How to detect unresolved symbol when creating a library? - c++

Under Solaris 10, I'm creating a library A.so that calls a function f() which is defined in library B.so. To compile the library A.so, I declare in my code f() as extern.
Unfortunately, I "forgot" to declare in A's makefile that it has to link with B.
However, "make A" causes no warning, no error, and the library A.so is created.
Of course, when executing A's code, the call of f() crashes because it is undefined.
Is there a way (linker option, code trick...) to make the compilation of library A fail ?
How can I be sure that all symbols refered to in library A are defined at compile time ?
Thanks for any suggestions.

Simplest way: add a "test_lib" target in the makefile, that will produce a binary using all the symbols expored from libraryA. (doesn't have to be anything meaningful... just take the address, no need to call the function or anything, it just needs to be referenced).

Tanks
I think I found something interesting and even simpler in the linker's manual (d'ho)
The -z defs option and the --no-undefined option force a fatal error if any undefined symbols remain at the end of the link. This mode is the default when an executable is built. For historic reasons, this mode is not the default when building a shared object. Use of the -z defs option is recommended, as this mode assures the object being built is self-contained. A self-contained object has all symbolic references resolved internally, or to the object's immediate dependencies.

Related

C++ compiles and links with pointer to undefined function

This code:
void undefined_fcn();
void defined_fcn() {}
struct api_t {
void (*first)();
void (*second)();
};
api_t api = {undefined_fcn, defined_fcn};
defines a global variable api with a pointer to a non-existent function. However, it compiles, and to my surprise, links with absolutely no complaints from GCC, even with all those -Wall -Wextra -Werror -pedantic flags.
This code is part of a shared library. Only when I load the library, at run-time, it finally fails. How do I check, at library link-time, that I did't forget to define any function?
Update: this question mentions the same problem, and the answer is the same: -Wl,--no-undefined. (by the way, I guess this could even be marked as duplicate). However, according to the accepted answer below, you should be careful when using -Wl,--no-undefined.
This code is part of a shared library.
That's the key. The whole purpose of having a shared library is to have an "incomplete" shared object, with undefined symbols that must be resolved when the main executable loads it and all other shared libraries it gets linked with. At that time, the runtime loader attempts to resolve all undefined symbols; and all undefined symbols must be resolved, otherwise the executable will not start.
You stated you're using gcc, so you are likely using GNU ld. For the reason stated above, ld will link a shared library with undefined symbols, but will fail to link an executable unless all undefined symbols are resolved against the shared libraries the executable gets linked with. So, at runtime, the expected behavior is that the runtime loader is expected to successfully resolve all symbols too; so the only situation when the runtime loader fails to start the executable will indicate a fatal runtime environment failure (such as a shared library getting replaced with an incompatible version).
There are some options that can be used to override this behavior. The --no-undefined option instructs ld to report a link failure for undefined symbols when linking a shared libraries, just like executables. When invoking ld indirectly via gcc this becomes -Wl,--no-undefined.
However, you are likely to discover that this is going to be a losing proposition. You better hope that none of the code in your shared library uses any class in the standard C++ or C library. Because, guess what? -- those references will be undefined symbols, and you will fail to link your shared library!
In other words, this is a necessary evil that you need to deal with.
You can't have the compiler tell you whether you forgot to define the function in that implementation file. And the reason is when you define a function it is implicitly marked extern in C++. And you cannot tell what is in a shared library until after it is linked (the compiler's linker does not know if the reference is defined)
If you are not familiar with what extern means. Things marked extern signal external linkage, so if you have a variable that is extern the compiler doesn't require a definition for that variable to be in the translation unit that uses it. The definition can be in another implementation file and the reference is resolved at link time (when you link with a translation unit that defines the variable). The same applies for functions, which are essentially variables of a function type.
To get the behavior you want make the function static which tells the compiler that the function is not extern and is a part of the current translation unit, in which case it must be defined -Wundefined-internal picks up on this (-Wundefined-internal is a part of -Werror so just compile with that)

GCC Linking a shared library against an executable

I have the following problem. I have a shared library, which is just a bunch of translation units linked together so when I compile that shared library I won't get any linker error (undefined references, even though I might have).
The shared library gets loaded dynamically from an executable which also contains the exports which my shared library is using (The references used in my library are resolved at runtime).
The main problem is that I want the undefined reference warnings so I can fix them statically instead of waiting the application to crash.
I read somewhere that I can pass "-Wl,--no-undefined" to gcc so I can get these errors back, indeed it worked but it also gave me all the undefined references of the executable's exports. I want to filter these warnings just to the scope of my translation units.
Is this possible? If not, how can I define reference to a executable which has exports for a shared library.
you can try linking the library & main program with -Wl,-z,now. that should make the runtime ldso resolve all references immediately and throw an error if none are found.
otherwise, i'm not seeing an option off hand in the linker manual to say "allow this ELF to satisfy symbols, but don't actually list it as a DT_NEEDED".
you could try using -Wl,--no-undefined and parsing the output with a script so you can filter out symbols you know will be satisfied by the main program.
another option might be to label all the symbols you know the main program provides with __attribute__((weak)) and then still use -Wl,--no-undefined. the weak symbols won't be reported as an error.

Compiling All the Symbols of an Object File as Weak

Motivation
I have 2 static libraries, libStatic1.a and libStatic2.a. In addition, I have many SOs (Shared Objects) that compile with libStatic1.a.
Up until now, libStatic1.a and libStatic2.a were independent and everything was okay. But now I added to the code that generates libStatic1.a a dependency on the code that generates libStatic2.a. Therefore, any SO that depends on libStatic1.a now needs to be compiled with libStatic2.a. This is undesirable, because it adds a dependency on libStatic2.a to every build targets that depends on libStatic1.a.
only on libStatic1.a now need to compile their code with libStatic2.a in order for the compilation/runtime to succeed/not crash. This creates an unnecessary coupling and I would like to avoid it.
Therefore, I need to somehow "embed" the object code of libStatic2.a in libStatic1.a. If I would just compile libStatic1.a with all the object files of libStatic2.a (in addition to its own), it will basically contain it but this creates another problem- If some user of libStatic1.a will decide to use libStatic2.a and will link it, he will get a weird "multiple definitions" error. If I could somehow tell the compiler to generate the object files of libStatic2.a with weak symbols (only for the use in libStatic1.a) this would solve the problem- no one will get multiple definitions, and no makefile of all the many SOs that use libStatic1.a will need to change.
My thinking: I know that it is possible (using GCC/g++ extensions to the C language) to declare a function with the keyword __attribute__ and the weak attribute as following:
void __attribute__((weak)) foo(int j);
Is there a way to tell the compiler (g++) to compile an entire compilation unit as "weak", meaning all its global symbols in the symbol table will be considered weak when linking?
Alternatively, is there a way to tell the linker (ld) to consider all the symbols of some object file/library as if they are weak?
If your library is small, the simplest way is still to change the declarations by adding manually the __attribute__((weak)).
Another possibility might be to ask g++ to spill the assembly code (with -S) and have some (perhaps awkor ed) script work on it.
You could also code a GCC plugin (assuming your g++ is a 4.6 version) or a GCC MELT extension for that.
Compile it normally and then objcopy the object file with --weaken.
No, there doesn't appear to be; are there so many weak external functions that it's not practical to set their attributes individually?

C++ compilation static variable and shared objects

Description :
a. Class X contains a static private data member ptr and static public function member getptr()/setptr().
In X.cpp, the ptr is set to NULL.
b. libXYZ.so (shared object) contains the object of class X (i.e libXYZ.so contains X.o).
c. libVWX.so (shared object) contains the object of class X (i.e libVWX.so contains X.o).
d. Executable a.exe contains X.cpp as part of translation units and finally is linked to libXYZ.so, libVWX.so
PS:
1. There are no user namespaces involved in any of the classes.
2. The libraries and executable contain many other classes also.
3. no dlopen() has been done. All libraries are linked during compile time using -L and -l flags.
Problem Statement:
When compiling and linking a.exe with other libraries (i.e libXYZ.so and libVWX.so), I expected a linker error (conflict/occurance of same symbol multiple times) but did not get one.
When the program was executed - the behavior was strange in SUSE 10 Linux and HP-UX 11 IA64.
In Linux, when execution flow was pushed across all the objects in different libraries, the effect was registered in only one copy of X.
In HPUX, when execution flow was pushed across all the objects in different libraries, the effect was registered in 3 differnt copies of X (2 belonging to each libraries and 1 for executable)
PS : I mean during running the program, the flow did passed thourgh multiple objects belonging to a.exe, libXYZ.so and libVWX.so) which interacted with static pointer belonging to X.
Question:
Is Expecting linker error not correct? Since two compilers passed through compilation silently, May be there is a standard rule in case of this type of scenario which I am missing. If so, Please let me know the same.
How does the compiler (gcc in Linux and aCC in HPUX) decide how many copies of X to keep in the final executable and refer them in such scenarios.
Is there any flag supported by gcc and aCC which will warn/stop compilation to the users in these kind of scenarios?
Thanks for your help in advance.
I'm not too sure that I've completely understood the scenario. However,
the default behavior on loading dynamic objects under Linux (and other
Unices) is to make all symbols in the library available, and to only use
the first encountered. Thus, if you both libXYZ.so and libVWX.so
contain a symbol X::ourData, it is not an error; if you load them in
that order, libVWX.so will use the X::ourData from libXYZ.so,
instead of its own. Logically, this is a lot like a template definition
in a header: the compiler chooses one, more or less by chance, and if
any of the definitions is not the same as all of the others, it's
undefined behavior. This behavior can be
overridden by passing the flag RTLD_LOCAL to dlopen.
With regards to your questions:
The linker is simply implementing the default behavior of dlopen (that which you get when the system loads the library implicitely). Thus, no error (but the logical equivalent of undefined behavior if any of the definitions isn't the same).
The compiler doesn't decide. The decision is made when the .so is loaded, depending on whether you specify RTLD_GLOBAL or RTLD_LOCAL when calling dlopen. When the runtime calls dlopen implicitly, to resolve a dependency, it will use RTLD_GLOBAL if this occurs when loading the main executable, and what ever was used to load the library when the dependency comes from a library. (This means, of course, that RTLD_GLOBAL will propagate until you invoke dlopen explicitly.)
The function is "public static", so I assume it's OOP-meaning of "static" (does not need instance), not C meaning of static (file-static; local to compilation unit). Therefore the functions are extern.
Now in Linux you have explicit right to override library symbols, both using another library or in the executable. All extern symbols in libraries are resolved using the global offset table, even the one the library actually defines itself. And while functions defined in the executable are normally not resolved like this, but the linker notices the symbols will get to the symbol table from the libraries and puts the reference to the executable-defined one there. So the libraries will see the symbol defined in the executable, if you generated it.
This is explicit feature, designed so you can do things like replace memory allocation functions or wrap filesystem operations. HP-UX probably does not have the feature, so each library ends up calling it's own implementation, while any other object that would have the symbol undefined will see one of them.
There is a difference beetween "extern" symbols (which is the default in c++) and "shared libary extern". By default symbols are only "extern" which means the scope of one "link unit" e.g. an executable or a library.
So the expected behaviour would be: no compiler error and every module works with its own copy.
That leads to problems of course in case of inline compiling etc...etc...
To declare a symbol "shared library extern" you have to use a ".def" file or an compiler declaration.
e.g. in visual c++ that would be "_declspec(dllexport)" and "_declspec(dllimport)".
I do not know the declarations for gcc at the moment but I am sure someone does :-)

can linker omit object file when linking static lib?

I have a static library (lib.a) and a program that links to it. The library doesn't have any entry point that would always be called before using it, but I need to execute a piece of code very early in the program (preferably before main() starts). Therefore I thought I would use static variable of my own class. I added new source file that contains something like:
#include <MyClass.h>
static MyClass myVar;
The constructor of MyClass would then execute my code. When I link lib.a and try executing "nm" on it I get information that myVar is there. However, when I link my program and try "nm" on it I do not see myVar. When I put this piece of code into an existing file then the symbol is visible in the final executable. Why is that? Can linker omit object file from lib.a library in this case? I know that the variable is not referenced from outside (it cannot be as it is static) but it should execute code on it's own and therefore I don't get why should it be removed.
In case it makes a difference I'm using some old SunPro compiler.
Technically speaking, the linker should be forced to include that object file while compiling your program. However, support for this is buggy in many compilers, such as MSVC++. Adding an external reference somewhere in your main program should force that object file to be included.
Also note that in the case of nm, it's possible that your static initializer was inlined, and therefore the symbol need not exist in your final binary. Try something with side effects (such as a std::cout statement) in your static, and make sure it doesn't run before blaming the compiler :)
It turns out that what the linker does is pretty standard (I don't mean C++ standard, just generally observer behaviour) and you can work around it. In GNU ld it is --whole-archive option, in my case of Sun tools it is -z allextract. Which didn't actually work as expected for my project, so I used some magic with weak symbols an -z weakextract to achieve what I wanted.