Message queuing solutions? - c++

(Edited to try to explain better)
We have an agent, written in C++ for Win32. It needs to periodically post information to a server. It must support disconnected operation. That is: the client doesn't always have a connection to the server.
Note: This is for communication between an agent running on desktop PCs, to communicate with a server running somewhere in the enterprise.
This means that the messages to be sent to the server must be queued (so that they can be sent once the connection is available).
We currently use an in-house system that queues messages as individual files on disk, and uses HTTP POST to send them to the server when it's available.
It's starting to show its age, and I'd like to investigate alternatives before I consider updating it.
It must be available by default on Windows XP SP2, Windows Vista and Windows 7, or must be simple to include in our installer.
This product will be installed (by administrators) on a couple of hundred thousand PCs. They'll probably use something like Microsoft SMS or ConfigMgr. In this scenario, "frivolous" prerequisites are frowned upon. This means that, unless the client-side code (or a redistributable) can be included in our installer, the administrator won't be happy. This makes MSMQ a particularly hard sell, because it's not installed by default with XP.
It must be relatively simple to use from C++ on Win32.
Our client is an unmanaged C++ Win32 application. No .NET or Java on the client.
The transport should be HTTP or HTTPS. That is: it must go through firewalls easily; no RPC or DCOM.
It should be relatively reliable, with retries, etc. Protection against replays is a must-have.
It must be scalable -- there's a lot of traffic. Per-message impact on the server should be minimal.
The server end is C#, currently using ASP.NET to implement a simple HTTP POST mechanism.
(The slightly odd one). It must support client-side in-memory queues, so that we can avoid spinning up the hard disk. It must allow flushing to disk periodically.
It must be suitable for use in a proprietary product (i.e. no GPL, etc.).

How is your current solution showing its age?
I would push the logic on to the back end, and make the clients extremely simple.
Messages are simply stored in the file system. Have the client write to c:/queue/{uuid}.tmp. When the file is written, rename it to c:/queue/{uuid}.msg. This makes writing messages to the queue on the client "atomic".
A C++ thread wakes up, scans c:\queue for "*.msg" files, and if it finds one it then checks for the server, and HTTP POSTs the message to it. When it receives the 200 status back from the server (i.e. it has got the message), then it can delete the file. It only scans for *.msg files. The *.tmp files are still being written too, and you'd have a race condition trying to send a msg file that was still being written. That's what the rename from .tmp is for. I'd also suggest scanning by creation date so early messages go first.
Your server receives the message, and here it can to any necessary dupe checking. Push this burden on the server to centralize it. You could simply record every uuid for every message to do duplication elimination. If that list gets too long (I don't know your traffic volume), perhaps you can cull it of items greater than 30 days (I also don't know how long your clients can remain off line).
This system is simple, but pretty robust. If the file sending thread gets an error, it will simply try to send the file next time. The only time you should be getting a duplicate message is in the window between when the client gets the 200 ack from the server and when it deletes the file. If the client shuts down or crashes at that point, you will have a file that has been sent but not removed from the queue.
If your clients are stable, this is a pretty low risk. With the dupe checking based on the message ID, you can mitigate that at the cost of some bookkeeping, but maintaining a list of uuids isn't spectacularly daunting, but again it does depend on your message volume and other performance requirements.
The fact that you are allowed to work "offline" suggests you have some "slack" in your absolute messaging performance.

To be honest, the requirements listed don't make a lot of sense and show you have a long way to go in your MQ learning. Given that, if you don't want to use MSMQ (probably the easiest overall on Windows -- but with [IMO severe] limitations), then you should look into:
qpid - Decent use of AMQP standard
zeromq - (the best, IMO, technically but also requires the most familiarity with MQ technologies)
I'd recommend rabbitmq too, but that's an Erlang server and last I looked it didn't have usuable C or C++ libraries. Still, if you are shopping MQ, take a look at it...
[EDIT]
I've gone back and reread your reqs as well as some of your comments and think, for you, that perhaps client MQ -> server is not your best option. I would maybe consider letting your client -> server operations be HTTP POST or SOAP and allow the HTTP endpoint in turn queue messages on your MQ backend. IOW, abstract away the MQ client into an architecture you have more control over. Then your C++ client would simply be HTTP (easy), and your HTTP service (likely C# / .Net from reading your comments) can interact with any MQ backend of your choice. If all your HTTP endpoint does is spawn MQ messages, it'll be pretty darned lightweight and can scale through all the traditional load balancing techniques.

Last time I wanted to do any messaging I used C# and MSMQ. There are MSMQ libraries available that make using MSMQ very easy. It's free to install on both your servers and never lost a message to this day. It handles reboots etc all by itself. It's a thing of beauty and 100,000's of message are processed daily.
I'm not sure why you ruled out MSMQ and I didn't get point 2.
Quite often for queues we just dump record data into a database table and another process lifts rows out of the table periodically.

How about using Asynchronous Agents library from .NET Framework 4.0. It is still beta though.
http://msdn.microsoft.com/en-us/library/dd492627(VS.100).aspx

Related

Preferred Communication method between systems using Biztalk

We have 2 systems between which we want messages to be exchanged. I am currently designing the application and have been given 2 choices.
System 1 to push messages to an intermediate location (FTP or SQS) and system 2 (running BizTalk) reading the messages from that location and processing it.
Exposing Schema/Orchestration as a web service in system 2 which would be consumed by system 1.
Any suggestions which method would be better in terms of error handling and scalability.
If you can, always go for an asynchronous approach, through a queuing system. This way, your application can be running independent of your back end. And then I would advise for Service Bus for Windows Server (heavier installation), Windows Azure Service Bus (as a service, in the cloud, internet connection needed) or with MSMQ (store and forward included!). These provide transactional behavior and can be considered as very reliable. Other lightweight options are indeed through file exchange or FTP.
Web service or REST connectivity is also very easy to set up, but then you have synchronous behavior, which has its benefits:
you can get a 'real-time' ack back when your message is delivered by BizTalk
it's easy to set up and to monitor
So, as mostly, the answer is 'it depends'.
There's only a 'best way' for you particular app and there are a number of conditions to consider.
The easiest way is a shared location on the File System (OS File System vs FTP doesn't matter so much), especially if order is not important.
If order has to be maintained to there's a guaranteed delivery requirement, then a Message Queue is a good choice, MSMQ/WMQ.
Of course, HTTP/SOAP is always an option.
Realistically, any of these methods will get the message there so you have to consider the benefits of each protocol.

What is the modern programming standard for synchronizing data between a web service and a client?

The question is a little general, so to help narrow the focus, I'll share my current setup that is motivating this question. I have a LAMP web service running a RESTful API. We have two client implementations: one browser-based javascript client (local storage store) and one iOS-based client (core data store). Obviously these two clients store data very differently, but the data itself needs to be kept in two-way sync with the remote server as often as possible.
Currently, our "sync" process is a little dumb (as in, non-smart). Conceptually, it looks like:
Client periodically asks the server for ALL of the most-recent data.
Server sends down the remote data, which overwrites the current set of local data in the client's store.
Any local creates/updates/deletes after this point are treated as gold, and immediately sent to the server.
The data itself is stored relationally, and updated occasionally by client users. The clients in my specific case don't care too much about the relationships themselves (which is why we can get away with local storage in the browser client for now).
Obviously this isn't true synchronization. I want to move to a system where, conceptually, a "diff" of the most recent changes are sent to the server periodically, and the server sends back a "diff" of the most recent changes it knows about. It seems very difficult to get to this point, but maybe I just don't understand the problem very well.
REST feels like a good start, but REST only talks about the way two data stores talk to each other, not how the data itself is synchronized between them. (This sync process is left up to the implementer of each store.) What is the best way to implement this process? Is there a modern set of programming design patterns that apply to inform a specific solution to this problem? I'm mostly interested in a general (technology agnostic) approach if possible... but specific frameworks would be useful to look at too, if they exist.
Multi-master replication is always (and will always be) difficult and bespoke, because how conflicts are handled will be specific to your application.
IMO A more robust approach is to use Master-slave replication, with your web service as the master and the clients as slaves. To keep the clients in sync, use an archived atom feed of the changes (see event sourcing) as per RFC5005. This is the closest you'll get to a modern standard for this type of replication and it's RESTful.
When the clients are online, they do not update their replica directly, instead they send commands to the server and have their replica updated via the atom feed.
When the clients are offline things get difficult. Your clients will need to have a model of how your web service behaves. It will need to have an offline copy of your replica, which should be copied on write from the online replica (the online replica is the one that is updated by the atom feed). When the client executes commands that modify the data, it should store the command (for later replay against the web service), the expected result (for verification during replay) and update the offline replica.
When the client goes back online, it should replay the commands, compare the result with the expected result and notify the client of any variances. How these variances are handled will vary based on your application. The offline replica can then be discarded.
CouchDB replication works over HTTP and does what you are looking to do. Once databases are synced on either end it will send diffs for adds/updates/deletes.
Couch can do this with other Couch machines or with a mobile framework like TouchDB.
https://github.com/couchbaselabs/TouchDB-iOS
I've done a fair amount of it, but you can always set up CouchDB on one machine, set up TouchDB on a mobile device and then watch the HTTP traffic go back and forth to get an idea of how they do it.
Or read this: http://guide.couchdb.org/draft/replication.html
Maybe something from the link above will help you get an idea of how to do your own diffs for your REST service. (Since they are both over HTTP thought it could be useful.)
You may want to look into the Dropbox Datastore API:
https://www.dropbox.com/developers/datastore
It sounds like it might be a very good fit for your purposes. They have iOS and javascript clients.
Lately, I've been interested in Meteor.
The platform sets up Mongo on the server and minimongo in the browser. The client subscribes to some data and when that data changes, the platform automatically sends down the new data to the client.
It's a clever solution to the syncing problem, and it solves several other problems as well. It will be interesting to see if more platforms do this in the future.

Designing an architecture for exchanging data between two systems

I've been tasked with creating an intermediate layer which needs to exchange data (over HTTP) between two independent systems (e.g. Receiver <=> Intermediate Layer (IL) <=> Sender). Receiver and Sender both expose a set of API's via Web Services. Everytime a transaction occurs in the Sender system, the IL should know about it (I'm thinking of creating a Windows Service which constantly pings the Sender), massage the data, then deliver it to the Receiver. The IL can temporarily store the data in a SQL database until it is transferred to the Receiver. I have the following questions -
Can WCF (haven't used it a lot) be used to talk to the Sender and Receiver (both expose web services)?
How do I ensure guaranteed delivery?
How do I ensure security of the messages over the Internet?
What are best practices for handling concurrency issues?
What are best practices for error handling?
How do I ensure reliability of the data (data is not tampered along the way)
How do I ensure the receipt of the data back to the Sender?
What are the constraints that I need to be aware of?
I need to implement this on MS platform using a custom .NET solution. I was told not to use any middleware like BizTalk. The receiver is an SDFC instance, if that matters.
Any pointers are greatly appreciated. Thank you.
A Windows Service that orchestras the exchange sounds fine.
Yes WCF can deal with traditional Web Services.
How do I ensure guaranteed delivery?
To ensure delivery you can use TransactionScope to handle the passing of data between the
Receiver <=> Intermediate Layer and Intermediate Layer <=> Sender but I wouldn't try and do them together.
You might want to consider some sort of queuing mechanism to send the data to the receiver; I guess I'm thinking more of a logical queue rather than an actual queuing component. A workflow framework could also be an option.
make sure you have good logging / auditing in place; make sure it's rock solid, has the right information and is easy to read. Assuming you write a service it will execute without supervision so the operational / support aspects are more demanding.
Think about scenarios:
How do you manage failed deliveries?
What happens if the reciever (or sender) is unavailbale for periods of time (and how long is that?); for example: do you need to "escalate" to an operator via email?
How do I ensure security of the messages over the Internet?
HTTPS. Assuming other existing clients make calls to the Web Services how do they ensure security? (I'm thinking encryption).
What are best practices for handling concurrency issues?
Hmm probably a separate question. You should be able to find information on that easily enough. How much data are we taking? what sort of frequency? How many instances of the Windows Service were you thinking of having - if one is enough why would concurrency be an issue?
What are best practices for error handling?
Same as for concurrency, but I can offer some pointers:
Use an established logging framework, I quite like MS EntLibs but there are others (re-using whatever's currently used is probably going to make more sense - if there is anything).
Remember that execution is unattended so ensure information is complete, clear and unambiguous. I'd be tempted to log more and dial it down once a level of comfort is reached.
use a top level handler to ensure nothing get's lost; but don;t be afraid to log deep in the application where you can still get useful context (like the metadata of the data being sent / recieved).
How do I ensure the receipt of the data back to the Sender?
Include it (sending the receipt) as a step that is part of the transaction.
On a different angle - have a look on CodePlex for ESB type libraries, you might find something useful: http://www.codeplex.com/site/search?query=ESB&ac=8
For example ESBasic which seems to be a class library which you could reuse.

online game best-practice

I'm developing a django-based MMO, and I'm wondering what would be the best way for server-client communication. The solutions I found are:
periodical AJAX calls
keeping a connection alive and sending data through it
Later edit:
This would consist in "you have a message", "user x attacked you", "your transport to x has arrived" and stuff like this. They could grow in number (something like 1/second), but for a typical user they shouldn't reach 1/minute
Not sure if it's applicable to what you're looking for, but there's a pretty good live example of lightweight server-client communication using node.js for a simple chat service:
http://chat.nodejs.org/
You might want to take a look at crossbar
Crossbar.io is an open-source server software that allows developers
to create distributed systems, composed of application components
which are loosely coupled, communicate in (soft) real-time and can be
implemented in different languages
There's also a third technique involving "hanging" queries:
Client requests an updated page (or whatever)
Server doesn't answer right away
Sometime before the request times out, there's a state update in the server, and the server finally answers the client, which can then update.
If there really is nothing new to tell the client within the update period, then the server responds before the timeout with a "no news" message, and the client starts up another "hanging" request.
Advantages:
Client doesn't have to do Ajax. You could even make regular HTML pages "interactive" like this.
Probably not quite as much senseless polling traffic.
Disadvantages:
Server needs to keep more active connections open, and service them at least once per timeout period. Also,
depending on how well the server code supports multi-threading (does PHP provide any help there?), it may be more difficult to code than AJAX response handling.

architecture and tools for a remote control application?

I'm working on the design of a remote control application. From my iPhone or a web browser, I'll send a few commands. Soon my home computer will perform the commands and send back results. I know there are remote desktop apps, but I want something programmable, something simpler, and something that I wrote.
My current direction is to use Amazon Simple Queue Service (SQS) as the message bus. The iPhone places some messages in a queue. My local Java/JRuby program notices the messages on the queue, performs the work and sends back status via a different queue.
This will be a very low-volume application. At $1.00 for a million requests (plus a handful of data transfer charges), Amazon SQS looks a lot more affordable than having my own server of any type. And super reliable, that's important for me too.
Are there better/standard toolkits or architectures for this kind of remote control? Cost is not a big issue, but I prefer the tons I learn by doing it myself.
I'm moderately concerned about security, but doubt it will be a problem. The list of commands recognized will be very short, and only recognized in specific contexts. No "erase hard drive" stuff.
update: I'll probably distribute these programs to some other people who want the same function, but who don't have Amazon SQS accounts. For now, they'll use anonymous access to my queues, with random 80-character queue names.
Well, I think it's a clever approach -- and as you said, the costs for your little traffic aren't even worth mentioning.
As I mentioned in the comment, it's a good way to leave your home machine behind your firewall and not have an open port on the internet.
I would suggest using OnlineMQ.com as a start; they have a free package.