I'm having this problem for quite a long time - I have fixed sized 2D array as a class member.
class myClass
{
public:
void getpointeM(...??????...);
double * retpointM();
private:
double M[3][3];
};
int main()
{
myClass moo;
double *A[3][3];
moo.getpointM( A ); ???
A = moo.retpointM(); ???
}
I'd like to pass pointer to M matrix outside. It's probably very simple, but I just can't find the proper combination of & and * etc.
Thanks for help.
double *A[3][3]; is a 2-dimensional array of double *s. You want double (*A)[3][3];
.
Then, note that A and *A and **A all have the same address, just different types.
Making a typedef can simplify things:
typedef double d3x3[3][3];
This being C++, you should pass the variable by reference, not pointer:
void getpointeM( d3x3 &matrix );
Now you don't need to use parens in type names, and the compiler makes sure you're passing an array of the correct size.
Your intent is not clear. What is getpointeM supposed to do? Return a pointer to the internal matrix (through the parameter), or return a copy of the matrix?
To return a pointer, you can do this
// Pointer-based version
...
void getpointeM(double (**p)[3][3]) { *p = &M; }
...
int main() {
double (*A)[3][3];
moo.getpointM(&A);
}
// Reference-based version
...
void getpointeM(double (*&p)[3][3]) { p = &M; }
...
int main() {
double (*A)[3][3];
moo.getpointM(A);
}
For retpointM the declaration would look as follows
...
double (*retpointM())[3][3] { return &M; }
...
int main() {
double (*A)[3][3];
A = moo.retpointM();
}
This is rather difficult to read though. You can make it look a lot clearer if you use a typedef-name for your array type
typedef double M3x3[3][3];
In that case the above examples will transform into
// Pointer-based version
...
void getpointeM(M3x3 **p) { *p = &M; }
...
int main() {
M3x3 *A;
moo.getpointM(&A);
}
// Reference-based version
...
void getpointeM(M3x3 *&p) { p = &M; }
...
int main() {
double (*A)[3][3];
moo.getpointM(A);
}
// retpointM
...
M3x3 *retpointM() { return &M; }
...
int main() {
M3x3 *A;
A = moo.retpointM();
}
The short answer is that you can get a double * to the start of the array:
public:
double * getMatrix() { return &M[0][0]; }
Outside the class, though, you can't really trivially turn the double * into another 2D array directly, at least not in a pattern that I've seen used.
You could create a 2D array in main, though (double A[3][3]) and pass that in to a getPoint method, which could copy the values into the passed-in array. That would give you a copy, which might be what you want (instead of the original, modifiable, data). Downside is that you have to copy it, of course.
class myClass
{
public:
void getpointeM(double *A[3][3])
{
//Initialize array here
}
private:
double M[3][3];
};
int main()
{
myClass moo;
double *A[3][3];
moo.getpointM( A );
}
You may want to take the code in your main function which works with the 2D array of doubles, and move that into myClass as a member function. Not only would you not have to deal with the difficulty of passing a pointer for that 2D array, but code external to your class would no longer need to know the details of how your class implements A, since they would now be calling a function in myClass and letting that do the work. If, say, you later decided to allow variable dimensions of A and chose to replace the array with a vector of vectors, you wouldn't need to rewrite any calling code in order for it to work.
In your main() function:
double *A[3][3];
creates a 3x3 array of double* (or pointers to doubles). In other words, 9 x 32-bit contiguous words of memory to store 9 memory pointers.
There's no need to make a copy of this array in main() unless the class is going to be destroyed, and you still want to access this information. Instead, you can simply return a pointer to the start of this member array.
If you only want to return a pointer to an internal class member, you only really need a single pointer value in main():
double *A;
But, if you're passing this pointer to a function and you need the function to update its value, you need a double pointer (which will allow the function to return the real pointer value back to the caller:
double **A;
And inside getpointM() you can simply point A to the internal member (M):
getpointeM(double** A)
{
// Updated types to make the assignment compatible
// This code will make the return argument (A) point to the
// memory location (&) of the start of the 2-dimensional array
// (M[0][0]).
*A = &(M[0][0]);
}
Make M public instead of private. Since you want to allow access to M through a pointer, M is not encapsulated anyway.
struct myClass {
myClass() {
std::fill_n(&M[0][0], sizeof M / sizeof M[0][0], 0.0);
}
double M[3][3];
};
int main() {
myClass moo;
double (*A)[3] = moo.M;
double (&R)[3][3] = moo.M;
for (int r = 0; r != 3; ++r) {
for (int c = 0; c != 3; ++c) {
cout << A[r][c] << R[r][c] << ' ';
// notice A[r][c] and R[r][c] are the exact same object
// I'm using both to show you can use A and R identically
}
}
return 0;
}
I would, in general, prefer R over A because the all of the lengths are fixed (A could potentially point to a double[10][3] if that was a requirement) and the reference will usually lead to clearer code.
Related
This is my code, after a = b; in the function, a is still nullptr....
int getBox(int *a) {
int *b = new int;
*b = 3;
a = b;
std::cout << *a;
}
int main() {
int *a = nullptr;
getBox(a);
std::cout << a;
}
I guess it's a very simple problem... Maybe I forgot too much about C++
I'm not sure what you're trying to do, but this row inside the getBox():
a=&b;
Doesn't actually change a in the main, you actually overrides the pointer(the copy that was made by the function), and make it point somewhere else.
You can do something like this(again, I don't see the point) :
int getBox(int ** a){
int *b = new int;
*b=3;
*a=b;
std::cout<<*a;
}
int main(){
int *a= nullptr;
getBox(&a);
std::cout<<a;
}
Let's assume there is some type T. Now here are 3 different kinds of functions:
void f(T a) { // pass by value (this is a copy of the 'a' in main)
a = /* something else */ ;
}
int main() {
T a = /* something */ ;
f(a);
// a is still something
}
void f(T &a) { // pass by reference (this is a reference to the 'a' in main)
a = /* something else */ ;
}
int main() {
T a = /* something */ ;
f(a);
// a is now something else
}
void f(T *a) { // pass by address (this is a pointer to the address the 'a' in main)
*a = /* something else */ ;
}
int main() {
T a = /* something */ ;
f(&a);
// a is now something else
}
Now you can apply this logic to any T you want, such as int, or int*, and the same rules will work. You can try this out with getBox and see the effect of each version, which should help you understand what's going on. Note that you are using the first version (pass by value), but for the result you are expecting, you should use the second version (pass by reference).
If you really want to change what a is pointing to, then you can think it this way maybe it will help to make it a bit easier to understand. A is an int pointer and the function getBox takes a reference that you can modify its value which is an int pointer.
void getBox(int* &a) {
int *b = new int;
*b = 3;
a = b;
std::cout << *a;
}
int main(){
int *a= nullptr;
getBox(a);
std::cout<< *a;
}
This will change the value of a, which is a new pointer value to b.
Yes of course, why should changing a in getBox change the value of a in main? If you think the answer is 'because it's a pointer' then I'm afraid you've misunderstood pointers.
Look at this code
int getBox(int a){
a=3;
std::cout<<a;
}
int main(){
int a= 0;
getBox(a);
std::cout<<a;
}
Setting a=3 in getBox has no effect on a in main. Your code is exactly the same, but for some reason because pointers are involved beginners often think it works differently. It doesn't.
You can however use pointers in this way to change what is being pointed at, that's the important thing, but changing the pointer itself doesn't work in the way you are expecting.
You probably only want to change to getBox(int * & a). You then pass a reference to the pointer a to the function instead of creating a copy of the pointer that points to the same address in your case NULL.
How do I initialize an array of objects from a function? I'm aware the code below is impractical; I'm just teaching myself C++.
Here is a structure that contains data.
struct pointStruct {
int numberPoints;
Point2D pointArray;
};
The Point2D class has instance variables x and y. In a separate function, I have:
void setPoints(void) {
pointStruct myPointData;
myPointData.numberPoints = 4;
myPointData.pointArray[4]; // here is the problem
// loop with i
myPointData.pointArray[i].x = ...;
myPointData.pointArray[i].y = ...;
}
I'm trying to initialize the array so that I can loop through it and set the x,y coordinates. I've tried using new and some other methods but I can't work through what I need to do. How can I fix this?
When I try to compile this code, I get the error "no match for 'operator[]' in 'myPointData.pointStruct::pointArray[4]' "
You should probably use std::vector like MadScienceDreams suggests.
However, if you want to learn about such things, you could use a pointer instead. For example:
struct pointStruct {
int numberPoints;
Point2D* pointArray;
};
void setPoints(void) {
pointStruct myPointData;
const int num_points = 4;
myPointData.numberPoints = num_points;
myPointData.pointArray = new Point2D[num_points];
for(int i = 0; i < num_points; ++i) {
myPointData.pointArray[i].x = ...;
myPointData.pointArray[i].y = ...;
}
// Do stuff with myPointData...
// Don't forget to have a "delete" for every "new" when you're done.
delete[] myPointData.pointArray;
}
Point2D pointArray;
pointArray is a single instance to Point2D. It is not an array of instances in which case it's type is Point2D [N].
myPointData.pointArray[4];
The above statement calls operator [] taking a parameter of type int, which is not you actually want. Since there is no such member function in Point2D, compiler complains. If you wish to create array of instances, use std::vector<Point2D>.
I have 3 classes.
class piesa_a{
protected:
int id;
char *tip;
int pret;
public:
[custructor with/without param, display function - works well each one of it]
class piesa_b:public piesa_a
{
private:
float lungime;
bool bw;
public:
[custructor with/without param, display function - works well each one of it]
class piesa_c:public piesa_a
{
private:
int nr;
piesa_b *buf;
public:
piesa_c():piesa_a(){nr=0; buf = new piesa_b[nr];}
piesa_c(int n, piesa_b *bu,int aid, char *tipi, int pretzz):piesa_a(aid,tipi,pretzz)
{
buf = new piesa_b[nr];
for(int i=0;i<nr;i++)
buf[i]= bu[i];
}
void afisare()
{
cout<<nr;
}
In main i have this:
piesa_c C(2, H,14,"TIPC",20);
C.afisare();
But this doesn't work.
I don't know if the "buf" was declared properly because the problem seems to be in last class.
Why?
Later Edit:
The entire code is here: http://pastebin.com/nx2FGSfe.
Now, i have this in main
int main(int argc, char** argv) {
piesa_b *H;
H = new piesa_b[2];
piesa_a A(4,"TIPA",120);
piesa_b B(100,1,3,"TIPA",120);
H[0]=B;
H[1]=B;
piesa_c C(2, H,14,"TIPC",20);
piesa_a** v = new piesa_a*[3];
v[0] = &A;
v[1] = &B;
v[2] = &C;
for(int i=0;i<3;i++)
v[i].afisare();
return 0;
}
The display function return this error
main.cpp:143:14: error: request for member ‘afisare’ in ‘*(v + ((unsigned int)(((unsigned int)i) * 4u)))’, which is of non-class type ‘piesa_a*’
nr is not initialized in the piesa_c() constructor, meaning it will have an undefined value.
Instead of using a dynamically allocated array used a std::vector<piesa_b> instead. It will handle dynamic memory allocation and do the right thing when instances of piesa_c is copied. Using std::vector also means the nr member variable can omitted as that information can be obtained from vector::size() and the std::vector can be populated in the initializer list instead of in the constructor body:
std::vector<piesa_b> buf;
piesa_c(int n,
piesa_b *bu,
int aid,
char* tipi,
int pretzz) : piesa_a(aid,tipi,pretzz),
buf(bu, bu + nr) {}
And to invoke a member function on each element in buf:
// C++11 lambda, otherwise use
// std::vector<piesa_b>::const_iterator.
//
std::for_each(buf.begin(), buf.end(), [](piesa_b& pb) { pb.afisare(); });
If afisare() does not modify then make it const:
void afisare() const
{
}
Additonally, use std::string instead of char*. If you insist on having dynamically allocated members in the classes you need to obey the rule of three.
I am not sure what "not work" means in this context, but when you call this constructor:
piesa_c C(2, H,14,"TIPC",20);
the data member nr is not set. It can have any value that fits into an int, so when you use it to initialize an array you will get variable and weird results.
Note that you could save yourself a lot of trouble by using std::vector and std::string instead of dynamically allocated arrays and char*.
It sounds weird, I guess, but I'm creating some low-level code for a hardware device. Dependend on specific conditions I need to allocate more space than the actual struct needs, store informations there and pass the address of the object itself to the caller.
When the user is deallocating such an object, I need to read these informations before I actually deallocate the object.
At the moment, I'm using simple pointer operations to get the addresses (either of the class or the extra space). However, I tought it would be more understandable if I do the pointer arithmetics in member functions of an internal (!) type. The allocator, which is dealing with the addresses, is the only one who know's about this internal type. In other words, the type which is returned to the user is a different one.
The following example show's what I mean:
struct foo
{
int& get_x() { return reinterpret_cast<int*>(this)[-2]; }
int& get_y() { return reinterpret_cast<int*>(this)[-1]; }
// actual members of foo
enum { size = sizeof(int) * 2 };
};
int main()
{
char* p = new char[sizeof(foo) + foo::size];
foo* bar = reinterpret_cast<foo*>(p + foo::size);
bar->get_x() = 1;
bar->get_y() = 2;
std::cout << bar->get_x() << ", " << bar->get_y() << std::endl;
delete p;
return 0;
}
Is it arguable to do it in that way?
It seems needlessly complex to do it this way. If I were to implement something like this, I would take a simpler approach:
#pragma pack(push, 1)
struct A
{
int x, y;
};
struct B
{
int z;
};
#pragma pack(pop)
// allocate space for A and B:
unsigned char* data = new char[sizeof(A) + sizeof(B)];
A* a = reinterpret_cast<A*>(data);
B* b = reinterpret_cast<B*>(a + 1);
a->x = 0;
a->y = 1;
b->z = 2;
// When deallocating:
unsigned char* address = reinterpret_cast<unsigned char*>(a);
delete [] address;
This implementation is subtly different, but much easier (in my opinion) to understand, and doesn't rely on intimate knowledge of what is or is not present. If all instances of the pointers are allocated as unsigned char and deleted as such, the user doesn't need to keep track of specific memory addresses aside from the first address in the block.
The very straightforward idea: wrap your extra logic in a factory which will create objects for you and delete them smart way.
You can also create the struct as a much larger object, and use a factory function to return an instance of the struct, but cast to a much smaller object that would basically act as the object's handle. For instance:
struct foo_handle {};
struct foo
{
int a;
int b;
int c;
int d;
int& get_a() { return a; }
int& get_b() { return b; }
//...more member methods
//static factory functions to create and delete objects
static foo_handle* create_obj() { return new foo(); }
static void delete_obj(foo_handle* obj) { delete reinterpret_cast<foo*>(obj); }
};
void another_function(foo_handle* masked_obj)
{
foo* ptr = reinterpret_cast<foo*>(masked_obj);
//... do something with ptr
}
int main()
{
foo_handle* handle = foo::create_obj();
another_function(handle);
foo::delete_obj(handle);
return 0;
}
Now you can hide any extra space you may need in your foo struct, and to the user of your factory functions, the actual value of the pointer doesn't matter since they are mainly working with an opaque handle to the object.
It seems your question is a candidate for the popular struct hack.
Is the "struct hack" technically undefined behavior?
I want to make a function to allocate memory to an array. Suppose I have this:
PWSTR theStrings[] = { L"one", L"two", L"three" };
void foo(PWSTR a, int b) {
a=new PWSTR[b];
for(int i=0;i<b;i++) a[i]=L"hello";
return;
}
int main() {
foo(theStrings,4);
}
My question is, how do you make the function foo and the calling of that function so that after foo is called, theStrings will contain four "hello"
Thanks :)
Reinardus
There are two thing you must do to make this work:
Firstly, you must use a dynamically allocated array, rather than a statically allocated array. In particular, change the line
PSWTR theStrings[] = { L"one", L"two", L"three" };
into
PWSTR * theString = new PWSTR[3];
theString[0] = L"one";
theString[1] = L"two";
theString[2] = L"three";
This way, you're dealing with a pointer which can be modified to point to a different region of memory, as opposed to a static array, which utilized a fixed portion of memory.
Secondly, you're function should take either a pointer to a pointer, or a reference to a pointer. The two signatures look like this (respectively):
void foo(PWSTR ** a, int b); // pointer to pointer
void foo(PWSTR *& a, int b); // reference to pointer
The reference-to-pointer option is nice, since you can pretty much use your old code for foo:
void foo(PWSTR *& a, int b) {
a = new PWSTR[b];
for(int i=0;i<b;i++) a[i]=L"hello";
}
And the call to foo is still
foo(theStrings, 4);
So almost nothing must be changed.
With the pointer-to-pointer option, you must always dereference the a parameter:
void foo(PWST ** a, int b) {
*a = new PWSTR[b];
for(int i = 0; i<b; i++) (*a)[i] = L"hello";
}
And must call foo using the address-of operator:
foo(&theStrings, 4);
PWSTR theStrings[] = { L"one", L"two", L"three" };
void foo(PWSTR& a, int b) {
a=new PWSTR[b];
for(int i=0;i<b;i++) a[i]=L"hello";
return;
}
int main() {
PWSTR pStrings = theStrings;
foo(pStrings,4);
}
But instead of that, consider using std::vector and std::wstring and so on.
Also, anyway, consider using function result (the return) for function results, instead of in/out arguments.
Cheers & hth.,
If you are not required to use PWSTR then you can use std::vector< std::string > or std::valarray< std::string >.
If you want to store unicode strings (or wide characters) replace std::string with std::wstring.
You can see here on how to convert between CString/LPCTSTR/PWSTR to std::string: How to convert between various string types.
probably change it to something like
void foo(PWSTR * a, int b)
and
foo(&thestrings, 4);