Below is my innermost loop that's run several thousand times, with input sizes of 20 - 1000 or more. This piece of code takes up 99 - 99.5% of execution time. Is there anything I can do to help squeeze any more performance out of this?
I'm not looking to move this code to something like using tree codes (Barnes-Hut), but towards optimizing the actual calculations happening inside, since the same calculations occur in the Barnes-Hut algorithm.
Any help is appreciated!
Edit: I'm running in Windows 7 64-bit with Visual Studio 2008 edition on a Core 2 Duo T5850 (2.16 GHz)
typedef double real;
struct Particle
{
Vector pos, vel, acc, jerk;
Vector oldPos, oldVel, oldAcc, oldJerk;
real mass;
};
class Vector
{
private:
real vec[3];
public:
// Operators defined here
};
real Gravity::interact(Particle *p, size_t numParticles)
{
PROFILE_FUNC();
real tau_q = 1e300;
for (size_t i = 0; i < numParticles; i++)
{
p[i].jerk = 0;
p[i].acc = 0;
}
for (size_t i = 0; i < numParticles; i++)
{
for (size_t j = i+1; j < numParticles; j++)
{
Vector r = p[j].pos - p[i].pos;
Vector v = p[j].vel - p[i].vel;
real r2 = lengthsq(r);
real v2 = lengthsq(v);
// Calculate inverse of |r|^3
real r3i = Constants::G * pow(r2, -1.5);
// da = r / |r|^3
// dj = (v / |r|^3 - 3 * (r . v) * r / |r|^5
Vector da = r * r3i;
Vector dj = (v - r * (3 * dot(r, v) / r2)) * r3i;
// Calculate new acceleration and jerk
p[i].acc += da * p[j].mass;
p[i].jerk += dj * p[j].mass;
p[j].acc -= da * p[i].mass;
p[j].jerk -= dj * p[i].mass;
// Collision estimation
// Metric 1) tau = |r|^2 / |a(j) - a(i)|
// Metric 2) tau = |r|^4 / |v|^4
real mij = p[i].mass + p[j].mass;
real tau_est_q1 = r2 / (lengthsq(da) * mij * mij);
real tau_est_q2 = (r2*r2) / (v2*v2);
if (tau_est_q1 < tau_q)
tau_q = tau_est_q1;
if (tau_est_q2 < tau_q)
tau_q = tau_est_q2;
}
}
return sqrt(sqrt(tau_q));
}
Inline the calls to lengthsq().
Change pow(r2,-1.5) to 1/(r2*sqrt(r2)) to lower the cost of the computing r^1.5
Use scalars (p_i_acc, etc.) inside the innner most loop rather than p[i].acc to collect your result. The compiler may not know that p[i] isn't aliased with p[j], and that might force addressing of p[i] on each loop iteration unnecessarily.
4a. Try replacing the if (...) tau_q = with
tau_q=minimum(...,...)
Many compilers recognize the mininum function as one they can do with predicated operations rather than real branches, avoiding pipeline flushes.
4b. [EDIT to split 4a and 4b apart] You might consider storing tau_..q2 instead as tau_q, and comparing against r2/v2 rather than r2*r2/v2*v2. Then you avoid doing two multiplies for each iteration in the inner loop, in trade for a single squaring operation to compute tau..q2 at the end. To do this, collect minimums of tau_q1 and tau_q2 (not squared) separately, and take the minimum of those results in a single scalar operation on completion of the loop]
[EDIT: I suggested the following, but in fact it isn't valid for the OP's code, because of the way he updates in the loop.] Fold the two loops together. With the two loops and large enough set of particles, you thrash the cache and force a refetch from non-cache of those initial values in the second loop. The fold is trivial to do.
Beyond this you need to consider a) loop unrolling, b) vectorizing (using SIMD instructions; either hand coding assembler or using the Intel compiler, which is supposed to be pretty good at this [but I have no experience with it], and c) going multicore (using OpenMP).
This line real r3i = Constants::G * pow(r2, -1.5); is going to hurt. Any kind of sqrt lookup or platform specific help with a square root would help.
If you have simd abilities, breaking up your vector subtracts and squares into its own loop and computing them all at once will help a bit. Same for your mass/jerk calcs.
Something that comes to mind is - are you keeping enough precision with your calc? Taking things to the 4th power and 4th root really thrash your available bits through the under/overflow blender. I'd be sure that your answer is indeed your answer when complete.
Beyond that, it's a math heavy function that will require some CPU time. Assembler optimization of this isn't going to yield too much more than the compiler can already do for you.
Another thought. As this appears to be gravity related, is there any way to cull your heavy math based on a distance check? Basically, a radius/radius squared check to fight the O(n^2) behavior of your loop. If you elimiated 1/2 your particles, it would run around x4 faster.
One last thing. You could thread your inner loop to multiple processors. You'd have to make a seperate version of your internals per thread to prevent data contention and locking overhead, but once each thread was complete, you could tally your mass/jerk values from each structure. I didn't see any dependencies that would prevent this, but I am no expert in this area by far :)
Firstly you need to profile the code. The method for this will depend on what CPU and OS you are running.
You might consider whether you can use floats rather than doubles.
If you're using gcc then make sure you're using -O2 or possibly -O3.
You might also want to try a good compiler, like Intel's ICC (assuming this is running on x86 ?).
Again assuming this is (Intel) x86, if you have a 64-bit CPU then build a 64-bit executable if you're not already - the extra registers can make a noticeable difference (around 30%).
If this is for visual effects, and your particle position/speed only need to be approximate, then you can try replacing sqrt with the first few terms of its respective Taylor series. The magnitude of the next unused term represents the error margin of your approximation.
Easy thing first: move all the "old" variables to a different array. You never access them in your main loop, so you're touching twice as much memory as you actually need (and thus getting twice as many cache misses). Here's a recent blog post on the subject: http://msinilo.pl/blog/?p=614. And of course, you could prefetch a few particles ahead, e.g. p[j+k], where k is some constant that will take some experimentation.
If you move the mass out too, you could store things like this:
struct ParticleData
{
Vector pos, vel, acc, jerk;
};
ParticleData* currentParticles = ...
ParticleData* oldParticles = ...
real* masses = ...
then updating the old particle data from the new data becomes a single big memcpy from the current particles to the old particles.
If you're willing to make the code a bit uglier, you might be able to get better SIMD optimization by storing things in "transposed" format, e.g
struct ParticleData
{
// data_x[0] == pos.x, data_x[1] = vel.x, data_x[2] = acc.x, data_x[3] = jerk.x
Vector4 data_x;
// data_y[0] == pos.y, data_y[1] = vel.y, etc.
Vector4 data_y;
// data_z[0] == pos.z, data_y[1] = vel.z, etc.
Vector4 data_z;
};
where Vector4 is either one single-precision or two double-precision SIMD vectors. This format is common in ray tracing for testing multiple rays at once; it lets you do operations like dot products more efficiently (without shuffles), and it also means your memory loads can be 16-byte aligned. It definitely takes a few minutes to wrap your head around though :)
Hope that helps, let me know if you need a reference on using the transposed representation (although I'm not sure how much help it would actually be here either).
My first advice would be to look at the molecular dynamics litterature, people in this field have considered a lot of optimizations in the field of particle systems. Have a look at GROMACS for example.
With many particles, what's killing you is of course the double for loop. I don't know how accurately you need to compute the time evolution of your system of particles but if you don't need a very accurate calculation you could simply ignore the interactions between particles that are too far apart (you have to set a cut-off distance). A very efficient way to do this is the use of neighbour lists with buffer regions to update those lists only when needed.
All good stuff above. I've been doing similar things to a 2nd order (Leapfrog) integrator. The next two things I did after considering many of the improvements suggested above was start using SSE intrinsics to take advantage of vectorization and parallelize the code using a novel algorithm which avoids race conditions and takes advantage of cache locality.
SSE example:
http://bitbucket.org/ademiller/nbody/src/tip/NBody.DomainModel.Native/LeapfrogNativeIntegratorImpl.cpp
Novel cache algorithm, explanation and example code:
http://software.intel.com/en-us/articles/a-cute-technique-for-avoiding-certain-race-conditions/
http://bitbucket.org/ademiller/nbody/src/tip/NBody.DomainModel.Native.Ppl/LeapfrogNativeParallelRecursiveIntegratorImpl.cpp
You might also find the following deck I gave at Seattle Code Camp interesting:
http://www.ademiller.com/blogs/tech/2010/04/seattle-code-camp/
Your forth order integrator is more complex and would be harder to parallelize with limited gains on a two core system but I would definitely suggest checking out SSE, I got some reasonable performance improvements here.
Apart from straightforward add/subtract/divide/multiply, pow() is the only heavyweight function I see in the loop body. It's probably pretty slow. Can you precompute it or get rid of it, or replace it with something simpler?
What's real? Can it be a float?
Apart from that you'll have to turn to MMX/SSE/assembly optimisations.
Would you benefit from the famous "fast inverse square root" algorithm?
float InvSqrt(float x)
{
union {
float f;
int i;
} tmp;
tmp.f = x;
tmp.i = 0x5f3759df - (tmp.i >> 1);
float y = tmp.f;
return y * (1.5f - 0.5f * x * y * y);
}
It returns a reasonably accurate representation of 1/r**2 (the first iteration of Newton's method with a clever initial guess). It is used widely for computer graphics and game development.
Consider also pulling your multiplication of Constants::G out of the loop. If you can change the semantic meaning of the vectors stored so that they effectively store the actual value/G you can do the gravitation constant multiplacation as needed.
Anything that you can do to trim the size of the Particle structure will also help you to improve cache locality. You don't seem to be using the old* members here. If they can be removed that will potentially make a significant difference.
Consider splitting our particle struct into a pair of structs. Your first loop through the data to reset all of the acc and jerk values could be an efficient memset if you did this. You would then essentially have two arrays (or vectors) where part particle 'n' is stored at index 'n' of each of the arrays.
Yes. Try looking at the assembly output. It may yield clues as to where the compiler is doing it wrong.
Now then, always always apply algorithm optimizations first and only when no faster algorithm is available should you go piecemeal optimization by assembly. And then, do inner loops first.
You may want to profile to see if this is really the bottleneck first.
Thing I look for is branching, they tend to be performance killers.
You can use loop unrolling.
also, remember multiple with smaller parts of the problem :-
for (size_t i = 0; i < numParticles; i++)
{
for (size_t j = i+1; j < numParticles; j++)
{
is about the same as having one loop doing everything, and you can get speed ups through loop unrolling and better hitting of the cache
You could thread this to make better use of multiple cores
you have some expensive calculations that you might be able to reduce, especially if the calcs end up calculating the same thing, can use caching etc....
but really need to know where its costing you the most
You should re-use the reals and vectors that you always use. The cost of constructing a Vector or Real might be trivial.. but not if numParticles is very large, especially with your seemingly O((n^2)/2) loop.
Vector r;
Vector v;
real r2;
real v2;
Vector da;
Vector dj;
real r3i;
real mij;
real tau_est_q1;
real tau_est_q2;
for (size_t i = 0; i < numParticles; i++)
{
for (size_t j = i+1; j < numParticles; j++)
{
r = p[j].pos - p[i].pos;
v = p[j].vel - p[i].vel;
r2 = lengthsq(r);
v2 = lengthsq(v);
// Calculate inverse of |r|^3
r3i = Constants::G * pow(r2, -1.5);
// da = r / |r|^3
// dj = (v / |r|^3 - 3 * (r . v) * r / |r|^5
da = r * r3i;
dj = (v - r * (3 * dot(r, v) / r2)) * r3i;
// Calculate new acceleration and jerk
p[i].acc += da * p[j].mass;
p[i].jerk += dj * p[j].mass;
p[j].acc -= da * p[i].mass;
p[j].jerk -= dj * p[i].mass;
// Collision estimation
// Metric 1) tau = |r|^2 / |a(j) - a(i)|
// Metric 2) tau = |r|^4 / |v|^4
mij = p[i].mass + p[j].mass;
tau_est_q1 = r2 / (lengthsq(da) * mij * mij);
tau_est_q2 = (r2*r2) / (v2*v2);
if (tau_est_q1 < tau_q)
tau_q = tau_est_q1;
if (tau_est_q2 < tau_q)
tau_q = tau_est_q2;
}
}
You can replace any occurrence of:
a = b/c
d = e/f
with
icf = 1/(c*f)
a = bf*icf
d = ec*icf
if you know that icf isn't going to cause anything to go out of range and if your hardware can perform 3 multiplications faster than a division. It's probably not worth batching more divisions together unless you have really old hardware with really slow division.
You'll get away with fewer time steps if you use other integration schemes (eg. Runge-Kutta) but I suspect you already know that.
Related
In a project using Matlab's C++ MEX API, I have to compute the value exp(j * 2pi * x) for over 100,000 values of x where x is always a positive double. I've written some helper functions that breakdown the computation into sin/cos using euler's formula. I then apply the method of range reduction to reduce my values to their corresponding points in the domain [0,T/4] where T is the period of the exponential I'm computing. I keep track of which quadrant in [0, T] the original value would have fallen into for later. I can then compute the trig function using a taylor series polynomial in horner form and apply the appropriate shift depending on which quadrant the original value was in. For further information on some of the concepts in this technique, check out this answer. Here is the code for this function:
Eigen::VectorXcd calcRot2(const Eigen::Ref<const Eigen::VectorXd>& idxt) {
Eigen::VectorXd vidxt = idxt.array() - idxt.array().floor();
Eigen::VectorXd quadrant = (vidxt.array()*2+0.5).floor();
vidxt.array() -= (quadrant.array()*0.5);
vidxt.array() *= 2*3.14159265358979;
const Eigen::VectorXd sq = vidxt.array()*vidxt.array();
Eigen::VectorXcd M(vidxt.size());
M.real() = fastCos2(sq);
M.imag() = fastSin2(vidxt,sq);
M = (quadrant.array() == 1).select(-M,M);
return M;
}
I profiled the code segment in which this function is called using std::chrono and averaged over 500 calls to the function (where each call to the mex function processes all 100,000+ values by calling calcRot2 in a loop. Each iteration passes about 200 values to calcRot2). I find the following average runtimes:
runtime with calcRot2: 75.4694 ms
runtime with fastSin/Cos commented out: 50.2409 ms
runtime with calcRot2 commented out: 30.2547 ms
Looking at the difference between the two extreme cases, it seems like calcRot has a large contribution to the runtime. However, only a portion of that comes from the sin/cos calculation. I would assume Eigen's implicit vectorization and the compiler would make the runtime of the other operations in the function effectively negligible. (floor shouldn't be a problem!) Where exactly is the performance bottleneck here?
This is the compilation command I'm performing (It uses MinGW64 which I think is the same as gcc):
mex(ipath,'CFLAGS="$CFLAGS -O3 -fno-math-errno -ffast-math -fopenmp -mavx2"','LDFLAGS="$LDFLAGS -fopenmp"','DAS.cpp','DAShelper.cpp')
Reference Code
For reference, here is the code segment in the main mex function where the timer is called, and the helper function that calls calcRot2():
MEX function call:
chk1 = std::chrono::steady_clock::now();
// Calculate beamformed signal at each point
Eigen::MatrixXcd bfVec(p.nPoints,1);
#pragma omp parallel for
for (int i = 0; i < p.nPoints; i++) {
calcPoint(idxt.col(i),SIG,p,bfVec(i));
}
chk2 = std::chrono::steady_clock::now();
auto diff3 = chk2 - chk1;
calcPoint:
void calcPoint(const Eigen::Ref<const Eigen::VectorXd>& idxt,
const Eigen::Ref<const Eigen::MatrixXcd>& SIG,
Parameters& p, std::complex<double>& bfVal) {
Eigen::VectorXcd pRot = calcRot2(idxt*p.fc/p.fs);
int j = 0;
for (auto x : idxt) {
if(x >= 0) {
int vIDX = static_cast<int>(x);
bfVal += (SIG(vIDX,j)*(vIDX + 1 - x) + SIG(vIDX+1,j)*(x - vIDX))*pRot(j);
}
j++;
}
}
Clarification
To clarify, the line
(vidxt.array()*2+0.5).floor()
is meant to yield:
0 if vidxt is between [0,0.25]
1 if vidxt is between [0.25,0.75]
2 if vidxt is between [0.75,1]
The idea here is that when vidxt is in the second interval (quadrants 2 and 3 on the unit circle for functions with period 2pi), then the value needs to map to its negative value. Otherwise, the range reduction maps the values to the correct values.
The benefits of Eigen's vectorization are outweighed because you evaluate your expressions into temporary vectors. Allocating, deallocating, filling and reading these vectors has cost that seems significant. This is especially so because the expressions themselves are relatively simple (just a few scalar operations).
Expression objects
What usually helps here is aggregating into fewer expressions. For example line 3 and 4 can be collapsed into one:
vidxt.array() = 2*3.14159265358979 * (vidxt.array() - quadrant.array()*0.5);
(BTW: Note that that math.h contains a constant M_PI with pi in double precision).
Beyond that, Eigen expressions can be combined and reused. Something like this:
auto vidxt0 = idxt.array() - idxt.array().floor();
auto quadrant = (vidxt0*2+0.5).floor();
auto vidxt = 2*3.14159265358979 * (vidxt0 - quadrant.array()*0.5);
auto sq = vidxt.array().square();
Eigen::VectorXcd M(vidxt.size());
M.real() = fastCos2(sq);
M.imag() = fastSin2(vidxt,sq);
M = (quadrant.array() == 1).select(-M,M);
Note that none of the auto values are vectors. They are expression objects that behave like arrays and can be evaluated into vectors or arrays.
You can pass these on to your fastCos2 and fastSin2 function by declaring them as templates. The typical Eigen pattern would be something like
template<Derived>
void fastCos2(const Eigen::ArrayBase<Derived>& sq);
The idea here is that ultimately, everything compiles into one huge loop that gets executed when you evaluate the expression into a vector or array. If you reference the same sub-expression multiple times, the compiler may be able to eliminate the redundant computations.
Unfortunately, I could not get any better performance out of this particular code, so it is no real help here but it is still something worth exploring in these kind of cases.
fastSin/Cos return value
Speaking of temporary vectors: You didn't include the code for your fastSin/Cos functions but it looks a lot like you return a temporary vector which is then copied into the real and imaginary parts or the actual return value. This is another temporary that you may want to avoid. Something like this:
template<class Derived1, class Derived2>
void fastCos2(const Eigen::MatrixBase<Derived1>& M, const Eigen::MatrixBase<Derived2>& sq)
{
Eigen::MatrixBase<Derived1>& M_mut = const_cast<Eigen::MatrixBase<Derived1>&>(M);
M_mut = sq...;
}
fastCos2(M.real(), sq);
Please refer to Eigen's documentation on the topic of function arguments.
The downside of this approach in this particular case is that now the output is not consecutive (real and imaginary parts are interleaved). This may affect vectorization negatively. You may be able to work around this by combining the sin and cos functions into one expression for both. Benchmarking is required.
Using a plain loop
As others have pointed out, using a loop may be easier in this particular case. You noted that this was slower. I have a theory why: You did not specify -DNDEBUG in your compile options. If you don't, all array indices in Eigen vectors are range-checked with an assertion. These cost time and prevent vectorization. If you include this compile flag, I find my code significantly faster than using Eigen expressions.
Alternatively, you can use raw C pointers to the input and output vector. Something like this:
std::ptrdiff_t n = idxt.size();
Eigen::VectorXcd M(n);
const double* iidxt = idxt.data();
std::complex<double>* iM = M.data();
for(std::ptrdiff_t j = 0; j < n; ++j) {
double ival = iidxt[j];
double vidxt = ival - std::floor(ival);
double quadrant = std::floor(vidxt * 2. + 0.5);
vidxt = (vidxt - quadrant * 0.5) * (2. * 3.14159265358979);
double sq = vidxt * vidxt;
// stand-in for sincos
std::complex<double> jval(sq, vidxt + sq);
iM[j] = quadrant == 1. ? -jval : jval;
}
Fixed sized arrays
To avoid the cost of memory allocation and make it easier for the compiler to avoid memory operations in the first place, it can help to run the computation on blocks of fixed size. Something like this:
std::ptrdiff_t n = idxt.size();
Eigen::VectorXcd M(n);
std::ptrdiff_t i;
for(i = 0; i + 4 <= n; i += 4) {
Eigen::Array4d idxt_i = idxt.segment<4>(i);
...
M.segment<4>(i) = ...;
}
if(i + 2 <= n) {
Eigen::Array2D idxt_i = idxt.segment<2>(i);
...
M.segment<2>(i) = ...;
i += 2;
}
if(i < n) {
// last index scalar
}
This kind of stuff needs careful tuning to ensure that vectorized code is generated and there are no unnecessary temporary values on the stack. If you can read assembler, Godbolt is very helpful.
Other remarks
Eigen includes vectorized versions of sin and cos. Have you compared your code to these instead of e.g. Eigen's complex exp function?
Depending on your math library, there is also an explicit sincos function to compute sine and cosine in one function. It is not vectorized but still saves time on range reduction. You can (usually) access it through std::polar. Try this:
Eigen::VectorXd scale = ...;
Eigen::VectorXd phase = ...;
// M = scale * exp(-2 pi j phase)
Eigen::VectorXd M = scale.binaryExpr(-2. * M_PI * phase,
[](double s, double p) noexcept -> std::complex<double> {
return std::polar(s, p);
});
If your goal is an approximation instead of a precise result, shouldn't your first step be to cast to single precision? Maybe after the range reduction to avoid losing too many decimal places. At the very least it will double the work done per clock cycle. Also, regular sine and cosine implementations take less time in float.
Edit
I had to correct myself on the cast to int64 instead of int. There is no vectorized conversion to int64_t until AVX512
The line (vidxt.array()*2+0.5).floor() bugs me slightly. This is meant to round down to negative infinity for [0, 0.5) and up to positive infinity for [0.5, 1), correct? vidxt is never negative. Therefore this line should be equivalent to (vidxt.array()*2).round(). With AVX2 and -ffast-math that saves one instruction. With SSE2 none of these actually vectorize, as can be seen on Godbolt
I am rendering 500x500 points in real-time.
I have to compute the position of points using atan() and sin() functions. By using atan() and sin() I am getting 24 fps (frames per second).
float thetaC = atan(value);
float h = (value) / (sin(thetaC)));
If I don't use sin() I am getting 52 fps.
and if I dont use atan() I am 30 fps.
So, the big problem is with sin(). How can I use Fast Sin version. Can I create a Look Up Table for that ? I don't have any specific values to create LUT. what can I do in this situation ?
PS: I have also tried fast sin function of ASM but not getting any difference.
Thanks.
Hang on a second....
You have a triangle, you're computing the hypoteneuse. First, you're taking atan(value) to get the angle, and then using value again with sin to compute h. So we have the scenario where one side of the triangle is 1:
/|
h / | value
/ |
/C__|
1
All you really need to do is calculate h = sqrt(value*value + 1); ... But then, sqrt isn't the fastest function around either.
Perhaps I've missed the point or you've left something out. I've always used lookup tables for sin and cos, and found them to be fast. If you don't know the values ahead of time then you need to approximate, but this means a multiplication, truncation to integer (and possibly sign conversion) in order to get the array index. If you can convert your units to work in integers (effectively making your floats into fixed-point), it makes the lookup even quicker.
It depends on the accuracy that you need. The maximum derivative of sin is 1, so if if x1 and x2 are within epsilon of one another, then sin(x1) and sin(x2) are also within epsilon. If you just need accuracy to within, say 0.001, then you can create a lookup table of 1000 * PI = 3142 points, and just look up the value closest to the one you need. This can be faster than what the native code does, since the native code (probably) uses a lookup table for polynomial coefficients, and then interpolates, and since this table can be small enough to stay in cache easily.
If you need complete accuracy over the whole range, then there's probably nothing better that you can do.
If you wanted, you could also create a lookup table over (1/sin(x)), since that's your actual function of interest. Either way, you'll want to be careful around sin(x) = 0, since a small error in sin(x) can cause a big error in 1/sin(x). Defining your error tolerance is important for figuring out what shortcuts you can take.
You'd create the lookup table with something like:
float *table = malloc(1000 * sizeof(float));
for(int i = 0; i < 1000; i++){
table[i] = sin(i/1000.0);
}
and would access it something like
float fastSin(float x){
int index = x * 1000.0;
return table[index];
}
This code isn't complete (and will crash for anything outside of 0 < x < 1, because of array bounds), but should get you started.
For sin (but not atan) you can actually get simpler than a table--just create
float sin_arr[31416]; //Or as much precision as you need
for (int i=0; i<31416; ++i)
sin_arr[i] = sin( i / 10000.0 );
//...
float h = (value) / sin_arr[ (int)(thetaC*10000.0) % 31416 ];
My guess is that this will give you a speed improvement.
I have the following code that I use to compute the distance between two vectors:
double dist(vector<double> & vecA, vector<double> & vecB){
double curDist = 0.0;
for (size_t i = 0; i < vecA.size(); i++){
double dif = vecA[i] - vecB[i];
curDist += dif * dif;
}
return curDist;
}
This function is a major bottleneck in my application since it relies on a lot of distance calculations, consuming more than 60% of CPU time on a typical input. Additionally, the following line:
double dif = vecA[i] - vecB[i];
is responsible for more than 77% of CPU time in this function. My question is: is it possible to somehow optimize this function?
Notes:
To profile my application I have used Intel Amplifier XE;
Reducing the number of distance computations is not a feasible solution for
me;
There are two possible issues I can think of right now:
This computation is memory bound.
There is an iteration-to-iteration dependency on curDist.
This computation is memory bound.
Your dataset is larger than your CPU cache. So in this case, no amount of optimization is going to help unless you can restructure your algorithm.
There is an iteration-to-iteration dependency on curDist.
You have a dependency on curDist. This will block vectorization by the compiler. (Also, don't always trust the profiler numbers to the line. They can be inaccurate especially after compiler optimizations.)
Normally, the compiler vectorizer can split up the curDist into multiple partial sums to and unroll/vectorize the loop. But it can't do that under strict-floating-point behavior. You can try relaxing your floating-point mode if you haven't already. Or you can split the sum and unroll it yourself.
For example, this kind of optimization is something the compiler can do with integers, but not necessarily with floating-point:
double curDist0 = 0.0;
double curDist1 = 0.0;
double curDist2 = 0.0;
double curDist3 = 0.0;
for (size_t i = 0; i < vecA.size() - 3; i += 4){
double dif0 = vecA[i + 0] - vecB[i + 0];
double dif1 = vecA[i + 1] - vecB[i + 1];
double dif2 = vecA[i + 2] - vecB[i + 2];
double dif3 = vecA[i + 3] - vecB[i + 3];
curDist0 += dif0 * dif0;
curDist1 += dif1 * dif1;
curDist2 += dif2 * dif2;
curDist3 += dif3 * dif3;
}
// Do some sort of cleanup in case (vecA.size() % 4 != 0)
double curDist = curDist0 + curDist1 + curDist2 + curDist3;
You could eliminate the call to vecA.size() for each iteration of the loop, just call it once before the loop. You could also do loop unrolling to give yourself more computation per loop iteration. What compiler are you using, and what optimization settings? Compiler will often do unrolling for you, but you could manually do it.
If it's feasible (if the range of the numbers isn't huge) you may want to explore using fixed point to store these numbers, rather than doubles.
Fixed point would turn these into int operations rather than double operations.
Another interesting thing is that assuming your profile is correct, the lookups seems to be a significant factor (otherwise the multiplication would likely be more costly than the subtractions).
I'd try using a const vector iterator rather than the random access lookup. It may help in two ways: 1 - it is constant, and 2 - the serial nature of the iterator may let the processor do better caching.
If your platform does not have (or is not using) an ALU that supports floating point math, floating point libraries, by nature, are slow and consume additional non-volatile memory. I suggest instead using 32-bit (long) or 64-bit (long long) fixed-point arithmetic. Then convert the final result to floating point at the end of the algorithm. I did this on a project a couple years ago to improve the performance of an I2T algorithm and it worked wonderfully.
I'm using bits of Perry Cook's Synthesis Toolkit (STK) to generate saw and square waves. STK includes this BLIT-based sawtooth oscillator:
inline STKFloat BlitSaw::tick( void ) {
StkFloat tmp, denominator = sin( phase_ );
if ( fabs(denominator) <= std::numeric_limits<StkFloat>::epsilon() )
tmp = a_;
else {
tmp = sin( m_ * phase_ );
tmp /= p_ * denominator;
}
tmp += state_ - C2_;
state_ = tmp * 0.995;
phase_ += rate_;
if ( phase_ >= PI )
phase_ -= PI;
lastFrame_[0] = tmp;
return lastFrame_[0];
}
The square wave oscillator is broadly similar. At the top, there's this comment:
// A fully optimized version of this code would replace the two sin
// calls with a pair of fast sin oscillators, for which stable fast
// two-multiply algorithms are well known.
I don't know where to start looking for these "fast two-multiply algorithms" and I'd appreciate some pointers. I could use a lookup table instead, but I'm keen to learn what these 'fast sin oscillators' are. I could also use an abbreviated Taylor series, but thats way more than two multiplies. Searching hasn't turned up anything much, although I did find this approximation:
#define AD_SIN(n) (n*(2.f- fabs(n)))
Plotting it out shows that it's not really a close approximation outside the range of -1 to 1, so I don't think I can use it when phase_ is in the range -pi to pi:
Here, Sine is the blue line and the purple line is the approximation.
Profiling my code reveals that the calls to sin() are far and away the most time-consuming calls, so I really would like to optimise this piece.
Thanks
EDIT Thanks for the detailed and varied answers. I will explore these and accept one at the weekend.
EDIT 2 Would the anonymous close voter please kindly explain their vote in the comments? Thank you.
Essentially the sinusoidal oscilator is one (or more) variables that change with each DSP step, rather than getting recalculated from scratch.
The simplest are based on the following trig identities: (where d is constant, and thus so is cos(d) and sin(d) )
sin(x+d) = sin(x) cos(d) + cos(x) sin(d)
cos(x+d) = cos(x) cos(d) - sin(x) sin(d)
However this requires two variables (one for sin and one for cos) and 4 multiplications to update. However this will still be far faster than calculating a full sine at each step.
The solution by Oli Charlesworth is based on solutions to this general equation
A_{n+1} = a A_{n} + A_{n-1}
Where looking for a solution of the form A_n = k e^(i theta n) gives an equation for theta.
e^(i theta (n+1) ) = a e^(i theta n ) + b e^(i theta (n-1) )
Which simplifies to
e^(i theta) - e^(-i theta ) = a
2 cos(theta) = a
Giving
A_{n+1} = 2 cos(theta) A_{n} + A_{n-1}
Whichever approach you use you'll either need to use one or two of these oscillators for each frequency, or use another trig identity to derive the higher or lower frequencies.
How accurate do you need this?
This function, f(x)=0.398x*(3.1076-|x|), does a reasonably good job for x between -pi and pi.
Edit
An even better approximation is f(x)=0.38981969947653056*(pi-|x|), which keeps the absolute error to 0.038158444604 or less for x between -pi and pi.
A least squares minimization will yield a slightly different function.
It's not possible to generate one-off sin calls with just two multiplies (well, not a useful approximation, at any rate). But it is possible to generate an oscillator with low complexity, i.e. where each value is calculated in terms of the preceding ones.
For instance, consider that the following difference equation will give you a sinusoid:
y[n] = 2*cos(phi)*y[n-1] - y[n-2]
(where cos(phi) is a constant)
(From the original author of the VST BLT code).
As a matter of fact, I was porting the VST BLT oscillators to C#, so I was googling for good sin oscillators. Here's what I came up with. Translation to C++ is straightforward. See the notes at the end about accuumulated round-off errors.
public class FastOscillator
{
private double b1;
private double y1, y2;
private double fScale;
public void Initialize(int sampleRate)
{
fScale = AudioMath.TwoPi / sampleRate;
}
// frequency in Hz. phase in radians.
public void Start(float frequency, double phase)
{
double w = frequency * fScale;
b1 = 2.0 * Math.Cos(w);
y1 = Math.Sin(phase - w);
y2 = Math.Sin(phase - w * 2);
}
public double Tick()
{
double y0 = b1 * y1 - y2;
y2 = y1;
y1 = y0;
return y0;
}
}
Note that this particular oscillator implementation will drift over time, so it needs to be re-initialzed periodically. In this particular implementation, the magnitude of the sin wave decays over time. The original comments in the STK code suggested a two-multiply oscillator. There are, in fact, two-multiply oscillators that are reasonably stable over time. But in retrospect, the need to keep the sin(phase), and sin(m*phase) oscillators tightly in synch probably means that they have to be resynched anyway. Round-off errors between phase and m*phase mean that even if the oscillators were stable, they would drift eventually, running a significant risk of producing large spikes in values near the zeros of the BLT functions. May as well use a one-multiply oscillator.
These particular oscillators should probably be re-initialized every 30 to 100 cycles (or so). My C# implementation is frame based (i.e. it calculates an float[] array of results in a void Tick(int count, float[] result) method. The oscillators are re-synched at the end of each Tick call. Something like this:
void Tick(int count, float[] result)
{
for (int i = 0; i < count; ++i)
{
...
result[i] = bltResult;
}
// re-initialize the oscillators to avoid accumulated drift.
this.phase = (this.phase + this.dPhase*count) % AudioMath.TwoPi;
this.sinOsc.Initialize(frequency,this.phase);
this.mSinOsc.Initialize(frequency*m,this.phase*m);
}
Probably missing from the STK code. You might want to investigate this. The original code provided to the STK did this. Gary Scavone tweaked the code a bit, and I think the optimization was lost. I do know that the STK implementations suffer from DC drift, which can be almost entirely eliminated when implemented properly.
There's a peculiar hack that prevents DC drift of the oscillators, even when sweeping the frequency of the oscillators. The trick is that the oscillators should be started with an initial phase adjustment of dPhase/2. That just so happens to start the oscillators off with zero DC drift, without having to figure out wat the correct initial state for various integrators in each of the BLT oscillators.
Strangely, if the adjustment is re-adjusted whenever the frequency of the oscillator changes, then this also prevents wild DC drift of the output when sweeping the frequency of the oscillator. Whenever the frequency changes, subtract dPhase/2 from the previous phase value, recalculate dPhase for the new frequency, and then add dPhase/2.I rather suspect this could be formally proven; but I have not been able to so. All I know is that It Just Works.
For a block implementation, the oscillators should actually be initialized as follows, instead of carrying the phase adjustment in the current this.phase value.
this.sinOsc.Initialize(frequency,phase+dPhase*0.5);
this.mSinOsc.Initialize(frequency*m,(phase+dPhase*0.5)*m);
You might want to take a look here:
http://devmaster.net/forums/topic/4648-fast-and-accurate-sinecosine/
There's some sample code that calculates a very good appoximation of sin/cos using only multiplies, additions and the abs() function. Quite fast too. The comments are also a good read.
It essentiall boils down to this:
float sine(float x)
{
const float B = 4/pi;
const float C = -4/(pi*pi);
const float P = 0.225;
float y = B * x + C * x * abs(x);
return P * (y * abs(y) - y) + y;
}
and works for a range of -PI to PI
If you can, you should consider memorization based techniques. Essentially store sin(x) and cos(x) values for a bunch values. To calculate sin(y), find a and b for which precomputed values exist such that a<=y<=b. Now using sin(a), sin(b), cos(a), cos(b), y-a and y-b approximately calculate sin(y).
The general idea of getting periodically sampled results from the sine or cosine function is to use a trig recursion or an initialized (barely) stable IIR filter (which can end up being pretty much the same computations). There are bunches of these in the DSP literature, of varying accuracy and stability. Choose carefully.
Is there a way to do a quick and dirty 3D distance check where the results are rough, but it is very very fast? I need to do depth sorting. I use STL sort like this:
bool sortfunc(CBox* a, CBox* b)
{
return a->Get3dDistance(Player.center,a->center) <
b->Get3dDistance(Player.center,b->center);
}
float CBox::Get3dDistance( Vec3 c1, Vec3 c2 )
{
//(Dx*Dx+Dy*Dy+Dz*Dz)^.5
float dx = c2.x - c1.x;
float dy = c2.y - c1.y;
float dz = c2.z - c1.z;
return sqrt((float)(dx * dx + dy * dy + dz * dz));
}
Is there possibly a way to do it without a square root or possibly without multiplication?
You can leave out the square root because for all positive (or really, non-negative) numbers x and y, if sqrt(x) < sqrt(y) then x < y. Since you're summing squares of real numbers, the square of every real number is non-negative, and the sum of any positive numbers is positive, the square root condition holds.
You cannot eliminate the multiplication, however, without changing the algorithm. Here's a counterexample: if x is (3, 1, 1) and y is (4, 0, 0), |x| < |y| because sqrt(1*1+1*1+3*3) < sqrt(4*4+0*0+0*0) and 1*1+1*1+3*3 < 4*4+0*0+0*0, but 1+1+3 > 4+0+0.
Since modern CPUs can compute a dot product faster than they can actually load the operands from memory, it's unlikely that you would have anything to gain by eliminating the multiply anyway (I think the newest CPUs have a special instruction that can compute a dot product every 3 cycles!).
I would not consider changing the algorithm without doing some profiling first. Your choice of algorithm will heavily depend on the size of your dataset (does it fit in cache?), how often you have to run it, and what you do with the results (collision detection? proximity? occlusion?).
What I usually do is first filter by Manhattan distance
float CBox::Within3DManhattanDistance( Vec3 c1, Vec3 c2, float distance )
{
float dx = abs(c2.x - c1.x);
float dy = abs(c2.y - c1.y);
float dz = abs(c2.z - c1.z);
if (dx > distance) return 0; // too far in x direction
if (dy > distance) return 0; // too far in y direction
if (dz > distance) return 0; // too far in z direction
return 1; // we're within the cube
}
Actually you can optimize this further if you know more about your environment. For example, in an environment where there is a ground like a flight simulator or a first person shooter game, the horizontal axis is very much larger than the vertical axis. In such an environment, if two objects are far apart they are very likely separated more by the x and y axis rather than the z axis (in a first person shooter most objects share the same z axis). So if you first compare x and y you can return early from the function and avoid doing extra calculations:
float CBox::Within3DManhattanDistance( Vec3 c1, Vec3 c2, float distance )
{
float dx = abs(c2.x - c1.x);
if (dx > distance) return 0; // too far in x direction
float dy = abs(c2.y - c1.y);
if (dy > distance) return 0; // too far in y direction
// since x and y distance are likely to be larger than
// z distance most of the time we don't need to execute
// the code below:
float dz = abs(c2.z - c1.z);
if (dz > distance) return 0; // too far in z direction
return 1; // we're within the cube
}
Sorry, I didn't realize the function is used for sorting. You can still use Manhattan distance to get a very rough first sort:
float CBox::ManhattanDistance( Vec3 c1, Vec3 c2 )
{
float dx = abs(c2.x - c1.x);
float dy = abs(c2.y - c1.y);
float dz = abs(c2.z - c1.z);
return dx+dy+dz;
}
After the rough first sort you can then take the topmost results, say the top 10 closest players, and re-sort using proper distance calculations.
Here's an equation that might help you get rid of both sqrt and multiply:
max(|dx|, |dy|, |dz|) <= distance(dx,dy,dz) <= |dx| + |dy| + |dz|
This gets you a range estimate for the distance which pins it down to within a factor of 3 (the upper and lower bounds can differ by at most 3x). You can then sort on, say, the lower number. You then need to process the array until you reach an object which is 3x farther away than the first obscuring object. You are then guaranteed to not find any object that is closer later in the array.
By the way, sorting is overkill here. A more efficient way would be to make a series of buckets with different distance estimates, say [1-3], [3-9], [9-27], .... Then put each element in a bucket. Process the buckets from smallest to largest until you reach an obscuring object. Process 1 additional bucket just to be sure.
By the way, floating point multiply is pretty fast nowadays. I'm not sure you gain much by converting it to absolute value.
I'm disappointed that the great old mathematical tricks seem to be getting lost. Here is the answer you're asking for. Source is Paul Hsieh's excellent web site: http://www.azillionmonkeys.com/qed/sqroot.html . Note that you don't care about distance; you will do fine for your sort with square of distance, which will be much faster.
In 2D, we can get a crude approximation of the distance metric without a square root with the formula:
distanceapprox (x, y) =
which will deviate from the true answer by at most about 8%. A similar derivation for 3 dimensions leads to:
distanceapprox (x, y, z) =
with a maximum error of about 16%.
However, something that should be pointed out, is that often the distance is only required for comparison purposes. For example, in the classical mandelbrot set (z←z2+c) calculation, the magnitude of a complex number is typically compared to a boundary radius length of 2. In these cases, one can simply drop the square root, by essentially squaring both sides of the comparison (since distances are always non-negative). That is to say:
√(Δx2+Δy2) < d is equivalent to Δx2+Δy2 < d2, if d ≥ 0
I should also mention that Chapter 13.2 of Richard G. Lyons's "Understanding Digital Signal Processing" has an incredible collection of 2D distance algorithms (a.k.a complex number magnitude approximations). As one example:
Max = x > y ? x : y;
Min = x < y ? x : y;
if ( Min < 0.04142135Max )
|V| = 0.99 * Max + 0.197 * Min;
else
|V| = 0.84 * Max + 0.561 * Min;
which has a maximum error of 1.0% from the actual distance. The penalty of course is that you're doing a couple branches; but even the "most accepted" answer to this question has at least three branches in it.
If you're serious about doing a super fast distance estimate to a specific precision, you could do so by writing your own simplified fsqrt() estimate using the same basic method as the compiler vendors do, but at a lower precision, by doing a fixed number of iterations. For example, you can eliminate the special case handling for extremely small or large numbers, and/or also reduce the number of Newton-Rapheson iterations. This was the key strategy underlying the so-called "Quake 3" fast inverse square root implementation -- it's the classic Newton algorithm with exactly one iteration.
Do not assume that your fsqrt() implementation is slow without benchmarking it and/or reading the sources. Most modern fsqrt() library implementations are branchless and really damned fast. Here for example is an old IBM floating point fsqrt implementation. Premature optimization is, and always will be, the root of all evil.
Note that for 2 (non-negative) distances A and B, if sqrt(A) < sqrt(B), then A < B. Create a specialized version of Get3DDistance() (GetSqrOf3DDistance()) that does not call sqrt() that would be used only for the sortfunc().
If you worry about performance, you should also take care of the way you send your arguments:
float Get3dDistance( Vec3 c1, Vec3 c2 );
implies two copies of Vec3 structure. Use references instead:
float Get3dDistance( Vec3 const & c1, Vec3 const & c2 );
You could compare squares of distances instead of the actual distances, since d2 = (x1-x2)2 + (y1-y2)2+ (z1-z2)2. It doesn't get rid of the multiplication, but it does eliminate the square root operation.
How often are the input vectors updated and how often are they sorted? Depending on your design, it might be quite efficient to extend the "Vec3" class with a pre-calculated distance and sort on that instead. Especially relevant if your implementation allows you to use vectorized operations.
Other than that, see the flipcode.com article on approximating distance functions for a discussion on yet another approach.
Depending slightly on the number of points that you are being used to compare with, what is below is pretty much guaranteed to be the get the list of points in approximate order assuming all points change at all iteration.
1) Rewrite the array into a single list of Manhattan distances with
out[ i ] = abs( posn[ i ].x - player.x ) + abs( posn[ i ].y - player.y ) + abs( posn[ i ].z - player.z );
2) Now you can use radix sort on floating point numbers to order them.
Note that in practice this is going to be a lot faster than sorting the list of 3d positions because it significantly reduces the memory bandwidth requirements in the sort operation which all of the time is going to be spend and in which unpredictable accesses and writes are going to occur. This will run on O(N) time.
If many of the points are stationary at each direction there are far faster algorithms like using KD-Trees, although implementation is quite a bit more complex and it is much harder to get good memory access patterns.
If this is simply a value for sorting, then you can swap the sqrt() for a abs(). If you need to compare distances against set values, get the square of that value.
E.g. instead of checking sqrt(...) against a, you can compare abs(...) against a*a.
You may want to consider caching the distance between the player and the object as you calculate it, and then use that in your sortfunc. This would depend upon how many times your sort function looks at each object, so you might have to profile to be sure.
What I'm getting at is that your sort function might do something like this:
compare(a,b);
compare(a,c);
compare(a,d);
and you would calculate the distance between the player and 'a' every time.
As others have mentioned, you can leave out the sqrt in this case.
If you could center your coordinates around the player, use spherical coordinates? Then you could sort by the radius.
That's a big if, though.
If your operation happens a lot, it might be worth to put it into some 3D data structure. You probably need the distance sorting to decide which object is visible, or some similar task. In order of complexity you can use:
Uniform (cubic) subdivision
Divide the used space into cells, and assign the objects to the cells. Fast access to element, neighbours are trivial, but empty cells take up a lot of space.
Quadtree
Given a threshold, divide used space recursively into four quads until less then threshold number of object is inside. Logarithmic access element if objects don't stack upon each other, neighbours are not hard to find, space efficient solution.
Octree
Same as Quadtree, but divides into 8, optimal even if objects are above each other.
Kd tree
Given some heuristic cost function, and a threshold, split space into two halves with a plane where the cost function is minimal. (Eg.: same amount of objects at each side.) Repeat recursively until threshold reached. Always logarithmic, neighbours are harder to get, space efficient (and works in all dimensions).
Using any of the above data structures, you can start from a position, and go from neighbour to neighbour to list the objects in increasing distance. You can stop at desired cut distance. You can also skip cells that cannot be seen from the camera.
For the distance check, you can do one of the above mentioned routines, but ultimately they wont scale well with increasing number of objects. These can be used to display data that takes hundreds of gigabytes of hard disc space.