3D coordinate of 2D point given camera and view plane - c++

I wish to generate rays from the camera through the viewing plane. In order to do this, I need my camera position ("eye"), the up, right, and towards vectors (where towards is the vector from the camera in the direction of the object that the camera is looking at) and P, the point on the viewing plane. Once I have these, the ray that's generated is:
ray = camera_eye + t*(P-camera_eye);
where t is the distance along the ray (assume t = 1 for now).
My question is, how do I obtain the 3D coordinates of point P given that it is located at position (i,j) on the viewing plane? Assume that the upper left and lower right corners of the viewing plane are given.
NOTE: The viewing plane is not actually a plane in the sense that it doesn't extend infinitely in all directions. Rather, one may think of this plane as a widthxheight image. In the x direction, the range is 0-->width and in the y direction the range is 0-->height. I wish to find the 3D coordinate of the (i,j)th element, 0

General solution of the itnersection of a line and a plane see http://local.wasp.uwa.edu.au/~pbourke/geometry/planeline/
Your particular graphics lib (OpenGL/DirectcX etc) may have an standard way to do this
edit: You are trying to find the 3d intersection of a screen point (eg a mouse cursor) with a 3d object in you scene?

To work out P, you need the distance from the camera to the near clipping plane (the screen), the size of the window on the near clipping plane (or the view angle, you can work out the window size from the view angle) and the size of the rendered window.
Scale the screen position to the range -1 < x < +1 and -1 < y < +1 where +1 is the top/right and -1 is the bottom/left
Scale normalised x,y by the view window size
Scale by the right and up vectors of the camera and sum the results
Add the look at vector scaled by the clipping plane distance
In effect, you get:
p = at * near_clip_dist + x * right + y * up
where x and y are:
x = (screen_x - screen_centre_x) / (width / 2) * view_width
y = (screen_y - screen_centre_y) / (height / 2) * view_height

When I directly plugged in suggested formulas into my program, I didn't obtain correct results (maybe some debugging needed to be done). My initial problem seemed to be in the misunderstanding of the (x,y,z) coordinates of the interpolating corner points. I was treating x,y,z-coordinates separately, where I should not (and this may be specific to the application, since the camera can be oriented in any direction). Instead, the solution turned out to be a simple interpolation of the corner points of the viewing plane:
interpolate the bottom corner points in the i direction to get P1
interpolate the top corner points in the i direction to get P2
interpolate P1 and P2 in the j direction to get the world coordinates of the final point

Related

Find a point inside a rotated rectangle

Ok so, this should be super simple, but I'm not a smart man. Technically I want to know whether a point resides inside a rectangle, however the rectangle can be in different states. In my current context when I want to draw a rectangle rotated by, lets say, 45° clockwise, what I do is rotate the entire x,y axis centered at the top-left corner of the rectangle and then I just draw the rectangle as if nothing has happened. Same goes if I want to draw the rectangle at a random coordinate. Given that is the coordinate system who gets tossed and rotated, the rectangle always thinks it's being drawn at (0,0) with 0°, therefore, the best way to find if a given point is inside the rectangle would be to find the projection for the point based on the translation + rotation of the rectangle. But I have no idea how to do that.
This is what I currently do in order to find out if a point is inside a rectangle (not taking into consideration rotation):
bool Image::isPointInsideRectangle(int x, int y, const ofRectangle & rectangle){
return x - xOffset >= rectangle.getX() && x - xOffset <= rectangle.getX() + rectangle.getWidth() &&
y - yOffset >= rectangle.getY() && y - yOffset <= rectangle.getY() + rectangle.getHeight();
}
I already have angleInDegrees stored, as long as I could use it to project the (x,y) point I receive I should be able find out if the point is inside the rectangle.
Cheers!
Axel
The easiest way is to un-rotate x,y in the reverse direction relative to the origin and rotation of the rectangle.
For example, if angleInDegrees is 45 degrees, you would rotate the point to test -45 degrees (or 315 degrees if your rotation routine only allows positive rotations). This will plot the x,y on the same coordinate system as the unrotated rectangle.
Then, you can use the function you already provided to test whether the point is within the rectangle.
Note that prior to rotating x,y, you will probably need to adjust the x,y relative to the point of rotation - the upper-left corner of the rectangle. Since the rotation is relative to that point rather than the overall coordinate origin 0,0. You can compute the difference between x,y and the upper-left corner of your rectangle (which won't change during rotation), then simply rotate the adjusted point by -angleToRotate, then add the origin point difference back into the unrotated point to get absolute coordinates on your coordinate system.
Editted:
#include <cmath>
bool Image::isPointInsideRectangle(int x, int y, const ofRectangle & rectangle){
return x*cosd(deg) - y*sin(deg) + xOffset >= rectangle.getX()
&& x*cosd(deg) - y*sin(deg) + xOffset <= rectangle.getX() + rectangle.getWidth()
&& x*sind(deg) + y*cosd(deg) + yOffset >= rectangle.getY()
&& x*sind(deg) + y*cosd(deg) + yOffset <= rectangle.getY() + rectangle.getHeight();
Like you have already told, you could translate the coordinates of your point into the space of the rectangle. This is a common task in many software products which work with geometry. Each object have it own coordinate space and works as it would be at position (0, 0) without rotation. If your rectangle is at position v and rotated about b degree/radian, than you can translate your point P into the space of the rectangle with the following formula:
| cos(-b) -sin(-b) | | P_x - v_x |
| | ⋅ | |
| sin(-b) cos(-b) | | P_y - v_y |
Many of the most important transformations can be represented as matrices. At least if you are using homogeneous coordinates. It is also very common to do that. Depending of the complexity and the goals of your program you could consider to use some math library like glm and use the transformations of your objects in form of matrices. Then you could write something like inverse(rectangle.transformation()) * point to get point translated into the space of rectangle.

Ray tracing texture implementation for spheres

I'm trying to implement textures for spheres in my ray tracer. I managed to get something working, but I am unsure about its correctness. Below is the code for getting the texture coordinates. For now, the texture is random and is generated at runtime.
virtual void GetTextureCoord(Vect hitPoint, int hres, int vres, int& x, int& y) {
float theta = acos(hitPoint.getVectY());
float phi = atan2(hitPoint.getVectX(), hitPoint.getVectZ());
if (phi < 0.0) {
phi += TWO_PI;
}
float u = phi * INV_TWO_PI;
float v = 1 - theta * INV_PI;
y = (int) ((hres - 1) * u);
x = (int) ((vres - 1) * v);
}
This is how the spheres look now:
I had to normalize the coordinates of the hit point to get the spheres to look like that. Otherwise they would look like:
Was normalising the hit point coordinates the right approach, or is something else broken in my code? Thank you!
Instead of normalising the hit point, I tried translating it to the world origin (as if the sphere center was there) and obtained the following result:
I'm using a 256x256 resolution texture by the way.
It's unclear what you mean by "normalizing" the hit point since there's nothing that normalizes it in the code you posted, but you mentioned that your hit point is in world space.
Also, you didn't say what texture mapping you're trying to implement, but I assume you want your U and V texture coordinates to represent latitude and longitude on the sphere's surface.
Your first problem is that converting Cartesian to spherical coordinates requires that the sphere is centered at the origin in the Cartesian space, which isn't true in world space. If the hit point is in world space, you have to subtract the sphere's world-space center point to get the effective hit point in local coordinates. (You figured this part out already and updated the question with a new image.)
Your second problem is that the way you're calculating theta requires that the the sphere have a radius of 1, which isn't true even after you move the sphere's center to the origin. Remember your trigonometry: the argument to acos is the ratio of a triangle's side to its hypotenuse, and is always in the range (-1, +1). In this case your Y-coordinate is the side, and the sphere's radius is the hypotenuse. So you have to divide by the sphere's radius when calling acos. It's also a good idea to clamp the value to the (-1, +1) range in case floating-point rounding error puts it slightly outside.
(In principle you'd also have to divide the X and Z coordinates by the radius, but you're only using those for an inverse tangent, and dividing them both by the radius won't change their quotient and thus won't change phi.)
Right now your sphere intersection and texture-coordinate functions are operating in world space, but you'll probably find it useful later to implement transformation matrices, which let you transform things from one coordinate space to another. Then you can change your sphere functions to operate in a local coordinate space where the center is the origin and the radius is 1, and give each object an associated transformation matrix that maps the local coordinate space to the world coordinate space. This will simplify your ray/sphere intersection code, and let you remove the origin subtraction and radius division from GetTextureCoord (since they're always (0, 0, 0) and 1 respectively).
To intersect a ray with an object, you'd use the object's transformation matrix to transform the ray into the object's local coordinate space, do the intersection (and compute texture coordinates) there, and then transform the result (e.g. hit point and surface normal) back to world space.

3D Geometry: Finding viewing boundaries from camera postion, min and max length of view, angle it is pointing and angle of view

I am writing software to determine the viewable locations of a camera in 3D. I have currently implement parts to find the minimum and maximum length of view based on the camera and lenses intrinsic characteristics.
I now need to work out that if the camera is placed at X,Y,Z and is pointing in a direction (two angles, one around the horizontal and one around the vertical axis) what the boundaries the camera can see at are (knowing the viewing angle). The output I would like is 4 3D locations, making a rectangle that show the minimum position, top left, top right, bottom left and bottom right. The same is also required for the maximum positions.
Can anyone help with the geometry to find these points?
Some code I have:
QVector3D CameraPerspective::GetUnitVectorOfCameraAngle()
{
QVector3D inital(0, 1, 0);
QMatrix4x4 rotation_matrix;
// rotate around z axis
rotation_matrix.rotate(_angle_around_z, 0, 0, 1);
//rotate around y axis
rotation_matrix.rotate(_angle_around_x, 1, 0, 0);
inital = inital * rotation_matrix;
return inital;
}
Coordinate CameraPerspective::GetFurthestPointInFront()
{
QVector3D camera_angle_vector = GetUnitVectorOfCameraAngle();
camera_angle_vector.normalize();
QVector3D furthest_point_infront = camera_angle_vector * _camera_information._maximum_distance_mm;
return Coordinate(furthest_point_infront + _position_of_this);
}
Thanks
A complete answer with code will be probably way too long for SO, I hope that this will be enough. In the following we work in homogeneous coordinates.
I have currently implement parts to find the minimum and maximum length of view based on the camera and lenses intrinsic characteristics.
That isn't enough to fully define your camera. You also need a field of view angle and the width/height ratio.
With all these information (near plane + far plane + fov + ratio), you can build a 4x4 matrix known as perspective matrix. Google for it or check here for some references. This matrix maps the pyramidal region of the space which your camera "sees" (usually simply called frustrum) to the [-1,1]x[-1,1]x[-1,1] cube. Call it P.
Now you need a 4x4 camera matrix which transform points in world space to points in camera space. Since you know the camera position and the camera orientation this can be constructed easily (there is no room here to full explain how transformation matrices in homogeneous coordinates work, google for it). Call this matrix C.
Now consider the matrix A = P * C.
This matrix transforms points in world coordinates to points in the perspective space. Your camera will "see" those points if they are inside the [-1,1]x[-1,1]x[-1,1] cube. But you can invert this matrix in order to map points inside the cube to points in world space. So in order to obtain the 8 points you need in world space you can simply do:
y = A^(-1) * x
Where x =
[-1,-1,-1, 1] left - bottom - near
[-1,-1, 1, 1] left - bottom - far
etc.

Line - Circle intersection test in 3d world?

i have a 3d world where i have several 2d circles laying on the ground facing to the sky.
how can i check if a line will intersect one of those circles frop top-to-down?
i tried to search but all i get is this kind of intersection test:
http://mathworld.wolfram.com/Circle-LineIntersection.html
but its not what i need, here is image what i mean:
http://imageshack.us/m/192/8343/linecircleintersect.png
If you are in a coordinate system, where the ground is given by z = c for c some constant, then you could simply calculate the x, y coordinates of the line for z = c. Now for a circle of origin x0, y0 and radius R, you would simply check if
(x - x0)^2 + (y - y0)^2 <= R^2.
If this is true, the line intersects the circle.
In a 3D sense you are first concerned with not with a circle but with the plane where the circle lies on. Then you can find the point of intersection between the ray (line) and the plane (disk).
I like to use homogeneous coordinates for point, planes and lines and I hope you are familiar with vector dot · and cross products ×. Here is the method:
Plane (disk) is defined by a point vector r=[rx,ry,rz] and a normal direction vector n=[nx,ny,nz]. Together they form a plane W=[W1,W2]=[n,-r·n].
Line (ray) is defined by two point vectors r_A=[rAx,rAy,rAz] and r_B=[rBx,rBy,rBz]. Together they form the line L=[L1,L2]=[r_B-r_A, r_A×r_B]
The intersecting Point is defined by P=[P1,P2]=[L1×W1-W2*L2, -L2·W1], or expanded out as
P=[ (r_B-r_A)×n-(r·n)*(r_A×r_B), -(r_A×r_B)·n ]
The coordinates for the point are found by r_P = P1/P2 where P1 has three elements and P2 is scalar.
Once you have the coordinates you check the distance with the center of the circle by d=sqrt((r_p-r)·(r_p-r)) and checking d<=R where R is the radius of the circle. Note the difference in notation between a scalar multiplication * and a dot product ·
If you know for sure that the circles lie on the ground (r=[0,0,0]) and face up (n=[0,0,1]) then you can make a lot of simplifications to the above general case.
[ref: Plucker Coordinates]
Update:
When using the ground (with +Z up) as the plane (where circles lie), then use r=[rx,ry,0] and n=[0,0,1] and the above intersection point simplifies to
r_p = [ rBy-rAy, rAx-rBx, 0] / (rAy*rBx-rAx*rBy)
of which you can check the distance to the circle center.

c++ opengl converting model coordinates to world coordinates for collision detection

(This is all in ortho mode, origin is in the top left corner, x is positive to the right, y is positive down the y axis)
I have a rectangle in world space, which can have a rotation m_rotation (in degrees).
I can work with the rectangle fine, it rotates, scales, everything you could want it to do.
The part that I am getting really confused on is calculating the rectangles world coordinates from its local coordinates.
I've been trying to use the formula:
x' = x*cos(t) - y*sin(t)
y' = x*sin(t) + y*cos(t)
where (x, y) are the original points,
(x', y') are the rotated coordinates,
and t is the angle measured in radians
from the x-axis. The rotation is
counter-clockwise as written.
-credits duffymo
I tried implementing the formula like this:
//GLfloat Ax = getLocalVertices()[BOTTOM_LEFT].x * cosf(DEG_TO_RAD( m_orientation )) - getLocalVertices()[BOTTOM_LEFT].y * sinf(DEG_TO_RAD( m_orientation ));
//GLfloat Ay = getLocalVertices()[BOTTOM_LEFT].x * sinf(DEG_TO_RAD( m_orientation )) + getLocalVertices()[BOTTOM_LEFT].y * cosf(DEG_TO_RAD( m_orientation ));
//Vector3D BL = Vector3D(Ax,Ay,0);
I create a vector to the translated point, store it in the rectangles world_vertice member variable. That's fine. However, in my main draw loop, I draw a line from (0,0,0) to the vector BL, and it seems as if the line is going in a circle from the point on the rectangle (the rectangles bottom left corner) around the origin of the world coordinates.
Basically, as m_orientation gets bigger it draws a huge circle around the (0,0,0) world coordinate system origin. edit: when m_orientation = 360, it gets set back to 0.
I feel like I am doing this part wrong:
and t is the angle measured in radians
from the x-axis.
Possibly I am not supposed to use m_orientation (the rectangles rotation angle) in this formula?
Thanks!
edit: the reason I am doing this is for collision detection. I need to know where the coordinates of the rectangles (soon to be rigid bodies) lie in the world coordinate place for collision detection.
What you do is rotation [ special linear transformation] of a vector with angle Q on 2d.It keeps vector length and change its direction around the origin.
[linear transformation : additive L(m + n) = L(m) + L(n) where {m, n} € vector , homogeneous L(k.m) = k.L(m) where m € vector and k € scalar ] So:
You divide your vector into two pieces. Like m[1, 0] + n[0, 1] = your vector.
Then as you see in the image, rotation is made on these two pieces, after that your vector take
the form:
m[cosQ, sinQ] + n[-sinQ, cosQ] = [mcosQ - nsinQ, msinQ + ncosQ]
you can also look at Wiki Rotation
If you try to obtain eye coordinates corresponding to your object coordinates, you should multiply your object coordinates by model-view matrix in opengl.
For M => model view matrix and transpose of [x y z w] is your object coordinates you do:
M[x y z w]T = Eye Coordinate of [x y z w]T
This seems to be overcomplicating things somewhat: typically you would store an object's world position and orientation separately from its set of own local coordinates. Rotating the object is done in model space and therefore the position is unchanged. The world position of each coordinate is the same whether you do a rotation or not - add the world position to the local position to translate the local coordinates to world space.
Any rotation occurs around a specific origin, and the typical sin/cos formula presumes (0,0) is your origin. If the coordinate system in use doesn't currently have (0,0) as the origin, you must translate it to one that does, perform the rotation, then transform back. Usually model space is defined so that (0,0) is the origin for the model, making this step trivial.