also be marked as abstract.
As StuartLC pointed out, the current design violates the SOLID principles. However, both his answer and Barry's answer has strong coupling with the database, which I do not like (should Arbitrary really need to know about the database?). I would suggest that you make some additional abstraction, and make the database operations independent of the the data types.
One possible implementation may be like:
class Arbitrary {
public:
virtual std::string serialize();
static Arbitrary* deserialize();
};
Your database-related would be like (please notice that the parameter form Arbitrary obj is wrong and can truncate the object):
void someMethod(const Arbitrary& obj)
{
// ...
db.insert(obj.serialize());
}
You can retrieve the string from the database later and deserialize into a suitable object.
So, my question is, what's the better way of performing operations
that where all parent and child classes should be accepted as input,
but in which behavior is dictated by the object type?
You can use Visitor pattern.
#include <iostream>
using namespace std;
class Arbitrary;
class Foo;
class Bar;
class ArbitraryVisitor
{
public:
virtual void visitParent(Arbitrary& m) {};
virtual void visitFoo(Foo& vm) {};
virtual void visitBar(Bar& vm) {};
};
class Arbitrary
{
public:
virtual void DoSomething()
{
cout<<"do Parent specific stuff"<<endl;
}
virtual void accept(ArbitraryVisitor& v)
{
v.visitParent(*this);
}
};
class Foo: public Arbitrary
{
public:
virtual void DoSomething()
{
cout<<"do Foo specific stuff"<<endl;
}
virtual void accept(ArbitraryVisitor& v)
{
v.visitFoo(*this);
}
};
class Bar: public Arbitrary
{
public:
virtual void DoSomething()
{
cout<<"do Bar specific stuff"<<endl;
}
virtual void accept(ArbitraryVisitor& v)
{
v.visitBar(*this);
}
};
class SetArbitaryVisitor : public ArbitraryVisitor
{
void visitParent(Arbitrary& vm)
{
vm.DoSomething();
}
void visitFoo(Foo& vm)
{
vm.DoSomething();
}
void visitBar(Bar& vm)
{
vm.DoSomething();
}
};
int main()
{
Arbitrary *arb = new Foo();
SetArbitaryVisitor scv;
arb->accept(scv);
}

C++ - Accessing multiple object's interfaces via a single pointer

I need to store a container of pointers to objects.
These objects have some common methods/attributes (interface) that I want to enforce (possibly at compile time) and use.
Example:
struct A{
void fly(){}
};
struct B{
void fly(){}
};
A a;
B b;
std::vector<some *> objects;
objects.push_back(&a);
objects.push_back(&b);
for(auto & el: objects)
el->fly();
The simpler solution would be A and B inherit a common base class like FlyingClass:
struct FlyingClass{
void fly(){}
};
struct A: public FlyingClass { ...
struct B: public FlyingClass { ...
and create a
std::vector<FlyingClass *> objects;
This will work and also enforce the fact that I can only add to objects things that can fly (implement FlyingClass).
But what if I need to implement some other common methods/attributes WITHOUT coupling them with the above base class?
Example:
struct A{
void fly(){}
void swim(){}
};
struct B{
void fly(){}
void swim(){}
};
And i would like to do:
for(auto & el: objects) {
el->fly();
...
el->swim();
...
}
More in general i would be able to call a function passing one of these pointers and access both the common methods/attributes, like:
void dostuff(Element * el){
el->fly();
el->swim();
}
I could try to inherit from another interface like:
struct SwimmingClass{
void swim(){}
};
struct A: public FlyingClass, public SwimmingClass { ...
struct B: public FlyingClass, public SwimmingClass { ...
But then what the container should contain?
std::vector<FlyingClass&&SwimmingClass *> objects;
Sure, i could implement SwimmingFlyingClass, but what if i need RunningClass etc.. This is going to be a nightmare.
In other words, how can I implement a pointer to multiple interfaces without coupling them?
Or there is some template way of rethinking the problem?
Even run time type information could be acceptable in my application, if there is an elegant and maintainable way of doing this.
It is possible to do this, in a pretty TMP-heavy way that's a little expensive at runtime. A redesign is favourable so that this is not required. The long and short is that what you want to do isn't possible cleanly without language support, which C++ does not offer.
As for the ugly, shield your eyes from this:
struct AnyBase { virtual ~AnyBase() {} }; // All derived classes inherit from.
template<typename... T> class Limited {
AnyBase* object;
template<typename U> Limited(U* p) {
static_assert(all<is_base_of<T, U>...>::value, "Must derive from all of the interfaces.");
object = p;
}
template<typename U> U* get() {
static_assert(any<is_same<U, T>...>::value, "U must be one of the interfaces.");
return dynamic_cast<U*>(object);
}
}
Some of this stuff isn't defined as Standard so I'll just run through it. The static_assert on the constructor enforces that U inherits from all of T. I may have U and T the wrong way round, and the definition of all is left to the reader.
The getter simply requires that U is one of the template arguments T.... Then we know in advance that the dynamic_cast will succeed, because we checked the constraint statically.
It's ugly, but it should work. So consider
std::vector<Limited<Flying, Swimming>> objects;
for(auto&& obj : objects) {
obj.get<Flying>()->fly();
obj.get<Swimming>()->swim();
}
You are asking for something which doesn't make sense in general, that's why there is no easy way to do it.
You are asking to be able to store heterogeneus objects in a collection, with interfaces that are even different.
How are you going to iterate over the collections without knowing the type? You are restricted to the least specific or forced to do dynamic_cast pointers and cross fingers.
class Entity { }
class SwimmingEntity : public Entity {
virtual void swim() = 0;
}
class FlyingEntity : public Entity {
virtual void fly() = 0;
}
class Fish : public SwimmingEntity {
void swim() override { }
}
class Bird : public FlyingEntity {
void fly() override { }
}
std:vector<Entity*> entities;
This is legal but doesn't give you any information to the capabilities of the runtime Entity instance. It won't lead anywhere unless you work them out with dynamic_cast and rtti (or manual rtti) so where's the advantage?
This is pretty much a textbook example calling for type erasure.
The idea is to define an internal abstract (pure virtual) interface class that captures the common behavior(s) you want, then to use a templated constructor to create a proxy object derived from that interface:
#include <iostream>
#include <vector>
#include <memory>
using std::cout;
struct Bird {
void fly() { cout << "Bird flies\n"; }
void swim(){ cout << "Bird swims\n"; }
};
struct Pig {
void fly() { cout << "Pig flies!\n"; }
void swim() { cout << "Pig swims\n"; }
};
struct FlyingSwimmingThing {
// Pure virtual interface that knows how to fly() and how to swim(),
// but does not depend on type of underlying object.
struct InternalInterface {
virtual void fly() = 0;
virtual void swim() = 0;
virtual ~InternalInterface() { }
};
// Proxy inherits from interface; forwards to underlying object.
// Template class allows proxy type to depend on object type.
template<typename T>
struct InternalImplementation : public InternalInterface {
InternalImplementation(T &obj) : obj_(obj) { }
void fly() { obj_.fly(); }
void swim() { obj_.swim(); }
virtual ~InternalImplementation() { }
private:
T &obj_;
};
// Templated constructor
template<typename T>
FlyingSwimmingThing(T &obj) : proxy_(new InternalImplementation<T>(obj))
{ }
// Forward calls to underlying object via virtual interface.
void fly() { proxy_->fly(); }
void swim() { proxy_->swim(); }
private:
std::unique_ptr<InternalInterface> proxy_;
};
int main(int argc, char *argv[])
{
Bird a;
Pig b;
std::vector<FlyingSwimmingThing> objects;
objects.push_back(FlyingSwimmingThing(a));
objects.push_back(FlyingSwimmingThing(b));
objects[0].fly();
objects[1].fly();
objects[0].swim();
objects[1].swim();
}
The same trick is used for the deleter in a shared_ptr and for std::function. The latter is arguably the poster child for the technique.
You will always find a call to "new" in there somewhere. Also, if you want your wrapper class to hold a copy of the underlying object rather than a pointer, you will find you need a clone() function in the abstract interface class (whose implementation will also call new). So these things can get very non-performant very easily, depending on what you are doing...
[Update]
Just to make my assumptions clear, since some people appear not to have read the question...
You have multiple classes implementing fly() and swim() functions, but that is all that the classes have in common; they do not inherit from any common interface classes.
The goal is to have a wrapper object that can store a pointer to any one of those classes, and through which you can invoke the fly() and swim() functions without knowing the wrapped type at the call site. (Take the time to read the question to see examples; e.g. search for dostuff.) This property is called "encapsulation"; that is, the wrapper exposes the fly() and swim() interfaces directly and it can hide any properties of the wrapped object that are not relevant.
Finally, it should be possible to create a new otherwise-unrelated class with its own fly() and swim() functions and have the wrapper hold a pointer to that class (a) without modifying the wrapper class and (b) without touching any call to fly() or swim() via the wrapper.
These are, as I said, textbook features of type erasure. I did not invent the idiom, but I do recognize when it is called for.