moving code from unix to windows xp - c++

i have code written in c++. its a console app that takes an input and displays output. Now i can just give my a.out to someone without giving them the code and it should work on another unix system. but what if they have windows environment. I would like to learn how to make dll for them so they can run that.
also, if they were going to use it as part of another program I guess i would need to make an api or function for them. But i am not sure how that works with dlls as i have never done this before.

Now i can just give my a.out to
someone without giving them the code
and it should work on another unix
system.
No it shouldn't and almost certainly won't. Executables are not typically portable across even closely related operating systems, and most flavours of Unix are not too closely related. You need to compile your application for the specific (and "unix" is not specific enough) target OSs you are interested in.

You need to recompile your application for Windows, either on a Windows machine or by using a crosscompiler. This requires that all routines which you use need to be available under Windows, too.
Either you wrote your application from scratch using portable libraries (read: no unix/posix system calls), or you will get problems porting your code to run under Windows. Cygwin can probably help, check it out.
If you say its a pure console app, I assume you're using std::cout and std::cin or other stuff from the C++ standard library. These are indeed universally available on every C++ implementation.

Related

How does the C++ standard library work behind the scenes?

This question has been bothering me so much for the past couple of days. I was wondering how the standard library works, in terms of functionality. I couldn't find an answer anywhere, even by checking the source code provided by the LLVM compiler which is, for a beginner like me, a really complicated piece of code.
What I'm basically trying to understand here is how does the C++ standard library work. For example let's take the fstream header file which consist of a bunch of functions that help to write to and read from files.
How does it work? Does it use the OS specific API (since the library is cross platform), or what? And, if the standard library can do it, aren't I supposed to be able to mess with some files as well without calling the standard fstream file (which to my experience I can't do)?
I apologize if my questions are unclear since I'm not a native English speaker: feel free to modify this text so as to make it clearer.
Does it use the OS specific API (since the library is cross platform), or what?
At some point, the OS specific API is used. The fstream implementation does not necessarily call an OS function directly. It might use other classes, which call functions inherited from C, etc., but eventually the call chain will lead to an OS call. (Yes, the details are often too complicated for an intermediate programmer to follow. So, as a self-described beginner, your findings are not surprising.)
The library is cross-platform in the sense that on your end (the C++ programmer), the interface is the same regardless of platform. It is not, however, the same library on every platform. Each platform has its own library, exposing the same interface on the C++ side, but making use of different OS calls. (In fact, the same platform might have multiple standard libraries, as the library implementation is provided by your toolchain, not by the standards committee.)
And, if the standard library can do it, aren't I supposed to be able to mess with some files as well without calling the standard fstream file (which to my experience I can't do)?
Yes, you are allowed to. Apparently, you have not been able to yet, but with some practice and guidance you should be able to. Everything in the standard library can be recreated in your own code. The point of the standard library (and most libraries, for that matter) is to save you time, not to enable something that was otherwise unavailable. For example, you don't have to implement a file stream for every program you write; it's in the standard library so you can focus on more interesting aspects of your project.
A compiler is just a program which create executable file or library. You can use the compiler default libraries to gain time or write your own. The default libraries communicate with the os for file operation or memory allocation and provide a simple standard classes to allow the developper to write only one code which work on all target platforms supported by the compiler and the libraries. If you want to write your own you have to write each function for all your target os.
The standard library is cross-platform in a sense that its interface does not change between platforms but its implementation does - or in practical terms - if you only use C++ and its standard library, you can write your code the same way for Linux / Windows / MacOS / Android / Whatever and if you find a C++ compiler for one of those platforms that supports the language features you used, you will be able to compile your code for that platform without rewriting anything.
So while you can use std::vector or std::fstream or any other feature in the library independently of the platform you're writing for and expect the function definitions, type names, etc. to look the same, you cannot expect the executable which you compiled for PC with Windows 10 to run on a phone with Android. You cannot even expect the same executable to run on the same PC but with different system - that is what I mean by "the implementation is different"
There are two main reasons for this difference:
Processors with different architectures (x86-64 and ARM for example) use different instruction sets and as such the C++ source would need to be compiled to a completely different machine code to run properly
Computers with processors of the same architecture which have a different operating system have different ways of dynamically allocating memory, creating files, creating streams, writing to console, creating and scheduling threads etc. - which is part of the system functionality that you use via the standard library
If you really wanted to you could use HeapAlloc() instead of operator new() or CreateThread() instead of stdlib's std::thread but that would force you to both rewrite your program every time you wanted to compile it for something else than Windows and recompile it with the target platform's compiler (and by proxy learn its API). Standard library saves you from that trouble by abstracting away those system calls.
As for the fstream in particular, here is what it uses internally on most PCs nowadays.
Basically, fstream, iostream and printf works based on a kernel function write(). When your code call printf (we use printf as an example), it will finally call write() to let the kernel work on the IO stuff. After that, write() returns and printf returns and your code continues.
So if you really want to know how the printf works internally, you have to read the source code of the Kernel.
But you shouldn't do that for now.
For a beginner, do not try to go deeper when you haven't got a basic cognition about computer. A computer is a project, just like a building. So the right way to learn it is to learn it level by level. First, learning how to use brick and cement to build a building, this is what you should do for now. What you shouldn't do is that you are learning how to build a building and this is your first time to try to use brick, then you are interested in how to produce a brick and start to focus on brick, this is a wrong way to learn IT.
If you are learning C/C++, just learn it. Remember, learn it level by level. For now, knowing how to use printf is enough.

Can MinGW replicate most unix system calls with no effort?

Background: I'm working on porting a large project that was developed in C++ exclusively for unix systems, to be compatible with windows to make way for an eventual windows distribution. I don't have very much experience in Windows development, but I'd like to get whatever I can do, done right, before senior developers move in and take over.
Question: So for a while, I've been looking up Windows versions for all the unix/posix calls that are used in the software, most coming from dirent.h, unistd.h, and some ones under sys, like sys/stat.h or sys/types.h. And although it'll take a lot of work to modify the programs to adopt the new Win32 API calling conventions and return types (and sometimes all new functions), it'll probably work, eventually.
But I've been seeing this come up frequently, the fact that MinGW, I guess, includes many native unix calls and functionalities as part of the GCC environment, and can translate them into windows-compatible calls so you can compile on Windows, and use said compiled program on Windows easily. In fact, one of the similar questions I read in the sidebar talks about just that. What I don't understand, and seem to have trouble understanding, is exactly the extent of this built-in translation functionality, and where I can find a list of system stuff that'll work with this.
Sorry this post is a little unstructured and that I'm so green with this, but I only have 2 weeks to try to accomplish something with this before I get swapped with a senior developer.
No. MinGW does not attempt to implement UNIX functions on Windows. It cannot replicate most system calls with no effort.
However, Cygwin does do that.

Are C++ applications cross-platform?

One of the first things I learned as a student was that C++ applications don't run on different operating systems. Recently, I read that Qt based C++ applications run everywhere. So, what is going on? Are C++ applications cross-platform or not?
Source code compatible. If I compile the source code, will it run everywhere?
API/ABI compatibility. Does the OS provide the interface to its components in a way that the code will understand?
Binary compatibility. Is the code capable of running on the target host?
Source code compatible
C++ is a standard which defines how structures, memory, files can be read and written.
#include <iostream>
int main( int argc, char ** argv )
{
std::cout << "Hello World" << std::endl;
}
Code written to process data (e.g. grep, awk, sed) is generally cross-platform.
When you want to interact with the user, modern operating systems have a GUI, these are not cross-platform, and cause code to be written for a specific platform.
Libraries such as qt or wxWidgets have implementations for multiple platforms and allow you to program for qt instead of Windows or iOS, with the result being compatible with both.
The problem with these anonymizing libraries, is they take some of the specific benefits of platform X away in the interest of uniformity across platforms.
Examples of this would be on Windows using the WaitForMultipleObjects function, which allows you to wait for different types of events to occur, or the fork function on UNIX, which allows two copies of your process to be running with significant shared state. In the UI, the forms look and behave slightly different (e.g. color-picker, maximize, minimize, the ability to track mouse outside of your window, the behaviour of gestures).
When the work you need to be done is important to you, then you may end up wanting to write platform specific code to leverage the advantages of the specific application.
The C library sqlite is broadly cross-platform code, but its low-level IO is platform specific, so it can make guarantees for database integrity (that the data is really written to disk).
So libraries such as Qt do work, they may produce results which are unsatisfactory, and you end up having to write native code.
API/ABI compatibility
Different releases of UNIX and Windows have some form of compatibility with each other. These allow a binary built for one version of the OS to run on other versions of the OS.
In UNIX the choice of your build machine defines the compatibility. The lowest OS revision you wish to support should be your build machine, and it will produce binaries compatible with subsequent minor versions until they make a breaking change (deprecate a library).
On Windows and Mac OS X, you choose an SDK which allows you to target a set of OS's with the same issues with breaking changes.
On Linux, each kernel revision is ABI incompatible with any other, and kernel modules need to be re-compiled for each kernel revision.
Binary compatibility
This is the ability of the CPU to understand the code. This is more complex than you might think, as the x64 chips, can be capable (depending on OS support) of running x86 code.
Typically a C++ program is packaged inside a container (PE executable, ELF format) which is used by the operating system to unpack the sections of code and data and to load libraries. This makes the final program have both binary (type of code) and API (format of the container) forms of incompatibilities.
Also today if you compile a x86 Windows Application (targeting Windows 7 on Visual Studio 2015), then the code may fail to execute if the processor does not have SSE2 instructions (about 10 years old CPU).
Finally when Apple changed from PowerPC to x86, they provided an emulation layer which allowed the old PowerPC code to run in an emulator on the x86 platform.
So in general binary incompatibility is a murky area. It would be possible to produce an OS which identified invalid instructions (e.g. SSE2) and in the fault, emulated the behaviour, this could be updated as new features come out, and keeps your code running, even though it is binary incompatible.
Even if your platform is incapable of running a form of instruction set, it could be emulated and behave compatibly.
Standard C++ is cross platform in the "write once, compile anywhere" sense, but not in the "compile once, run anywhere" sense.
That means that if you write a program in standard C++, you can compile and then run it on any target environment that has a standard conforming implementation of C++.
You can however not compile your program on your machine, ship the binary and then expect it to work on other targets. (At least not in general. One can of course distribute binaries from C++ code under certain conditions, but those depend on the actual target. This is a broad field.)
Of course, if you use extra, non-standard features like gcc's variable length arrays or third party libraries, you can only compile on systems that provide those extensions and libraries.
Some libraries like Qt and Boost are available on many systems (those two on Linux, Mac and Windows at least I believe), so your code will stay cross platform if you use those.
You can achieve that your source compiles on various platforms, giving you various binaries from the same source base.
This is not "compile once, run anywhere with an appropriate VM" as Java or C# do it, but "write once, compile anywhere with an appropriate environment" the way C has done it all the time.
Since the standard library does not provide everything you might need, you have to look for third-party libraries to provide that functionality. Certain frameworks -- like Boost, Qt, GTK+, wxWidgets etc. -- can provide that. Since these frameworks are written in a way that they compile on different platforms, you can achieve cross-platform functionality in the aforementioned sense.
There are various things to be aware of if you want your C++ code to be cross-platform.
The obvious thing is source that makes assumption on data types. Your long might be 32bit here and 64bit there. Data type alignment and struct padding might differ. There are ways to "play it safe" here, like size_t / size_type / uint16_t typedefs etc., and ways to get it wrong, like wchar_t and std::wstring. It takes discipline and some experience to "get it right".
Not all compilers are created equal. You cannot use all the latest C++ language features, or use libraries that rely on those features, if you require your source to compile on other C++ compilers. Check the compatibility chart first.
Another thing is endianess. Just one example, when you're writing a stream of integers to file on one platform (say, x86 or x86_64), and then read it back again on a different platform (say, POWER), you can run into problems. Why would you write integers to file? Well, UTF-16 is integers... again, discipline and some experience go a long way toward making this rather painless.
Once you've checked all those boxes, you need to make sure of the availability of the libraries you base your code on. While std:: is safe (but see "not all compilers are created equal" above), something as innocent as boost:: can become a problem if you're looking beyond the mainstream. (I helped the Boost guys to fix one or two showstoppers regarding AIX / Visual Age in past years simply because they didn't have access to that platform for testing new releases...)
Oh, and watch out for the various licensing schemes out there. Some frameworks that improve your cross-platform capabilities -- like Qt or Cygwin -- have their strings attached. That is not to say they are not a big help in the right circumstances, just that you need to be aware of copyleft / proprietary licensing requirements.
All that being said, there is Wine ("Wine is not emulation"), which makes executables compiled for Windows run on a variety of Unix-alike systems (Linux, OS X, *BSD, Solaris). There are certain limits to its capabilities, but it's getting better all the time.
Yes. No. Maybe. What is cross-platform C++ code? Cross-platform C++ code is such a code that can be compiled under different operation systems without the need to be modified.
That means, if you explicitly use any platform-dependant headers, your code is no longer cross-platform. Qt solves this problem in the following way: they provide wrappers for everything that is platform-specific. For example, imagine that you are using QFile to open/read/write a file. Your code looks like
QFile file(filename);
file.open(QFile::ReadOnly);
//other stuff
You can compile this code under any OS as long as you have a suitable compiler and Qt libraries for that OS. The code hidden under QFile will use the OS-appropriate file-handling functions, but that shouldn't concern you.
Also, if you only use the standard library, your code can be compiled anywhere where a C++ compiler is present.
The already-compiled applications, however, are not cross-platform in a way that, say, Java applications are - for instance, you can't compile an app for Windows and then run in in Linux, you will have to recompile your code under Linux instead.
C++ is cross-platform. You can use it to build applications that will run on many different operating systems.
What is not cross-platform is the compilers that translate C++ into object code. No single compiler, to my knowledge, has all the necessary features so that when you use it to compile a C++ program, it will automatically run on Windows, Linux and Mac OS.
Qt Creator is integrated with multiple compilers and has build automation. It makes it easy to switch between different setups and target platforms. It provides support for building, running and deploying C++ applications not only for desktop environments but also for mobile devices.
C++ is a programming language. Text. As such, it doesn't run anywhere.
Conforming Standard C++ code is expected to behave equally on any platform; "cross-platform" if you want. Writing (strictly) conforming C++ code requires pedantry because some assumptions often made have dependencies on details that are final to the actual implementation and this is inherited from the targets C++ itself aims to.
Notice we're still talking about C++ code, not C++ programs. Indeed, when we pass to term "program", we've no more guarantees because we aren't talking about C++ anymore; rather, the output of the compiler. This is where portability begins to fade away: executable format, ISA, ABI, low-level routines and so on.
Can you rely on that? If you can't, then you need to integrate your C++ program in the environment it will run on, by recompiling it or using platform-specific elements.

Run MFC program on Linux

I have a rather large MFC based program. I have been tasked to get it running on Linux. I have explained that this will require a re-write of the program either into straight C++ with STL (more work), or into Qt/C++ (less work). I am now told that I need to write wrappers to get every MFC class working in Linux and use preprocessor directives to only compile what is needed in either Linux or Windows. I explained that we are having a communication disconnect and that I believed this to be more work than rewriting the entire project from scratch (which I would not have to do to convert to Qt).
Any good arguments out there to help explain this issue? Am I wrong?
If you don't want a full rewrite, you could try compiling against Winelib. Most things should just work and then since you have the source, you can work around the parts that don't.
The obvious solution is to run the code unchanged and un-recompiled on WINE.
A simple (kludgy) solution is to run an entire Windows VM on the Linux system, and deploy the application as a virtual hard-drive, but that will require a Windows license and is little different than simply connecting a Windows system to a Linux network.
If you must re-write, wxWidgets would be more familiar to an MFC developer than Qt perhaps.
Here is an article on porting MFC apps to Linux that considers the use GTK+, Qt and wxWidgets. It also discusses why you should consider and try WINE before any of those options. The author talks about future articles on the subject, but appears to have written nothing further since 2004.
The sources for MFC and ATL total to over 500000 lines of code, and most of the functionality of this code is actually provided by the Windows API itself. How many lines of code can you write in a day? The scale of what you are being asked to do is simply impractical, even if you're only implementing a small subset of MFC.

How do I write a C++ program that will easily compile in Linux and Windows?

I am making a C++ program.
One of my biggest annoyances with C++ is its supposed platform independence.
You all probably know that it is pretty much impossible to compile a Linux C++ program in Windows and a Windows one to Linux without a deluge of cryptic errors and platform specific include files.
Of course you can always switch to some emulation like Cygwin and wine, but I ask you, is there really no other way?
The language itself is cross-platform but most libraries are not, but there are three things that you should keep in mind if you want to go completely cross-platform when programming in C++.
Firstly, you need to start using some kind of cross-platform build system, like SCons. Secondly, you need to make sure that all of the libraries that you are using are built to be cross-platform.
And a minor third point, I would recommend using a compiler that exists on all of your target platforms, gcc comes in mind here (C++ is a rather complex beast and all compilers have their own specific quirks).
I have some further suggestions regarding graphical user interfaces for you. There are several of these available to use, the three most notable are:
GTK+
QT
wxWidgets
GTK+ and QT are two API's that come with their own widget sets (buttons, lists, etc.), whilst wxWidgets is more of a wrapper API to the currently running platforms native widget set. This means that the two former might look a bit differently compared to the rest of the system whilst the latter one will look just like a native program.
And if you're into games programming there are equally many API's to choose from, all of them cross-platform as well. The two most fully featured that I know of are:
SDL
SFML
Both of which contains everything from graphics to input and audio routines, either through plugins or built-in.
Also, if you feel that the standard library in C++ is a bit lacking, check out Boost for some general purpose cross-platform sweetness.
Good Luck.
C++ is cross platform. The problem you seem to have is that you are using platform dependent libraries.
I assume you are really talking about UI componenets- in which case I suggest using something like GTK+, Qt, or wxWindows- each of which have UI components that can be compiled for different systems.
The only solution is for you to find and use platform independent libraries.
And, on a side note, neither cygwin or Wine are emulation- they are 100% native implementations of the same functionality found their respective systems.
Once you're aware of the gotchas, it's actually not that hard. All of the code I am currently working on compiles on 32 and 64-bit Windows, all flavors of Linux, as well as Unix (Sun, HP and IBM). Obviously, these are not GUI products. Also, we don't use third-party libraries, unless we're compiling them ourselves.
I have one .h file that contains all of the compiler-specific code. For example, Microsoft and gcc disagree on how to specify an 8-bit integer. So in the .h, I have
#if defined(_MSC_VER)
typedef __int8 int8_t;
#elif defined(__unix)
typedef char int8_t;
#endif
There's also quite a bit of code that uniformizes certain lower-level function calls, for example:
#if defined(_MSC_VER)
#define SplitPath(Path__,Drive__,Name__,Ext__) _splitpath(Path__,Drive__,Dir__,Name__,Ext__)
#elif defined(__unix)
#define SplitPath(Path__,Drive__,Name__,Ext__) UnixSplitPath(Path__,Drive__,Name__,Ext__)
#endif
Now in this case, I believe I had to write a UnixSplitPath() function - there will be times when you need to. But most of the time, you just have to find the correct replacement function. In my code, I'll call SplitPath(), even though it's not a native function on either platform; the #defines will sort it out for me. It takes a while to train yourself.
Believe it or not, my .h file is only 240 lines long. There's really not much to it. And that includes handling endian issues.
Some of the lower-level stuff will need conditional compilation. For example, in Windows, I use Critical Sections, but in Linux I need to use pthread_mutex's. CriticalSection's were encapsulated in a class, and this class has a good deal of conditional compilation. However, the upper-level program is totally unaware, the class functions exactly the same regardless of the platform.
The other secret I can give you is: build your project on all platforms often (particularly at the beginning). It is a lot easier when you nip the compiler problems in the bud. Don't wait until you're done development before you attempt to go cross-platform.
Stick to ANSI C++ and libraries that are cross-platform and you should be fine.
Create some low-level layer that will contain all the platform-specific code in your project. Implement 2 versions of this layer - one for Windows, and one for Linux - with the same interface, and build them to 2 libraries. Access all platform-specific functionality in your project through that interface.
This layer can contain general classes for file access, printing, GUI, etc.
All the (now non-platform-specific) code that uses that layer can now be compiled once on Windows and once on Linux.
Compile it in Window and again in Linux. Unless you used platform specific libraries, it should work. It's not like Java, where you compile it once and it works everywhere. No one has made a virtual machine for C++, and probably never will. The code you write in C++ will work in any platform. You just have to compile it in every platform first.
Suggestions:
Use typedef's for ints. Or #include <stdint.h>. Some machines think int is 8 bytes, some 4. (It used to be 2 and 4. How the times have changed.)
Use encapsulation wherever possible. My last window's compiler thought %lld was %I64d", gave screwy return values for vsnprintf(), similar issues with close() and sockets, etc.
Watch out for stack size / buffer size limits. I've run into an 8k UDP buffer limit under Windows, amongst other problems.
For some reason, my Window's C++ compiler wouldn't accept dynamicly-sized allocations off the stack. E.g.: void foo(int a) { int b[a]; } Be aware of those sort of things. Plan how you will recode.
#ifdef can be your best friend. And your worst enemy! (At the same time!)
It can certainly be done. But compile and test early and often!
Also Linux and Windows have diffrent data model.
See article: The forgotten problems of 64-bit programs development
Standard C++ is code compiles without errors on any platform.
Try using Bloodshed Dev C++ on windows (instead of VC++ / Borland C++).
As Bloodshed Dev C++ confirms C++ standards, so programs compiled using it will be compiled on linux without errors in most of the cases.