How to compile this on Windows - c++

Ok. I am trying to compile the following application on Windows (Segmenter, see step 3).
I checked out the source and changed the references so that'd all be good. It's basically a one file app, with a reference to ffmpeg.
The makefile reads:
gcc -Wall -g segmenter.c -o segmenter -lavformat -lavcodec -lavutil -lbz2 -lm -lz -lfaac -lmp3lame -lx264 -lfaad
I have the Visual C++ compiler, but I just have no clue how to compile the above line using that compiler, or should I grab Gcc for Windows?

The line indicates a very simple compile. It's compiling the file with one standard argument (-g for compiling with debug symbols, on MSVC it's /Zi).
But it's linking with a lot of libraries (that's all the -l options). I recognize two of those as standard compression libraries (bz2 and z), so you are going to need to build those libraries first.

Don't consider using cygwin unless the project you are working on absolutely requires it. Download the MinGW version of GCC plus binutils like make from http://tdragon.net/recentgcc. I've never heard of the version of GCCyou provide a link to in your question - MinGW is the mainstream project in this area.

Unless you have source for the libraries you are linking in, you'll probably have to use the compiler that compiled them.

cl -c -W4 segmenter.c -Fosegmenter.obj
link segmenter.obj avformat avcodec avutil bz2 faac mp3lame x264 faad
I'm not sure that to do with -lm and -lz though.
In fact, all of these librarys will need to be built by the MSVC compiler for this to work.

You should be able to use cl.exe that you already have. You can use /Wall instead of -Wall . (W controls how warnings are generated.)
R Samuel Klatchko gives the rest of what you should need to know.

Related

Error loading SDL2 shared libraries while executing program on another pc

I'm trying to compile a program i made using SDL2 to work on others computers (or testing VM in this case).
I've been compiling it with what i think are the correct flags, e.g. g++ main.cpp -o main -lSDL2, however when i try executing it on another Ubuntu installation i get this error.
error while loading shared libraries: libSDL2-2.0.so.0: cannot open shared object file: No such file or directory
From my understanding it's not a problem in my compiling but with how i expect it to work on another Linux installation; I've cross-compiled (using mingw32) and tested it (using a freshly installed VM) on Windows adding the correct dlls with the exe (seems to work fine) and I was expecting for it to work in a similar fashion.
What's the standard in this cases? Should i write a setup scripts to install the library dependencies on the target machine? Is there another way I'm not aware of? I've never released an application for Linux (nor Windows) and I'm struggling to find the resources to do things "the right way".
Thanks for everyone suggestions, I ended up settling for the easy way, compiling the "easy to install" libraries dynamically e.g.-lSDL2 and the others statically (checked the licenses and it should be fine) like so:
g++ main.cpp -o main -Wl,-Bdynamic -lSDL2 -lSDL2_image -lSDL2_ttf -Wl,-Bstatic -lSDL2_gfx -static-libgcc -static-libstdc++
I'll put in my documentation how to install the required SDL2 libraries.
I am not sure how familiar you are with pkg-config, but the output for sdl2 is this:
-D_REENTRANT -I/usr/include/SDL2 -lSDL2
This was found from running this:
pkg-config --cflags --libs sdl2
Basically, you need to point to where SDL2 is located BEFORE you actually link to it.
The tool pkg-config is designed to tell you the information you need when you want to link to a package in Linux. You were linking with the library, but you forgot to tell GCC where the library is located.
If you want to compile you code, try this:
g++ main.cpp -o runme `pkg-config --cflags --libs sdl2`
This will automatically grab all of the flags that you need to compile with SDL2 included.
Oh, and you should note, ORDER MATTERS WHEN ADDING FLAGS AND LIBRARIES!!!
There are many questions on SO where the order of compiler options caused all of the problems. Do not be like those people. I suggest you search SO for more info on that.

Static linking to libcrypto++, with g++

I am trying to compile a program on my system with Debian Wheezy and g++4.7. I want it to be able to run on another system with Debian Squeeze (and no recent g++). I can't compile the program on the Squeeze, because I use certain C++11 features the old g++ does not support, as well as a new Boost version and libcrypto++9.
As far as I understand the usual way to get around this problem is to static link the libraries not supported at the other system, in my case libstdc, boost and crypto++.
My (linking) compiler call right now is
g++-4.7 .obj/btcmirco.o -Wl,-Bstatic -lboost_program_options -lboost_system -lcrypto++ -Wl,-Bdynamic -lcurl -static-libgcc -std=c++11 -o MyProgram
However I seem to have missed something, because it throws a lot of undefined reference errors. It works fine if I dynamic link to crypto++ (and only static link libstdc and boost).
Can anyone tell me whats wrong, or if there is a fundamental error in my approach?
The linker errors I get are (shorted):
`.text._ZN8CryptoPP22BufferedTransformationD2Ev' referenced in section `.text._ZN8CryptoPP22BufferedTransformationD1Ev[_ZN8CryptoPP22BufferedTransformationD1Ev]' of /usr/lib/gcc/x86_64-linux-gnu/4.7/../../../../lib/libcrypto++.a(cryptlib.o): defined in discarded section `.text._ZN8CryptoPP22BufferedTransformationD2Ev[_ZN8CryptoPP22BufferedTransformationD5Ev]' of /usr/lib/gcc/x86_64-linux-gnu/4.7/../../../../lib/libcrypto++.a(cryptlib.o)
`.text._ZN8CryptoPP25MessageAuthenticationCodeD2Ev' referenced in section `.text._ZN8CryptoPP25MessageAuthenticationCodeD1Ev[_ZN8CryptoPP25MessageAuthenticationCodeD1Ev]' of /usr/lib/gcc/x86_64-linux-gnu/4.7/../../../../lib/libcrypto++.a(cryptlib.o): defined in discarded section `.text._ZN8CryptoPP25MessageAuthenticationCodeD2Ev[_ZN8CryptoPP25MessageAuthenticationCodeD5Ev]' of /usr/lib/gcc/x86_64-linux-gnu/4.7/../../../../lib/libcrypto++.a(cryptlib.o)
I experienced the same problem and this has to do with the fact that you are trying to mix code generated by g++-4.7 (your program) with code generated by a previous version of g++ (cryptopp library).
The reason behind this is that when you execute compile the library executing make command, it uses the default version of g++ set up for your system, usually the one that comes with the OS.
In order to solve the issue what you should do is compile cryptopp library with g++-4.7.
For that, compile the library by executing make CXX=g++-4.7. The resulting static library shouldn't give you the error when being linked with your code.

how to do static linking of libwinpthread-1.dll in mingw?

I use mingw from here: http://sourceforge.net/projects/mingwbuilds/files/host-windows/releases/4.7.2/32-bit/threads-posix/sjlj/x32-4.7.2-release-posix-sjlj-rev2.7z/download
And I've sucessfully managed to link statically libstdc++-6.dll and libgcc_s_sjlj-1.dll by using -static-libgcc -static-libstdc++ parameters, but I cannot find a command for doing the same with libwinpthread-1.dll.
If your toolchain includes the static winpthreads, adding the option
-static
Will pull in static versions of all libraries it can.
Alternatively, you can remove libwinpthread.dll.a and the DLL itself from the toolchain directories. This might mess up programs linking with libstdc++ and libgcc DLLs though, so be careful.
A third option is to use -Wl,-Bdynamic and -Wl,-Bstatic to select which version you want linked in (which is what -static internally does when ld is called). An example:
gcc -o someexec someobject.o -Wl,-Bdynamic -lsomelibIwantshared -Wl,-Bstatic -lsomelibIwantstatic
If you run your link command with -v added, you should see these options appearing in the ld/collect2 invocation when you use -static-libgcc and -static-libstdc++.
Try this:
-static-libgcc -static-libstdc++ -Wl,-Bstatic -lstdc++ -lpthread -Wl,-Bdynamic
Notice the -lstdc++ before -lpthread. It worked for me.
Make sure to add this to the very end of your g++ command line.
You should probably check command line options documentation for GCC.
These's no '-static-something' command, only standard libraries (libgcc and libstdc++) can be set to static linking with one command. For other libraries, you first switch to static linking with "-static" and then list the libraries to include with separate commands, ie "-lpthread".
To statically link winpthread even if threading isn't used in the program, pass the -Bstatic and --whole-archive parameters to the linker:
g++ -o hello.exe hello.cpp -Wl,-Bstatic,--whole-archive -lwinpthread -Wl,--no-whole-archive
Note the following:
The "whole archive" option should be disabled immediately afterwards.
You don't need to do this hack if your program actually uses symbols from the library (i.e. you use <thread> from C++11), in which case the library won't get dropped when you statically link it.
This hack is intended for MinGW-w64, to fix the libwinpthread-1.dll dependencies.
For anyone working in CMake, this solution is readily implemented in your CMakeLists.txt file as follows...
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -static")
Apparently, CMake does some weird stuff with how the -Wl compiler flags are handled, making the -Wl,-Bstatic -lstdc++ -lwinpthread -Wl,-Bdynamic solution not work, with only two other options seemingly left: the bad compiler flag -static and the ugly compiler flag -Wl,--whole-archive.
Meanwhile, the good option that actually works in CMake, yet seems rather undocumented, is to directly use the linker flags. Hence, in CMake, this seems to be the best way to statically link to all the mingw-w64 C++ dependencies:
target_link_libraries (MyVeryAwesomeApp -static gcc stdc++ winpthread -dynamic)
It should be noted that even if there isn't a library explicitly following -dynamic, it should still be applied in order to ensure that the standard, implicitly linked libraries get linked correctly.
I circumvented this problem by using win32 variant of the mingw toolchain instead of the posix variant. With the win32 variant, -static-libgcc -static-libstdc++ is sufficient for an independent build.
If you are using toolchains from MSys2 (tested with gcc version 12) ,the only way to use winpthread statically is standard -static (forces all library to be static) or simply delete/rename the libwinpthread.dll.a && libpthread.dll.a imp libs.
Other methods like "Bstatic", "-l:libwinpthread.a" will no longer work (due to dependency hell, especially in CMake). The one with whole archive still works but it overrides the program properties.
You may also want static link libgcc and libstdc++ if the dependency comes from them.
Just link with -l:libwinpthread.a
Just add -static to your CFLAGS.
For example: ./configure CFLAGS="-static".
This will link all static libraries to your executable file.

undefined reference to boost::system::system_category() when compiling

I'm trying to compile a program on Ubuntu 11.10 that uses the Boost libraries. I have the 1.46-dev Boost libraries from the Ubuntu Repository installed, but I get an error when compiling the program.
undefined reference to boost::system::system_category()
What is it that I do wrong?
The boost library you are using depends on the boost_system library. (Not all of them do.)
Assuming you use gcc, try adding -lboost_system to your compiler command line in order to link against that library.
Linking with a library that defines the missing symbol (-lboost_system) is the obvious solution, but in the particular case of Boost.System, a misfeature in the original design makes it use boost::system::generic_category() and boost::system::system_category() needlessly. Compiling with the flag -DBOOST_SYSTEM_NO_DEPRECATED disables that code and lets a number of programs compile without requiring -lboost_system (that link is of course still needed if you explicitly use some of the library's features).
Starting from Boost 1.66 and this commit, this behavior is now the default, so hopefully fewer and fewer users should need this answer.
As noticed by #AndrewMarshall, an alternative is to define BOOST_ERROR_CODE_HEADER_ONLY which enables a header-only version of the code. This was discouraged by Boost as it can break some functionality. However, since 1.69, header-only seems to have become the default, supposedly making this question obsolete.
Another workaround for those who don't need the entire shebang: use the switch
-DBOOST_ERROR_CODE_HEADER_ONLY.
If you use CMake, it's add_definitions(-DBOOST_ERROR_CODE_HEADER_ONLY).
The above error is a linker error... the linker a program that takes one or more objects generated by a compiler and combines them into a single executable program.
You must add -lboost_system to you linker flags which indicates to the linker that it must look for symbols like boost::system::system_category() in the library libboost_system.so.
If you have main.cpp, either:
g++ main.cpp -o main -lboost_system
OR
g++ -c -o main.o main.cpp
g++ main.o -lboost_system
When using CMAKE and find_package, make sure it is :
find_package(Boost COMPONENTS system ...)
and not
find_package(boost COMPONENTS system ...)
Some people may have lost hours for that ...
I got the same Problem:
g++ -mconsole -Wl,--export-all-symbols -LC:/Programme/CPP-Entwicklung/MinGW-4.5.2/lib -LD:/bfs_ENTW_deb/lib -static-libgcc -static-libstdc++ -LC:/Programme/CPP-Entwicklung/boost_1_47_0/stage/lib \
D:/bfs_ENTW_deb/obj/test/main_filesystem.obj \
-o D:/bfs_ENTW_deb/bin/filesystem.exe -lboost_system-mgw45-mt-1_47 -lboost_filesystem-mgw45-mt-1_47
D:/bfs_ENTW_deb/obj/test/main_filesystem.obj:main_filesystem.cpp:(.text+0x54):
undefined reference to `boost::system::generic_category()
Solution was to use the debug-version of the system-lib:
g++ -mconsole -Wl,--export-all-symbols -LC:/Programme/CPP-Entwicklung/MinGW-4.5.2/lib -LD:/bfs_ENTW_deb/lib -static-libgcc -static-libstdc++ -LC:/Programme/CPP-Entwicklung/boost_1_47_0/stage/lib \
D:/bfs_ENTW_deb/obj/test/main_filesystem.obj \
-o D:/bfs_ENTW_deb/bin/filesystem.exe -lboost_system-mgw45-mt-d-1_47 -lboost_filesystem-mgw45-mt-1_47
But why?
When I had this, problem, the cause was the ordering of the libraries. To fix it, I put libboost_system last:
g++ mingw/timer1.o -o mingw/timer1.exe -L/usr/local/boost_1_61_0/stage/lib \
-lboost_timer-mgw53-mt-1_61 \
-lboost_chrono-mgw53-mt-1_61 \
-lboost_system-mgw53-mt-1_61
This was on mingw with gcc 5.3 and boost 1.61.0 with a simple timer example.
in my case, adding -lboost_system was not enough, it still could not find it in my custom build environment. I had to use the advice at Get rid of "gcc - /usr/bin/ld: warning lib not found" and change my ./configure command to:
./configure CXXFLAGS="-I$HOME/include" LDFLAGS="-L$HOME/lib -Wl,-rpath-link,$HOME/lib" --with-boost-libdir=$HOME/lib --prefix=$HOME
for more details see Boost 1.51 : "error: could not link against boost_thread !"
...and in case you wanted to link your main statically, in your Jamfile add the following to requirements:
<link>static
<library>/boost/system//boost_system
and perhaps also:
<linkflags>-static-libgcc
<linkflags>-static-libstdc++

How to use OpenSSL with GCC?

I'm trying to use openssl in a gcc program but it isn't working.
g++ server.cpp /usr/lib/libssl.a -o server
gives an error message, as does anything with the -l option. What must I type on the command line to link with openssl? The file /usr/lib/libssl.a exists, but nevertheless I still get the linker error no such function MD5() exists.
Without knowing the exact errors you are seeing, it is difficult to provide an exact solution. Here is my best attempt.
From the information you provided, it sounds as though the linker is failing because it cannot find a reference to the md5 function in libssl.a. I believe this function is actually in libcrypto so you may need to specify this library as well.
g++ server.cpp -L/usr/lib -lssl -lcrypto -o server
You or others may find this article developerWorks article helpful.
Secure programming with the OpenSSL API
https://developer.ibm.com/technologies/linux/tutorials/l-openssl
It describes most things you need to know to get off the ground with OpenSSL and C/C++. If you find you are following most of the same steps, it might help you see what needs doing.
Good luck.
update
revised link: https://developer.ibm.com/technologies/linux/tutorials/l-openssl
Which has been shuffled around
original link: http://www.ibm.com/developerworks/linux/library/l-openssl.html
Which now goes to a digest page including the article.
Note: keeping both links because they be used to find new discoveries.
In Eclipse IDE select Your Project property --> c/c++ Build --> Settings gcc c linker(from tools settings)--> add to Library Search Path (-L)
/usr/lib -lssl -lcrypto
The location of the library is not fixed. In my case (Ubuntu 18.04), the .a files are located in /usr/lib/x86_64-linux-gnu/. So here are the complete steps:
1) install the library,
sudo apt install libss-dev
2) check the installed files,
dpkg-query -L libssl-dev
3) change the gcc flags -L(library directory) -l(library name), e.g.,
gcc XXX.c XXXXX.c -L/usr/lib/x86_64-linux-gnu/ -lcrypto -lssl
On top of the accepted answers, I could not make compile the OpenSSL example for AES-CCM:
https://github.com/openssl/openssl/blob/master/demos/evp/aesccm.c
To make it work I needed to add two more things:
The Dinamic Linking Library : -ldl
The PThread library to use POSIX threading support: -pthread (Adding directly the library with -lpthread is not recommended )