C++, using one byte to store two variables - c++

I am working on representation of the chess board, and I am planning to store it in 32 bytes array, where each byte will be used to store two pieces. (That way only 4 bits are needed per piece)
Doing it in that way, results in a overhead for accessing particular index of the board.
Do you think that, this code can be optimised or completely different method of accessing indexes can be used?
c++
char getPosition(unsigned char* c, int index){
//moving pointer
c+=(index>>1);
//odd number
if (index & 1){
//taking right part
return *c & 0xF;
}else
{
//taking left part
return *c>>4;
}
}
void setValue(unsigned char* board, char value, int index){
//moving pointer
board+=(index>>1);
//odd number
if (index & 1){
//replace right part
//save left value only 4 bits
*board = (*board & 0xF0) + value;
}else
{
//replacing left part
*board = (*board & 0xF) + (value<<4);
}
}
int main() {
char* c = (char*)malloc(32);
for (int i = 0; i < 64 ; i++){
setValue((unsigned char*)c, i % 8,i);
}
for (int i = 0; i < 64 ; i++){
cout<<(int)getPosition((unsigned char*)c, i)<<" ";
if (((i+1) % 8 == 0) && (i > 0)){
cout<<endl;
}
}
return 0;
}
I am equally interested in your opinions regarding chess representations, and optimisation of the method above, as a stand alone problem.
Thanks a lot
EDIT
Thanks for your replies. A while ago I created checkers game, where I was using 64 bytes board representation. This time I am trying some different methods, just to see what I like. Memory is not such a big problem. Bit-boards is definitely on my list to try. Thanks

That's the problem with premature optimization. Where your chess board would have taken 64 bytes to store, now it takes 32. What has this really boughten you? Did you actually analyze the situation to see if you needed to save that memory?
Assuming that you used one of the least optimal search method, straight AB search to depth D with no heuristics, and you generate all possible moves in a position before searching, then absolute maximum memory required for your board is going to be sizeof(board) * W * D. If we assume a rather large W = 100 and large D = 30 then you're going to have 3000 boards in memory at depth D. 64k vs 32k...is it really worth it?
On the other hand, you've increased the amount of operations necessary to access board[location] and this will be called many millions of times per search.
When building chess AI's the main thing you'll end up looking for is cpu cycles, not memory. This may vary a little bit if you're targeting a cell phone or something, but even at that you're going to worry more about speed before you'll ever reach enough depth to cause any memory issues.
As to which representation I prefer...I like bitboards. Haven't done a lot of serious measurements but I did compare two engines I made, one bitboard and one array, and the bitboard one was faster and could reach much greater depths than the other.

Let me be the first to point out a potential bug (depending on compilers and compiler settings). And bugs being why premature optimization is evil:
//taking left part
return *c>>4;
if *c is negative, then >> may repeat the negative high bit. ie in binary:
0b10100000 >> 4 == 0b11111010
for some compilers (ie the C++ standard leaves it to the compiler to decide - both whether to carry the high bit, and whether a char is signed or unsigned).
If you do want to go forward with your packed bits (and let me say that you probably shouldn't bother, but it is up to you), I would suggest wrapping the packed bits into a class, and overriding [] such that
board[x][y]
gives you the unpacked bits. Then you can turn the packing on and off easily, and having the same syntax in either case. If you inline the operator overloads, it should be as efficient as the code you have now.

Well, 64 bytes is a very small amount of RAM. You're better off just using a char[8][8]. That is, unless you plan on storing a ton of chess boards. Doing char[8][8] makes it easier (and faster) to access the board and do more complex operations on it.
If you're still interested in storing the board in packed representation (either for practice or to store a lot of boards), I say you're "doing it right" regarding the bit operations. You may want to consider inlining your accessors if you're going for speed using the inline keyword.

Is space enough of a consideration where you can't just use a full byte to represent a square? That would make accesses easier to follow on the program and additionally most likely faster as the bit manipulations are not required.
Otherwise to make sure everything goes smoothly I would make sure all your types are unsigned: getPosition return unsigned char, and qualify all your numeric literals with "U" (0xF0U for example) to make sure they're always interpreted as unsigned. Most likely you won't have any problems with signed-ness but why take chances on some architecture that behaves unexpectedly?

Nice code, but if you are really that deep into performance optimization, you should probably learn more about your particular CPU architecture.
AFAIK, you may found that storing a chess piece in as much 8 bytes will be more efficient. Even if you recurse 15 moves deep, L2 cache size would hardly be a constraint, but RAM misalignment may be. I would guess that proper handling of a chess board would include Expand() and Reduce() functions to translate between board representations during different parts of the algorithm: some may be faster on compact representation, and some vice versa. For example, caching, and algorithms involving hashing by composition of two adjacent cells might be good for the compact structure, all else no.
I would also consider developing some helper hardware, like some FPGA board, or some GPU code, if performance is so important..

As a chess player, I can tell you: There's more to a position than the mere placement of each piece. You have to take in to consideration some other things:
Which side has to move next?
Can white and/or black castle king and/or queenside?
Can a pawn be taken en passant?
How many moves have passed since the last pawn move and/or capturing move?
If the data structure you use to represent a position doesn't reflect this information, then you're in big trouble.

Related

How to effectively apply bitwise operation to (large) packed bit vectors?

I want to implement
void bitwise_and(
char* __restrict__ result,
const char* __restrict__ lhs,
const char* __restrict__ rhs,
size_t length);
or maybe a bitwise_or(), bitwise_xor() or any other bitwise operation. Obviously it's not about the algorithm, just the implementation details - alignment, loading the largest possible element from memory, cache-awareness, using SIMD instructions etc.
I'm sure this has (more than one) fast existing implementations, but I would guess most library implementations would require some fancy container, e.g. std::bitset or boost::dynamic_bit_set - but I don't want to spend the time constructing one of those.
So do I... Copy-paste from an existing library? Find a library which can 'wrap' a raw packed bits array in memory with a nice object? Roll my own implementation anyway?
Notes:
I'm mostly interested in C++ code, but I certainly don't mind a plain C approach.
Obviously, making copies of the input arrays is out of the question - that would probably nearly-double the execution time.
I intentionally did not template the bitwise operator, in case there's some specific optimization for OR, or for AND etc.
Bonus points for discussing operations on multiple vectors at once, e.g. V_out = V_1 bitwise-and V_2 bitwise-and V_3 etc.
I noted this article comparing library implementations, but it's from 5 years ago. I can't ask which library to use since that would violate SO policy I guess...
If it helps you any, assume its uint64_ts rather than chars (that doesn't really matter - if the char array is unaligned we can just treated the heading and trailing chars separately).
This answer is going to assume you want the fastest possible way and are happy to use platform specific things. You optimising compiler may be able to produce similar code to the below from normal C but in my experiance across a few compilers something as specific as this is still best hand-written.
Obviously like all optimisation tasks, never assume anything is better/worse and measure, measure, measure.
If you could lock down you architecture to x86 with at least SSE3 you would do:
void bitwise_and(
char* result,
const char* lhs,
const char* rhs,
size_t length)
{
while(length >= 16)
{
// Load in 16byte registers
auto lhsReg = _mm_loadu_si128((__m128i*)lhs);
auto rhsReg = _mm_loadu_si128((__m128i*)rhs);
// do the op
auto res = _mm_and_si128(lhsReg, rhsReg);
// save off again
_mm_storeu_si128((__m128i*)result, res);
// book keeping
length -= 16;
result += 16;
lhs += 16;
rhs += 16;
}
// do the tail end. Assuming that the array is large the
// most that the following code can be run is 15 times so I'm not
// bothering to optimise. You could do it in 64 bit then 32 bit
// then 16 bit then char chunks if you wanted...
while (length)
{
*result = *lhs & *rhs;
length -= 1;
result += 1;
lhs += 1;
rhs += 1;
}
}
This compiles to ~10asm instructions per 16 bytes (+ change for the leftover and a little overhead).
The great thing about doing intrinsics like this (over hand rolled asm) is that the compiler is still free to do additional optimisations (such as loop unrolling) ontop of what you write. It also handles register allocation.
If you could guarantee aligned data you could save an asm instruction (use _mm_load_si128 instead and the compiler will be clever enough to avoid a second load and use it as an direct mem operand to the 'pand'.
If you could guarantee AVX2+ then you could use the 256 bit version and handle 10asm instructions per 32 bytes.
On arm theres similar NEON instructions.
If you wanted to do multiple ops just add the relevant intrinsic in the middle and it'll add 1 asm instruction per 16 bytes.
I'm pretty sure with a decent processor you dont need any additional cache control.
Don't do it this way. The individual operations will look great, sleek asm, nice performance .. but a composition of them will be terrible. You cannot make this abstraction, nice as it looks. The arithmetic intensity of those kernels is almost the worst possible (the only worse one is doing no arithmetic, such as a straight up copy), and composing them at a high level will retain that awful property. In a sequence of operations each using the result of the previous one, the results are written and read again a lot later (in the next kernel), even though the high level flow could be transposed so that the result the "next operation" needs is right there in a register. Also, if the same argument appears twice in an expression tree (and not both as operands to one operation), they will be streamed in twice, instead of reusing the data for two operations.
It doesn't have that nice warm fuzzy feeling of "look at all this lovely abstraction" about it, but what you should do is find out at a high level how you're combining your vectors, and then try to chop that in pieces that make sense from a performance perspective. In some cases that may mean making big ugly messy loops that will make people get an extra coffee before diving in, that's just too bad then. If you want performance, you often have to sacrifice something else. Usually it's not so bad, it probably just means you have a loop that has an expression consisting of intrinsics in it, instead of an expression of vector-operations that each individually have a loop.

What C++ type use for fastest "for cycles"?

I think this is not answered on this site yet.
I made a code which goes through many combinations of 4 numbers. The number values are from 0 to 51, so they can be stored in 6 bits, so in 1 byte, am I right? I use these 4 numbers in nested for cycles and then use them in the lowest level for cycle. So what c++ type from those which can store at least 52 values is the fastest for iterating through 4 nested for cycles?
The code looks like:
for(type first = 0; first != 49; ++first)
for(type second = first+1; second != 50; ++second)
for(type third = second+1; third != 51; ++third)
for(type fourth = third+1; fourth != 52; ++fourth) {
//using those values for about 1 bilion bit operations made in another for cycles
}
That code is very simplified and maybe there is also a better way for this kind of iterating, you can help me also with that.
Use the typedef std::uint_fast8_t from the header <cstdint>. It is supposed to be the "fastest" unsigned integer type with at least 8 bits.
The fastest is whatever the underlying processor ALU can natively work with. Now registers may be addressable in multiple formats. In that case all those formats are equally fast.
So this becomes very processor architecture specific rather than C++ specific.
If you are working on a modern day PC processor then an int is as fast as anything else for your for loops.
On an embedded system there are more things to consider. Eg. Whether the variable is stored in an aligned location or not?
On most machines, int is the fastest integer type. On all of the computers I work with, int is faster than unsigned, significantly faster than signed char.
Another issue, perhaps a bigger one, is what you are doing with those numbers. You didn't show the code, so there's no way of telling. Use int if you expect first*second to produce the expected integral value.
Yet another issue is how widely portable you expect this code to be. There's a huge distinction between code that will be ported to a number of different architectures, different compilers versus code that will be used in a limited and controlled setting. If it's the latter, write some benchmarks, and use the type under which the benchmarks perform best. The problem is a bit tougher if you are writing something for wide consumption.

Fast code for searching bit-array for contiguous set/clear bits?

Is there some reasonably fast code out there which can help me quickly search a large bitmap (a few megabytes) for runs of contiguous zero or one bits?
By "reasonably fast" I mean something that can take advantage of the machine word size and compare entire words at once, instead of doing bit-by-bit analysis which is horrifically slow (such as one does with vector<bool>).
It's very useful for e.g. searching the bitmap of a volume for free space (for defragmentation, etc.).
Windows has an RTL_BITMAP data structure one can use along with its APIs.
But I needed the code for this sometime ago, and so I wrote it here (warning, it's a little ugly):
https://gist.github.com/3206128
I have only partially tested it, so it might still have bugs (especially on reverse). But a recent version (only slightly different from this one) seemed to be usable for me, so it's worth a try.
The fundamental operation for the entire thing is being able to -- quickly -- find the length of a run of bits:
long long GetRunLength(
const void *const pBitmap, unsigned long long nBitmapBits,
long long startInclusive, long long endExclusive,
const bool reverse, /*out*/ bool *pBit);
Everything else should be easy to build upon this, given its versatility.
I tried to include some SSE code, but it didn't noticeably improve the performance. However, in general, the code is many times faster than doing bit-by-bit analysis, so I think it might be useful.
It should be easy to test if you can get a hold of vector<bool>'s buffer somehow -- and if you're on Visual C++, then there's a function I included which does that for you. If you find bugs, feel free to let me know.
I can't figure how to do well directly on memory words, so I've made up a quick solution which is working on bytes; for convenience, let's sketch the algorithm for counting contiguous ones:
Construct two tables of size 256 where you will write for each number between 0 and 255, the number of trailing 1's at the beginning and at the end of the byte. For example, for the number 167 (10100111 in binary), put 1 in the first table and 3 in the second table. Let's call the first table BBeg and the second table BEnd. Then, for each byte b, two cases: if it is 255, add 8 to your current sum of your current contiguous set of ones, and you are in a region of ones. Else, you end a region with BBeg[b] bits and begin a new one with BEnd[b] bits.
Depending on what information you want, you can adapt this algorithm (this is a reason why I don't put here any code, I don't know what output you want).
A flaw is that it does not count (small) contiguous set of ones inside one byte ...
Beside this algorithm, a friend tells me that if it is for disk compression, just look for bytes different from 0 (empty disk area) and 255 (full disk area). It is a quick heuristic to build a map of what blocks you have to compress. Maybe it is beyond the scope of this topic ...
Sounds like this might be useful:
http://www.aggregate.org/MAGIC/#Population%20Count%20%28Ones%20Count%29
and
http://www.aggregate.org/MAGIC/#Leading%20Zero%20Count
You don't say if you wanted to do some sort of RLE or to simply count in-bytes zeros and one bits (like 0b1001 should return 1x1 2x0 1x1).
A look up table plus SWAR algorithm for fast check might gives you that information easily.
A bit like this:
byte lut[0x10000] = { /* see below */ };
for (uint * word = words; word < words + bitmapSize; word++) {
if (word == 0 || word == (uint)-1) // Fast bailout
{
// Do what you want if all 0 or all 1
}
byte hiVal = lut[*word >> 16], loVal = lut[*word & 0xFFFF];
// Do what you want with hiVal and loVal
The LUT will have to be constructed depending on your intended algorithm. If you want to count the number of contiguous 0 and 1 in the word, you'll built it like this:
for (int i = 0; i < sizeof(lut); i++)
lut[i] = countContiguousZero(i); // Or countContiguousOne(i)
// The implementation of countContiguousZero can be slow, you don't care
// The result of the function should return the largest number of contiguous zero (0 to 15, using the 4 low bits of the byte, and might return the position of the run in the 4 high bits of the byte
// Since you've already dismissed word = 0, you don't need the 16 contiguous zero case.

Strange C++ Memory Allocation

I created a simple class, Storer, in C++, playing with memory allocation. It contains six field variables, all of which are assigned in the constructor:
int x;
int y;
int z;
char c;
long l;
double d;
I was interested in how these variables were being stored, so I wrote the following code:
Storer *s=new Storer(5,4,3,'a',5280,1.5465);
cout<<(long)s<<endl<<endl;
cout<<(long)&(s->x)<<endl;
cout<<(long)&(s->y)<<endl;
cout<<(long)&(s->z)<<endl;
cout<<(long)&(s->c)<<endl;
cout<<(long)&(s->l)<<endl;
cout<<(long)&(s->d)<<endl;
I was very interested in the output:
33386512
33386512
33386516
33386520
33386524
33386528
33386536
Why is the char c taking up four bytes? sizeof(char) returns, of course, 1, so why is the program allocating more memory than it needs? This is confirmed that too much memory is being allocated with the following code:
cout<<sizeof(s->c)<<endl;
cout<<sizeof(Storer)<<endl;
cout<<sizeof(int)+sizeof(int)+sizeof(int)+sizeof(char)+sizeof(long)+sizeof(double)<<endl;
which prints:
1
32
29
confirming that, indeed, 3 bytes are being allocated needlessly. Can anyone explain to me why this is happening? Thanks.
Data alignment and compiler padding say hi!
The CPU has no notion of type, what it gets in its 32-bit (or 64-bit, or 128-bit (SSE), or 256-bit (AVX) - let's keep it simple at 32) registers needs to be properly aligned in order to be processed correctly and efficiently. Imagine a simple scenario, where you have a char, followed by an int. In a 32-bit architecture, that's 1 byte for a char and 4 bytes for an integer.
A 32-bit register would have to break on its boundary, only taking in 3 bytes of the integer and leaving the 4th byte for "a second run". It cannot process the data properly that way, so the compiler will add padding in order to make sure all the stuff is processed efficiently. And that means adding a certain amount of padding depending on the type in question.
Why is misalignment a problem?
The computer is not human, it can't just pick them out with a pair of eyes and a brain. It has to be very deterministic and cautious about how it goes about doing things. First it loads one block which contains n bytes of the given information, shift it around so that it prunes out unrelated information, then another, again, shift out a bunch of unnecessary bytes which do not have anything to do with the operation at hand and only then can it do the necessary operations. And usually you have two operands, that's just one complete. When you do all that work, only then can you actually process it. Way too much performance overhead when you can simply align the data properly (and most of the time, compilers do it for you, if you're not doing anything fancy).
Could you visualize it?
Visually - the first green byte is the mentioned char, and the three green bytes plus the first red one of the second block is the 4-byte int, colorcoded on a 4-byte access boundary (we're talking about a 32-bit register). The "instead part" at the bottom shows an ideal setup where the int hits the register properly (the char getting padded into obedience somewhere off image):
Read more on data alignment, which comes quite handy when you're dealing with fancy extensions of the instruction set like SSE (128-bit regs) or AVX (256-bit regs), so special care must be taken so that the optimizations of vectorization are not defeated ( aligning on a 16-byte boundary for SSE, 16*8 -> 128-bits).
Additional remarks on user defined alignment
phonetagger made a valid point in the comments that there are pragma directives which can be assigned through the preprocessor to force to compiler in order to align the data in a way the user, programmer specifies. But such directives, like #pragma pack(...), are a statement to the compiler that you know what you're doing and what's best for you. Be sure that you do, because if you fail to accomodate your environment, you might experience various penalties - the most obvious being using external libraries you didn't write yourself which differ in the way they pack data.
Things simply explode when they clash. Best is to advise caution in such cases and really being intimate with the issue at hand. If you're not sure, leave it to the defaults. If you are not sure but have to use something like SSE where alignment is king (and not default nor simple by a long shot), consult various resources online or ask an another question here.
I will make an analogy to help you understand.
Assume there is a long loaf of bread and you have a cutting machine that can cut it into slices of equal thickness. Then you are giving out these breads to, let's say children. Every child takes their bread and fairly do what they want to do with them (put Nutella on them and eat, etc.). They can even make thinner slices out of it and use it like that.
If one child comes up to you and says that he does not want that slice everyone is getting, but a thinner slice instead, then you will have difficulties, because your cutting machine is optimized to cut at least a minimum amount, which makes everyone happy. But when one child asks for a thinner slice, then you have to reinvent the machine or put additional complexity to it like introducing two cutting modes. You don't want that. Eventually you give up and just give him a big slice anyway.
This is the same reason why it happens. Hope you could relate to the analogy.
Data alignement is why the char has allocated 4 bytes : Data alignement
char does not take up four bytes: it takes up a single byte as usual. You can check it by printing sizeof(char). The other three bytes are padding that the compiler inserts to optimize access to other members of your class. Depending on hardware, it is often much faster to access multi-byte types, say, 4-byte integers, when they are located at an address divisible by four. A compiler may insert up to three bytes of padding before an int member to align it with a good memory address for faster access.
If you would like to experiment with class layouts, you can use a handy operation called offsetof. It takes two parameters - the name of the member and the name of the class, and it returns the number of bytes from the base address of your struct to the position of the member in memory.
cout << offsetof(Storer, x) << endl;
cout << offsetof(Storer, y) << endl;
cout << offsetof(Storer, z) << endl;
Structure members are aligned in particular ways. In general, if you want the most compact representation, list the members in decreasing order of size.
http://en.wikipedia.org/wiki/Data_structure_alignment#Typical_alignment_of_C_structs_on_x86

Implementing memcmp

The following is the Microsoft CRT implementation of memcmp:
int memcmp(const void* buf1,
const void* buf2,
size_t count)
{
if(!count)
return(0);
while(--count && *(char*)buf1 == *(char*)buf2 ) {
buf1 = (char*)buf1 + 1;
buf2 = (char*)buf2 + 1;
}
return(*((unsigned char*)buf1) - *((unsigned char*)buf2));
}
It basically performs a byte by byte comparision.
My question is in two parts:
Is there any reason to not alter this to an int by int comparison until count < sizeof(int), then do a byte by byte comparision for what remains?
If I were to do 1, are there any potential/obvious problems?
Notes: I'm not using the CRT at all, so I have to implement this function anyway. I'm just looking for advice on how to implement it correctly.
You could do it as an int-by-int comparison or an even wider data type if you wish.
The two things you have to watch out for (at a minimum) are an overhang at the start as well as the end, and whether the alignments are different between the two areas.
Some processors run slower if you access values without following their alignment rules (some even crash if you try it).
So your code could probably do char comparisons up to an int alignment area, then int comparisons, then char comparisons again but, again, the alignments of both areas will probably matter.
Whether that extra code complexity is worth whatever savings you will get depends on many factors outside your control. A possible method would be to detect the ideal case where both areas are aligned identically and do it a fast way, otherwise just do it character by character.
The optimization you propose is very common. The biggest concern would be if you try to run it on a processor that doesn't allow unaligned accesses for anything other than a single byte, or is slower in that mode; the x86 family doesn't have that problem.
It's also more complicated, and thus more likely to contain a bug.
Don't forget that when you find a mismatch within a larger chunk, you must then identify the first differing char within that chunk so that you can calculate the correct return value (memcmp() returns the difference of the first differing bytes, treated as unsigned char values).
If you compare as int, you will need to check alignment and check if count is divisible by sizeof(int) (to compare the last bytes as char).
Is that really their implementation? I have other issues besides not doing it int-wise:
castng away constness.
does that return statement work? unsigned char - unsigned char = signed int?
int at a time only works if the pointers are aligned, or if you can read a few bytes from the front of each and they are both still aligned, so if both are 1 before the alignment boundary you can read one char of each then go int-at-a-time, but if they are aligned differently eg one is aligned and one is not, there is no way to do this.
memcmp is at its most inefficient (i.e. it takes the longest) when they do actually compare (it has to go to the end) and the data is long.
I would not write my own but if you are going to be comparing large portions of data you could do things like ensure alignment and even pad the ends, then do word-at-a-time, if you want.
Another idea is to optimize for the processor cache and fetching. Processors like to fetch in large chunks rather than individual bytes at random times. Although the internal workings may already account for this, it would be a good exercise anyway. Always profile to determine the most efficient solution.
Psuedo code:
while bytes remaining > (cache size) / 2 do // Half the cache for source, other for dest.
fetch source bytes
fetch destination bytes
perform comparison using fetched bytes
end-while
perform byte by byte comparison for remainder.
For more information, search the web for "Data Driven Design" and "data oriented programming".
Some processors, such as the ARM family, allow for conditional execution of instructions (in 32-bit, non-thumb) mode. The processor fetches the instructions but will only execute them if the conditions are satisfied. In this case, try rephrasing the comparison in terms of boolean assignments. This may also reduce the number of branches taken, which improves performance.
See also loop unrolling.
See also assembly language.
You can gain a lot of performance by tailoring the algorithm to a specific processor, but loose in the portability area.
The code you found is just a debug implementation of memcmp, it's optimized for simplicity and readability, not for performance.
The intrinsic compiler implementation is platform specific and smart enough to generate processor instructions that compare dwords or qwords (depending on the target architecture) at once whenever possible.
Also, an intrinsic implementation may return immediately if both buffers have the same address (buf1 == buf2). This check is also missing in the debug implementation.
Finally, even when you know exactly on which platform you'll be running, the perfect implementation is still the less generic one as it depends on a bunch of different factors that are specific to the rest of your program:
What is the minumum guaranteed buffer alignment?
Can you read any padding bytes past the end of a buffer without triggering an access violation?
May the buffer parameters be identical?
May the buffer size be 0?
Do you only need to compare buffer contents for equality? Or do you also need to know which one is larger (return value < 0 or > 0)?
...
If performace is a concern, I suggest writing the comparison routine in assembly. Most compilers give you an option to see the assembly lising that they generate for a source. You could take that code and adapt it to your needs.
Many processors implement this as a single instruction. If you can guarantee the processor you're running on it can be implemented with a single line of inline assembler.