C++ : why bool is 8 bits long? - c++

In C++, I'm wondering why the bool type is 8 bits long (on my system), where only one bit is enough to hold the boolean value ?
I used to believe it was for performance reasons, but then on a 32 bits or 64 bits machine, where registers are 32 or 64 bits wide, what's the performance advantage ?
Or is it just one of these 'historical' reasons ?

Because every C++ data type must be addressable.
How would you create a pointer to a single bit? You can't. But you can create a pointer to a byte. So a boolean in C++ is typically byte-sized. (It may be larger as well. That's up to the implementation. The main thing is that it must be addressable, so no C++ datatype can be smaller than a byte)

Memory is byte addressable. You cannot address a single bit, without shifting or masking the byte read from memory. I would imagine this is a very large reason.

A boolean type normally follows the smallest unit of addressable memory of the target machine (i.e. usually the 8bits byte).
Access to memory is always in "chunks" (multiple of words, this is for efficiency at the hardware level, bus transactions): a boolean bit cannot be addressed "alone" in most CPU systems. Of course, once the data is contained in a register, there are often specialized instructions to manipulate bits independently.
For this reason, it is quite common to use techniques of "bit packing" in order to increase efficiency in using "boolean" base data types. A technique such as enum (in C) with power of 2 coding is a good example. The same sort of trick is found in most languages.
Updated: Thanks to a excellent discussion, it was brought to my attention that sizeof(char)==1 by definition in C++. Hence, addressing of a "boolean" data type is pretty tied to the smallest unit of addressable memory (reinforces my point).

The answers about 8-bits being the smallest amount of memory that is addressable are correct. However, some languages can use 1-bit for booleans, in a way. I seem to remember Pascal implementing sets as bit strings. That is, for the following set:
{1, 2, 5, 7}
You might have this in memory:
01100101
You can, of course, do something similar in C / C++ if you want. (If you're keeping track of a bunch of booleans, it could make sense, but it really depends on the situation.)

I know this is old but I thought I'd throw in my 2 cents.
If you limit your boolean or data type to one bit then your application is at risk for memory curruption. How do you handle error stats in memory that is only one bit long?
I went to a job interview and one of the statements the program lead said to me was, "When we send the signal to launch a missle we just send a simple one bit on off bit via wireless. Sending one bit is extremelly fast and we need that signal to be as fast as possible."
Well, it was a test to see if I understood the concepts and bits, bytes, and error handling. How easy would it for a bad guy to send out a one bit msg. Or what happens if during transmittion the bit gets flipped the other way.

Some embedded compilers have an int1 type that is used to bit-pack boolean flags (e.g. CCS series of C compilers for Microchip MPU's). Setting, clearing, and testing these variables uses single-instruction bit-level instructions, but the compiler will not permit any other operations (e.g. taking the address of the variable), for the reasons noted in other answers.

Note, however, that std::vector<bool> is allowed to use bit-packing, i.e. to store the bits in smaller units than an ordinary bool. But it is not required.

Related

Advantages/Disadvantages of using __int16 (or int16_t) over int

As far as I understand, the number of bytes used for int is system dependent. Usually, 2 or 4 bytes are used for int.
As per Microsoft's documentation, __int8, __int16, __int32 and __int64 are Microsoft Specific keywords. Furthermore, __int16 uses 16-bits (i.e. 2 bytes).
Question: What are advantage/disadvantage of using __int16 (or int16_t)? For example, if I am sure that the value of my integer variable will never need more than 16 bits then, will it be beneficial to declare the variable as __int16 var (or int16_t var)?
UPDATE: I see that several comments/answers suggest using int16_t instead of __int16, which is a good suggestion but not really an advantage/disadvantage of using __int16. Basically, my question is, what is the advantage/disadvantage of saving 2 bytes by using 16-bit version of an integer instead of int ?
Saving 2 bytes is almost never worth it. However, saving thousands of bytes is. If you have an large array containing integers, using a small integer type can save quite a lot of memory. This leads to faster code, because the less memory one uses the less cache misses one receives (cache misses are a major loss of performance).
TL;DR: this is beneficial to do in large arrays, but pointless for 1-off variables.
The second use of these is if for dealing with binary files and messages. If you are reading a binary file that uses 16-bit integers, well, it's pretty convenient if you can represent that type exactly in your code.
BTW, don't use microsoft's versions. Use the standard versions (std::int16_t)
It depends.
On x86, primitive types are generally aligned on their size. So 2-byte types would be aligned on a 2-byte boundary. This is useful when you have more than one of these short variables, because you will be saving 50% of space. That directly translates to better memory and cache utilization and thus theoretically, better performance.
On the other hand, doing arithmetic on shorter-than-int types usually involves widening conversion to int. So if you do a lot of arithmetic on these types, using int types might result in better performance (contrived example).
So if you care about performance of a critical section of code, profile it to find out for sure if using a certain data type is faster or slower.
A possible rule of thumb would be - if you're memory-bound (i.e. you have lots of variables and especially arrays), use as short a data types as possible. If not - don't worry about it and use int types.
If you for some reason just need a shorter integer type it's already have that in the language - called short - unless you know you need exactly 16 bits there's really no good reason not to just stick with the agnostic short and int types. The broad idea is that these types should align well the target architecture (for example see word ).
That being said, theres no need to use the platform specific type (__int16), you can just use the standard one:
int16_t
See https://en.cppreference.com/w/cpp/types/integer for more information and standard types
Even if you still insist on __int16 you probably want a typedef something ala.:
using my_short = __int16;
Update
Your main question is:
What is the advantage/disadvantage of
saving 2 bytes by using 16-bit version of an integer instead of int ?
If you have a lot of data (In the ballpark of at least some 100.000-1.000.000 elements as a rule of thumb) - then there could be an overall performance saving in terms of using less cpu-cache. Overall there's no disadvantage of using a smaller type - except for the obvious one - and possible conversions as explained in this answer
The main reason for using these types is to make sure about the size of your variable in different architectures and compilers. we call it "code reusability" and "portability"
in higher-level modern languages, all this will handle with compiler/interpreter/virtual machine/etc. that you don't need to worry about, but it has some performance and memory usage costs.
When you have some kind of limitation you may need to optimize everything. The best example is embedded systems that have a very limited size of memory and work at low frequency. In the other hand, there are lots of compilers out there with different implementations. Some of them interpret "int" as a "16bit" value and some as a "32bit".
for example, you receive and specific stream of values over a communication system, you want to save them in a buffer or array and you want to make sure the input data is always interpreted as a 16bit noting else.

Why booleans take a whole byte? [duplicate]

In C++,
Why is a boolean 1 byte and not 1 bit of size?
Why aren't there types like a 4-bit or 2-bit integers?
I'm missing out the above things when writing an emulator for a CPU
Because the CPU can't address anything smaller than a byte.
From Wikipedia:
Historically, a byte was the number of
bits used to encode a single character
of text in a computer and it is
for this reason the basic addressable
element in many computer
architectures.
So byte is the basic addressable unit, below which computer architecture cannot address. And since there doesn't (probably) exist computers which support 4-bit byte, you don't have 4-bit bool etc.
However, if you can design such an architecture which can address 4-bit as basic addressable unit, then you will have bool of size 4-bit then, on that computer only!
Back in the old days when I had to walk to school in a raging blizzard, uphill both ways, and lunch was whatever animal we could track down in the woods behind the school and kill with our bare hands, computers had much less memory available than today. The first computer I ever used had 6K of RAM. Not 6 megabytes, not 6 gigabytes, 6 kilobytes. In that environment, it made a lot of sense to pack as many booleans into an int as you could, and so we would regularly use operations to take them out and put them in.
Today, when people will mock you for having only 1 GB of RAM, and the only place you could find a hard drive with less than 200 GB is at an antique shop, it's just not worth the trouble to pack bits.
The easiest answer is; it's because the CPU addresses memory in bytes and not in bits, and bitwise operations are very slow.
However it's possible to use bit-size allocation in C++. There's std::vector specialization for bit vectors, and also structs taking bit sized entries.
Because a byte is the smallest addressible unit in the language.
But you can make bool take 1 bit for example if you have a bunch of them
eg. in a struct, like this:
struct A
{
bool a:1, b:1, c:1, d:1, e:1;
};
You could have 1-bit bools and 4 and 2-bit ints. But that would make for a weird instruction set for no performance gain because it's an unnatural way to look at the architecture. It actually makes sense to "waste" a better part of a byte rather than trying to reclaim that unused data.
The only app that bothers to pack several bools into a single byte, in my experience, is Sql Server.
You can use bit fields to get integers of sub size.
struct X
{
int val:4; // 4 bit int.
};
Though it is usually used to map structures to exact hardware expected bit patterns:
// 1 byte value (on a system where 8 bits is a byte)
struct SomThing
{
int p1:4; // 4 bit field
int p2:3; // 3 bit field
int p3:1; // 1 bit
};
bool can be one byte -- the smallest addressable size of CPU, or can be bigger. It's not unusual to have bool to be the size of int for performance purposes. If for specific purposes (say hardware simulation) you need a type with N bits, you can find a library for that (e.g. GBL library has BitSet<N> class). If you are concerned with size of bool (you probably have a big container,) then you can pack bits yourself, or use std::vector<bool> that will do it for you (be careful with the latter, as it doesn't satisfy container requirments).
Think about how you would implement this at your emulator level...
bool a[10] = {false};
bool &rbool = a[3];
bool *pbool = a + 3;
assert(pbool == &rbool);
rbool = true;
assert(*pbool);
*pbool = false;
assert(!rbool);
Because in general, CPU allocates memory with 1 byte as the basic unit, although some CPU like MIPS use a 4-byte word.
However vector deals bool in a special fashion, with vector<bool> one bit for each bool is allocated.
The byte is the smaller unit of digital data storage of a computer. In a computer the RAM has millions of bytes and anyone of them has an address. If it would have an address for every bit a computer could manage 8 time less RAM that what it can.
More info: Wikipedia
Even when the minimum size possible is 1 Byte, you can have 8 bits of boolean information on 1 Byte:
http://en.wikipedia.org/wiki/Bit_array
Julia language has BitArray for example, and I read about C++ implementations.
Bitwise operations are not 'slow'.
And/Or operations tend to be fast.
The problem is alignment and the simple problem of solving it.
CPUs as the answers partially-answered correctly are generally aligned to read bytes and RAM/memory is designed in the same way.
So data compression to use less memory space would have to be explicitly ordered.
As one answer suggested, you could order a specific number of bits per value in a struct. However what does the CPU/memory do afterward if it's not aligned? That would result in unaligned memory where instead of just +1 or +2, or +4, there's not +1.5 if you wanted to use half the size in bits in one value, etc. so it must anyway fill in or revert the remaining space as blank, then simply read the next aligned space, which are aligned by 1 at minimum and usually by default aligned by 4(32bit) or 8(64bit) overall. The CPU will generally then grab the byte value or the int value that contains your flags and then you check or set the needed ones. So you must still define memory as int, short, byte, or the proper sizes, but then when accessing and setting the value you can explicitly compress the data and store those flags in that value to save space; but many people are unaware of how it works, or skip the step whenever they have on/off values or flag present values, even though saving space in sent/recv memory is quite useful in mobile and other constrained enviornments. In the case of splitting an int into bytes it has little value, as you can just define the bytes individually (e.g. int 4Bytes; vs byte Byte1;byte Byte2; byte Byte3; byte Byte4;) in that case it is redundant to use int; however in virtual environments that are easier like Java, they might define most types as int (numbers, boolean, etc.) so thus in that case, you could take advantage of an int dividing it up and using bytes/bits for an ultra efficient app that has to send less integers of data (aligned by 4). As it could be said redundant to manage bits, however, it is one of many optimizations where bitwise operations are superior but not always needed; many times people take advantage of high memory constraints by just storing booleans as integers and wasting 'many magnitudes' 500%-1000% or so of memory space anyway. It still easily has its uses, if you use this among other optimizations, then on the go and other data streams that only have bytes or few kb of data flowing in, it makes the difference if overall you optimized everything to load on whether or not it will load,or load fast, at all in such cases, so reducing bytes sent could ultimately benefit you alot; even if you could get away with oversending tons of data not required to be sent in an every day internet connection or app. It is definitely something you should do when designing an app for mobile users and even something big time corporation apps fail at nowadays; using too much space and loading constraints that could be half or lower. The difference between not doing anything and piling on unknown packages/plugins that require at minumim many hundred KB or 1MB before it loads, vs one designed for speed that requires say 1KB or only fewKB, is going to make it load and act faster, as you will experience those users and people who have data constraints even if for you loading wasteful MB or thousand KB of unneeded data is fast.

On Linux, in C/C++, will a pointer ever have the MSB set?

I want to use a long integer that will be interpreted as a number when the MSB is set otherwise it will be interpreted as a pointer. So would this work or would I run into problems in either C or C++?
This is on a 64-bit system.
Edited for clarity and a better description.
On x86-64, you WILL have a pointer that is over 47 bits in address have the 63rd bit set, since all the bits above "max number of bits supported by the architecture" (which is currently 48) must all have the same value as the most significant bit of the value itself. (That is any address above 0007 FFFF FFFF FFFF will be FFF8 0000 0000 0000 - everything in between is "invalid" as a pointer)
That may well be addresses ONLY used by the kernel, but I'm not sure it's guaranteed to be.
However, I would try to avoid using tricks like this - it's likely to come back and haunt you at some point.
People have tried tricks like this before.
It never works out well in the long run.
Simply don't do it.
Edit: better link - see reference to 'bit31', which was previously never returned as set. Once it could be set (over 2 gigs of RAM, gasp!) it would break naughty programs and therefore programs needed to opt into this option once this much memory became the norm as people had used trickery like this (amongst other things). And now my lovely, short and to the point answer has become too long :-)
So would this work or would I run into problems in either C or C++?
Do you have 64 bits? Do you want your code to be portable to 32 bit systems? long does not necessarily have 64 bits. Big-endian v. little-endian? (Do you know which your system is?)
Plus, hopeless confusion. Please just use an extra variable to store this information or you will have many many bugs surrounding this.
It depends on the architecture. x86_64 architecture, for example, is currently using 48-bit addressing. It means that you could use 16 bits for your own needs (a trick that sometimes referred to as "pointer packing"). However, even the x86_64 architecture definition allows this limit to be raised in future implementations to the full 64 bits. If that happens, you may run into a situation where a lot of your code might need to be changed. So if you really must go that way, make sure your pointer packing is kept in one place that is easy to change in the future. For other architectures you have to check for yourself.
Unless you really need the space, or you're keeping alot of these things around, I would just use a plain union, and add a tag field. If you're going to go down that route, make sure that your memory is aligned to fit your needs.
Take a look at boost::lockfree::detail::tagged_ptr from boost.lockfree
This is a class that was introduced in latest 1_53 boost. It stores pointer and additional 16 bites in 64 bites variable.
Don't do such tricks. If you need to distinguish integers from pointers inside some container, consider using separate bit set to indicate such flag. In C++ std::bitset could be good enough.
Reasons:
Actually nobody guarantees pointers are long unsigned or long long unsigned. If you need
to store them, always apply sizeof() and void * type (if you need
to remove information about pointed object).
Even on one system addresses are highly dependent on architecture.
Kernel modules could seriously change mapping logics for process so you never know what addresses you will need.
Remember that the virtual address returned to your program does may necessarily line up to the actual physical address in memory. Infact, unless you are directly manipulating pretty special memory [e.g. some forms of graphics memory] then this is absolutely the case.
In this case, its the maximum value of the MMU which defines the values of the pointers your program sees. In which case, for x64 I'm pretty sure its (currently) 48bits, but as Mats specifies above once you've got the top bit set in the 48, you get the 63'd bit says aswell.
So taking his answer and mine - its entirely possible to get a pointer with the 47th bit set even with a small amount of RAM, and once you do you get the 63rd bit set.
If the "64-bit system" in question is x86_64, then yes, it will work.

Difference between uint8_t and unspecified int for large matrices

I have a matrix that is over 17,000 x 14,000 that I'm storing in memory in C++. The values will never get over 255 so I'm thinking I should store this matrix as a uint8_t type instead of a regular int type. Will the regular int type will assume the native word size (64 bit so 8 bytes per cell) even with an optimizing compiler? I'm assuming I'll use 8x less memory if I store the array as uint8_t?
If you doubt this, you could have just tried it.
Of course it will be smaller.
However, it wholly depends on your usage patterns which will be faster. Profile! Profile! Profile!
Reasons for unexpected performance considerations:
alignment issues
elements sharing cache lines (could be positive on sequential access; negative in multicore scenarios)
increased need for locking on atomic reads/writes (in case of threading)
reduced applicability of certain optimized MIPS instructions (? - I'm not up-to-date with details here; also a very good optimizing compiler might simply register-allocate temporaries of the right size)
other, unrelated border conditions, originating from the surrounding code
The standard doesn't specify the exact size of int other than it's at least the size of short. On some 64-bit architectures (for example many Linux and Solaris x86 systems I work with) int is 32 bits and long is 64 bits. The exact size of each type will of course vary by compiler/hardware.
The best way to find out is to use sizeof(int) on your system and see how big it is. If you have enough RAM using the native type may in fact be significantly faster than the uint8_t.
Even the best optimizing compiler is not going to do an analysis of the values of the data that you put into your matrix and assume (anthropomorphizing here) "Hmmm. He said int but everything is between 0 and 255. I'm going to make that an array of uint8_t."
The compiler can interpret some keywords such as register and inline as suggestions rather than mandates. Types on the other hand are mandates. You told the compiler to use int so the compiler must use int. So switching to a uint8_t matrix will save you a considerable amount of memory here.

Is there a relation between integer and register sizes?

Recently, I was challenged in a recent interview with a string manipulation problem and asked to optimize for performance. I had to use an iterator to move back and forth between TCHAR characters (with UNICODE support - 2bytes each).
Not really thinking of the array length, I made a curial mistake with not using size_t but an int to iterate through. I understand it is not compliant and not secure.
int i, size = _tcslen(str);
for(i=0; i<size; i++){
// code here
}
But, the maximum memory we can allocate is limited. And if there is a relation between int and register sizes, it may be safe to use an integer.
E.g.: Without any virtual mapping tools, we can only map 2^register-size bytes. Since TCHAR is 2 bytes long, half of that number. For any system that has int as 32-bits, this is not going to be a problem even if you dont use an unsigned version of int. People with embedded background used to think of int as 16-bits, but memory size will be restricted on such a device. So I wonder if there is a architectural fine-tuning decision between integer and register sizes.
The C++ standard doesn't specify the size of an int. (It says that sizeof(char) == 1, and sizeof(char) <= sizeof(short) <= sizeof(int) <= sizeof(long).
So there doesn't have to be a relation to register size. A fully conforming C++ implementation could give you 256 byte integers on your PC with 32-bit registers. But it'd be inefficient.
So yes, in practice, the size of the int datatype is generally equal to the size of the CPU's general-purpose registers, since that is by far the most efficient option.
If an int was bigger than a register, then simple arithmetic operations would require more than one instruction, which would be costly. If they were smaller than a register, then loading and storing the values of a register would require the program to mask out the unused bits, to avoid overwriting other data. (That is why the int datatype is typically more efficient than short.)
(Some languages simply require an int to be 32-bit, in which case there is obviously no relation to register size --- other than that 32-bit is chosen because it is a common register size)
Going strictly by the standard, there is no guarantee as to how big/small an int is, much less any relation to the register size. Also, some architectures have different sizes of registers (i.e: not all registers on the CPU are the same size) and memory isn't always accessed using just one register (like DOS with its Segment:Offset addressing).
With all that said, however, in most cases int is the same size as the "regular" registers since it's supposed to be the most commonly used basic type and that's what CPUs are optimized to operate on.
AFAIK, there is no direct link between register size and the size of int.
However, since you know for which platform you're compiling the application, you can define your own type alias with the sizes you need:
Example
#ifdef WIN32 // Types for Win32 target
#define Int16 short
#define Int32 int
// .. etc.
#elif defined // for another target
Then, use the declared aliases.
I am not totally aware, if I understand this correct, since some different problems (memory sizes, allocation, register sizes, performance?) are mixed here.
What I could say is (just taking the headline), that on most actual processors for maximum speed you should use integers that match register size. The reason is, that when using smaller integers, you have the advantage of needing less memory, but for example on the x86 architecture, an additional command for conversion is needed. Also on Intel you have the problem, that accesses to unaligned (mostly on register-sized boundaries) memory will give some penality. Off course, on todays processors things are even more complex, since the CPUs are able to process commands in parallel. So you end up fine tuning for some architecture.
So the best guess -- without knowing the architectore -- speeedwise is, to use register sized ints, as long you can afford the memory.
I don't have a copy of the standard, but my old copy of The C Programming Language says (section 2.2) int refers to "an integer, typically reflecting the natural size of integers on the host machine." My copy of The C++ Programming Language says (section 4.6) "the int type is supposed to be chosen to be the most suitable for holding and manipulating integers on a given computer."
You're not the only person to say "I'll admit that this is technically a flaw, but it's not really exploitable."
There are different kinds of registers with different sizes. What's important are the address registers, not the general purpose ones. If the machine is 64-bit, then the address registers (or some combination of them) must be 64-bits, even if the general-purpose registers are 32-bit. In this case, the compiler may have to do some extra work to actually compute 64-bit addresses using multiple general purpose registers.
If you don't think that hardware manufacturers ever make odd design choices for their registers, then you probably never had to deal with the original 8086 "real mode" addressing.