C++: compute a number's complement and its number of possible mismatches - c++

I got a bit stuck with my algorithm and I need some help to solve my problem. I think an example would explain better my problem.
Assuming:
d = 4 (maximum number of allowed bits in a number, 2^4-1=15).
m_max = 1 (maximum number of allowed bits mismatches).
kappa = (maximum number of elements to find for a given d and m, where m in m_max)
The main idea is for a given number, x, to compute its complement number (in binary base) and all the possible combinations for up to m_max mismatches from x complement's number.
Now the program start to scan from i = 0 till 15.
for i = 0 and m = 0, kappa = \binom{d}{0} = 1 (this called a perfect match)
possible combinations in bits, is only 1111 (for 0: 0000).
for i = 0 and m = 1, kappa = \binom{d}{1} = 4 (one mismatch)
possible combinations in bits are: 1000, 0100, 0010 and 0001
My problem was to generalize it to general d and m. I wrote the following code:
#include <stdlib.h>
#include <iomanip>
#include <boost/math/special_functions/binomial.hpp>
#include <iostream>
#include <stdint.h>
#include <vector>
namespace vec {
typedef std::vector<unsigned int> uint_1d_vec_t;
}
int main( int argc, char* argv[] ) {
int counter, d, m;
unsigned num_combination, bits_mask, bit_mask, max_num_mismatch;
uint_1d_vec_t kappa;
d = 4;
m = 2;
bits_mask = 2^num_bits - 1;
for ( unsigned i = 0 ; i < num_elemets ; i++ ) {
counter = 0;
for ( unsigned m = 0 ; m < max_num_mismatch ; m++ ) {
// maximum number of allowed combinations
num_combination = boost::math::binomial_coefficient<double>( static_cast<unsigned>( d ), static_cast<unsigned>(m) );
kappa.push_back( num_combination );
for ( unsigned j = 0 ; j < kappa.at(m) ; j++ ) {
if ( m == 0 )
v[i][counter++] = i^bits_mask; // M_0
else {
bit_mask = 1 << ( num_bits - j );
v[i][counter++] = v[i][0] ^ bits_mask
}
}
}
}
return 0;
}
I got stuck in the line v[i][counter++] = v[i][0] ^ bits_mask since I was unable to generalize my algorithm to m_max>1, since I needed for m_max mismatches m_max loops and in my original problem, m is unknown until runtime.

i wrote a code that do what i want, but since i am newbie, it is a bit ugly.
i fixed m and d although this code would work fine for genral m and d.
the main idea is simple, assuming we would like to compute the complement of 0 up to two failure (d= 4,m=2), we will see that max number of possibilities is given by \sum_{i = 0)^2\binom{4}{i} = 11.
The complement to 0 (at 4 bits) is 15
With 1 bit possible mismatch (from 15): 7 11 13 14
with 2 bits possible mismatches (from 15): 3 5 6 9 10 12
i wanted that the output of this program will be a vector with the numbers 15 7 11 13 14 3 5 6 9 10 12 inside it.
i hope that this time i am more clear with presenting my question (although i also supplied the solution). I would appreachiate if someone could point out, in my code, ways to improve it and make it faster.
regards
#include <boost/math/special_functions/binomial.hpp>
#include <iostream>
#include <vector>
#define USE_VECTOR
namespace vec {
#if defined(USE_VECTOR) || !defined(USE_DEQUE)
typedef std::vector<unsigned int> uint_1d_vec_t;
typedef std::vector<uint_1d_vec_t> uint_2d_vec_t;
#else
typedef std::deque<unsigned int> uint_1d_vec_t;
typedef std::deque<uint_1d_vec_t> uint_2d_vec_t;
#endif
}
using namespace std;
void get_pointers_vec( vec::uint_2d_vec_t &v , unsigned num_elemets , unsigned max_num_unmatch , unsigned num_bits );
double get_kappa( int m , int d );
int main( ) {
unsigned int num_elements , m , num_bits;
num_elements = 16;
num_bits = 4; // 2^4 = 16
m = 2;
double kappa = 0;
for ( unsigned int i = 0 ; i <= m ; i++ )
kappa += get_kappa( num_bits , i );
vec::uint_2d_vec_t Pointer( num_elements , vec::uint_1d_vec_t (kappa ,0 ) );
get_pointers_vec( Pointer , num_elements , m , num_bits );
for ( unsigned int i = 0 ; i < num_elements ; i++ ) {
std::cout << setw(2) << i << ":";
for ( unsigned int j = 0 ; j < kappa ; j++ )
std::cout << setw(3) << Pointer[i][j];
std::cout << std::endl;
}
return EXIT_SUCCESS;
}
double get_kappa( int n , int k ) {
double kappa = boost::math::binomial_coefficient<double>( static_cast<unsigned>( n ), static_cast<unsigned>(k) );
return kappa;
}
void get_pointers_vec( vec::uint_2d_vec_t &v , unsigned num_elemets , unsigned max_num_unmatch , unsigned num_bits ) {
int counter;
unsigned num_combination, ref_index, bits_mask, bit_mask;
vec::uint_1d_vec_t kappa;
bits_mask = pow( 2 , num_bits ) - 1;
for ( unsigned i = 0 ; i < num_elemets ; i++ ) {
counter = 0;
kappa.clear();
ref_index = 0;
for ( unsigned m = 0 ; m <= max_num_unmatch ; m++ ) {
num_combination = get_kappa( num_bits , m ); // maximum number of allowed combinations
kappa.push_back( num_combination );
if ( m == 0 ) {
v[i][counter++] = i^bits_mask; // M_0
}
else if ( num_bits == kappa.at(m) ) {
for ( unsigned k = m ; k <= num_bits ; k++ ) {
bit_mask = 1 << ( num_bits - k );
v[i][counter++] = v[i][ref_index] ^ bit_mask;
}
}
else {
// Find first element's index
ref_index += kappa.at( m - 2 );
for( unsigned j = 0 ; j < ( kappa.at(m - 1) - 1 ) ; j++ ) {
for ( unsigned k = m + j ; k <= num_bits ; k++ ) {
bit_mask = 1 << ( num_bits - k );
v[i][counter++] = v[i][ref_index] ^ bit_mask;
}
ref_index++;
}
}
}
}
}

Related

Rotate left part of hex number in C++

I have the following problem : I have a hex number (datatype : std::uint64_t) in C++, and the hex number contains all the digits from 1 to a given n. The question is now to rotate the first k digits of the hex number, for example :
hex = 0x436512, k = 3 --> 0x634512
I have already tried splitting the hex number into two parts, e.g
std::uint64_t left = hex >> ((n - k) * 4);
std::uint64_t right = ((1UL << ((n - k) * 4)) - 1) & hex;
and then rotating left and merging left and right together. Is there a possibility to do this in-place and by only using bit-manipulation and/or mathematical operators?
As a baseline you can use this which is basically converting to digits and back.
#include <cstdio>
#include <cstdint>
#include <array>
uint64_t rotate( uint64_t value, int k ) {
// decompose
std::array<uint8_t,16> digits;
int numdigits = 0;
while ( value > 0 ) {
digits[numdigits] = value % 16;
value = value / 16;
numdigits += 1;
}
if ( k>numdigits ) return 0;
// revert digits
int p1 = numdigits - 1;
int p2 = numdigits - k;
for ( ; p1>p2; p1--,p2++ ) {
uint8_t tmp = digits[p1];
digits[p1] = digits[p2];
digits[p2] = tmp;
}
// reconstruct
for ( int j=0; j<numdigits; ++j ) {
value = (value*16) + digits[numdigits-1-j];
}
return value;
}
int main() {
uint64_t value = 0x123ffffff;
for ( int j=0; j<8; ++j ) {
value = value >> 4;
printf( "%lx %lx\n", value, rotate(value,3) );
}
}
Godbolt: https://godbolt.org/z/77qWEo9vE
It produces:
Program stdout
123fffff 321fffff
123ffff 321ffff
123fff 321fff
123ff 321ff
123f 321f
123 321
12 0
1 0
You actually do not need to decompose the entire number, you can strictly decompose only the left digits.
#include <cstdio>
#include <cstdint>
#include <array>
uint64_t rotate( uint64_t value, int k ) {
// sanity check
if ( value == 0 ) return 0;
// fast find number of digits
int numdigits = (63-__builtin_clzl(value))/4 + 1;
if ( k>numdigits ) return 0;
// Decompose left and right
int rightbits = 4*(numdigits-k);
uint64_t left = value >> rightbits;
uint64_t right = rightbits==0 ? 0 : value & (uint64_t(-1)>>(64-rightbits));
// decompose left
uint64_t rot = 0;
for ( int j=0; j<k; ++j ) {
uint64_t digit = left % 16;
left = left / 16;
rot = (rot*16) + digit;
}
// rejoin
return right | (rot<<rightbits);
}
int main() {
uint64_t value = 0x123ffffff;
for ( int j=0; j<8; ++j ) {
value = value >> 4;
printf( "%lx %lx\n", value, rotate(value,3) );
}
}
Produces the same output.
Godbolt: https://godbolt.org/z/P3z6W8b3M
Running under Google benchmark:
#include <benchmark/benchmark.h>
#include <vector>
#include <iostream>
uint64_t rotate1(uint64_t value, int k);
uint64_t rotate2(uint64_t value, int k);
struct RotateTrivial {
uint64_t operator()(uint64_t value, int k) {
return rotate1(value, k);
}
};
struct RotateLeftOnly {
uint64_t operator()(uint64_t value, int k) {
return rotate2(value, k);
}
};
template <typename Fn>
static void Benchmark(benchmark::State& state) {
Fn fn;
for (auto _ : state) {
uint64_t value = uint64_t(-1);
for (int j = 0; j < 16; ++j) {
for (int k = 1; k < j; ++k) {
uint64_t result = fn(value, k);
benchmark::DoNotOptimize(result);
}
value = value >> 4;
}
}
}
BENCHMARK(Benchmark<RotateTrivial>);
BENCHMARK(Benchmark<RotateLeftOnly>);
BENCHMARK_MAIN();
Produces on an AMD Threadripper 3960x 3.5GHz
--------------------------------------------------------------------
Benchmark Time CPU Iterations
--------------------------------------------------------------------
Benchmark<RotateTrivial> 619 ns 619 ns 1158174
Benchmark<RotateLeftOnly> 320 ns 320 ns 2222098
Each iteration has 105 calls so it's about 6.3 ns/call or 20 cycles for the trivial version and 3.1ns/call or 10 cycles for the optimized version.

Extract diagonal elements (like spdiags in matlab)

I want to implement ,as possible , spdiags function in C.
(I prefer C to C++ and I don't want to use C++ algorithms for now)
Having as input matrix:
inMx =
1 0 0
4 5 6
0 7 9
you should obtain (running that using spdiags in Matlab) :
ouMx =
4 1 0
7 5 0
0 9 6
(one thing I can't understand though , is even though at the documentation it says that zeros are inserted at the top if you are below the main diagonal , here you we can see that happens the opposite , but in the example in the link it's ok )
With my code below , I am taking as output:
ouMx =
4 7 0
7 5 9
0 9 6
so I think I am close!
I zeroed out the output matrix instead of having to insert zeros at the bottom or top of columns.
But I can't completeley handled the above/below the main diagonal.
I used if ( j > i ) swap rows , but it doesn't work , so I just use swap rows.
( I am assuming square matrix for this example ,but it should work for any matrix )
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
void Diag( int Rows , int Cols , float * inMx , float * ouMx );
void swapRows( int Rows , int Cols , float * Mx );
int main( int argc, const char* argv[] ){
int Rows = 3 , Cols = 3;
float *inMx = (float *) malloc ( Rows * Cols * sizeof (float) );
float *ouMx = (float *) malloc ( Rows * Cols * sizeof (float) );
// assume row major order
inMx[0] = 1.0;
inMx[1] = 0.0;
inMx[2] = 0.0;
inMx[3] = 4.0;
inMx[4] = 5.0;
inMx[5] = 6.0;
inMx[6] = 0.0;
inMx[7] = 7.0;
inMx[8] = 9.0;
// print input matrix ( row major )
printf("\n Input matrix \n\n");
for ( int i = 0; i < Rows; i++ )
for ( int j = 0; j < Cols; j++ ) {
printf("%f\t",inMx[ i * Cols + j ]);
if( j == Cols-1 )
printf("\n");
}
printf("\n");
// extract diagonals
Diag( Rows , Cols , inMx , ouMx );
// print Diagonal matrix
printf("\n Diagonal matrix \n\n");
for ( int i = 0; i < Rows; i++ )
for (int j = 0; j < Cols; j++ ) {
printf("%f\t",ouMx[ i * Cols + j ]);
if( j == Cols-1 )
printf("\n");
}
printf("\n");
free( inMx );
free( ouMx );
return 0;
}
void Diag( int Rows , int Cols , float * inMx , float * ouMx )
{
//zero out ouMx
memset( ouMx , 0 , Rows * Cols * sizeof(float) );
// scan from the last line to the first -1 for each column
for ( int j = 0; j < Cols; j++ )
{
for ( int i = ( Rows - 1 ); i > 0 ; i-- )
{
// neglect the zero elements
if ( inMx[ i * Cols + j ] != 0 )
{
ouMx[ i * Cols + j ] = inMx[ i * Cols + j ];
//if the element in the next colulmn is !=0
if ( inMx[ ( i + 1 ) * Cols + ( j + 1 ) ] != 0 )
{
ouMx[ ( i + 1 ) * Cols + j ] = inMx[ ( i + 1 ) * Cols + ( j + 1 ) ];
}
}
//if we are above the main diagonal
//swap elements of a row (in each column) in order to have the zeros at bottom/top
// if ( i > j ) doesn't work
swapRows( Rows , Cols , ouMx );
}
}
}
void swapRows( int Rows , int Cols , float * Mx )
{
float temp;
for ( int j = 0; j < Cols; j++ )
{
for ( int i = ( Rows - 1 ); i > 0 ; i-- )
{
temp = Mx[ ( i - 1 ) * Cols + j ];
Mx[ ( i - 1 ) * Cols + j ] = Mx[ i * Cols + j ];
Mx[ i * Cols + j ] = temp;
}
}
}

How to make sure atleast m out of n bits are on?

I'm given n sets and need to make sure that atleast m sets are selected. I'm planning to deal with bits.
My approach is:
for i in [0,(2^n)-1]
convert i to binary
if number of 1s are greater than or equal to m
{ Some calculations requiring which bits are on }
Now, is there any other way I can make sure that number of on bits are atleast m ? In my above approach, I'll be wasting time in converting numbers to binary and then checking if no. of on bits are >=m. Is there a way to cut short the loop ? (I'm dealing in C++)
I guess you need to generate bitmasks to select a subset of atleast "m" elements from a set of "n" elements.
This can be easily done if we have an algorithm to generate all the bitmasks having exactly "m" bits set.
#include <iostream>
#include <vector>
#include <cassert>
using namespace std;
// Given "n" and "r", generate all the possible nCr subsets of an array of size "n"
typedef unsigned long long ULL;
// Generate the lowest number bigger than "num" having exactly "r" set bits
// Algorithm (From Cracking The Coding Interview, 5th Edition) -:
// 1. Find the position of the rightmost "non-trailing" zero (such that there is atleast one '1' on its right).
// Let this position be 'p'
// If there does not exist such a zero, the input is already the largest number possible.
// 2. Flip the bit at 'p' to 1 from 0.
// 3. Count the number of zeroes and ones to the right of 'p'.
// Let that number be c0 and c1 respectively.
// 4. Set all the bits to the right of 'p' to 0.
// 5. Set the first (c1-1) bits (starting from the right) to 1.
ULL NextBigger( ULL num )
{
ULL numBak = num;
// Compute c0 and c1
// c0 = Number of zeroes to the right of the rightmost non-trailing zero
size_t c0 = 0;
// c1 = Number of ones to the right of the rightmost non-trailing zero
size_t c1 = 0;
while ( numBak && ( ( numBak & 1 ) == 0 ) )
{
c0++;
numBak >>= 1;
}
while ( ( numBak & 1 ) == 1 )
{
c1++;
numBak >>= 1;
}
// If the input is either 0,
// or of the form "1111..00000",
// then there is no bigger number possible
// Note that for this to work, num should be unsigned
if ( c0 + c1 == 0 || c0 + c1 == ( sizeof( num ) * 8 ) )
{
return 0;
}
// Position of the rightmost non-trailing zero ( starting from the right )
const size_t p = c0 + c1;
// Flip the rightmost non-trailing zero
num |= 1 << p;
// Clear all bits to the right of p
num &= ~( ( 1 << p ) - 1 );
// Insert (c1-1) ones on the right of p
num |= ( 1 << ( c1 - 1 ) ) - 1;
return num;
}
vector<ULL> GenerateSubsets( const size_t& n, const size_t& r )
{
assert( n > 0 );
assert( r > 0 );
assert( n >= r );
vector<ULL> subsets;
// The smallest number having exactly "r" bits set
ULL lowest = ( 1ULL << r ) - 1;
// The biggest number having exactly "r" bits set
ULL highest = lowest << ( n - r );
// The set bits in the binary of "bitMask" denote the positions of the set included in the subset
// This loop should run exactly nCr times
for ( ULL bitMask = lowest; bitMask <= highest; bitMask = NextBigger( bitMask ) )
{
subsets.push_back( bitMask );
}
return subsets;
}
// Extracts the subset indices from the bitmask
vector<size_t> DecodeMask( ULL bitMask )
{
vector<size_t> positions;
size_t i = 0;
while ( bitMask )
{
if ( bitMask & 1 )
{
positions.push_back( i );
}
bitMask >>= 1;
i++;
}
return positions;
}
int main()
{
size_t n = 5;
size_t r = 2;
cout << "Generating subsets of size " << r << "\n";
auto vec = GenerateSubsets( n, r );
cout << "Number of subsets = " << vec.size() << "\n";
// Print the subset indices
for ( size_t i = 0; i < vec.size(); i++ )
{
auto decode = DecodeMask( vec[i] );
for ( size_t j = 0; j < decode.size(); j++ )
{
cout << decode[j] << " ";
}
cout << "\n";
}
}
Now we can easily modify this to generate all the bitmasks having at least "m" bits set by applying the above algo while incrementing "m" upto "n".
// Rest of the code same as above
int main()
{
size_t n = 5;
size_t m = 2;
for ( size_t r = m; r <= n; r++ )
{
cout << "Generating subsets of size " << r << "\n";
auto vec = GenerateSubsets( n, r );
cout << "Number of subsets = " << vec.size() << "\n";
// Print the subset indices
for ( size_t i = 0; i < vec.size(); i++ )
{
auto decode = DecodeMask( vec[i] );
for ( size_t j = 0; j < decode.size(); j++ )
{
cout << decode[j] << " ";
}
cout << "\n";
}
cout << "\n";
}
}

Why did I get a Memory-related error here?

I had a problem from a website. Given a string s and st, I have to found all possible combination of st in s. For example,
s = "doomdogged"
st = "dg"
answer = 4
I can choose the d from 0 or 4, and g from 6 or 7. Which gives me 4 possible combinations.
Here's my code:
#include <iostream>
#include <vector>
using namespace std;
string s, st;
bool target[26];
vector<int> positions[26];
vector<vector<int>> possibleCombinations;
void DFS_Enumeration(int, vector<int>*);
int DFS_index_max = 0;
int main(int argc, char *argv[])
{
int answer = 0;
cin >> s; //Given a string s
cin >> st; //Given a string st
//Find all possible combination of st in s
for ( int i = 0 ; i < 26 ; ++ i )
target[i] = 0;
for ( int i = 0 ; i < st.length() ; ++ i )
target[st[i] - 97] = 1;
for ( int i = 0 ; i < 26 ; ++ i )
{
if ( target[i] == 0 ) continue;
for ( int j = 0 ; j < s.length() ; ++ j )
{
if ( s[j] == i + 97 ) positions[i].push_back(j);
}
}
DFS_index_max = st.length();
vector<int> trail(0);
DFS_Enumeration(0, &trail); //Here I got an runtime error
for ( vector<int> vi : possibleCombinations )
{
int currentMax = 0;
for ( int i = 0 ; i < vi.size() ; ++ i )
{
if ( vi[i] > currentMax )
{
if ( i == vi.size() - 1 ) ++ answer;
currentMax = vi[i];
continue;
}
else
break;
}
}
cout << answer;
}
void DFS_Enumeration(int index, vector<int>* trail)
{
if ( index == DFS_index_max )
{
possibleCombinations.push_back(*trail);
return;
}
for ( int i = 0 ; i < positions[st[index] - 97].size() ; ++ i )
{
trail -> push_back(positions[st[index] - 97][i]);
DFS_Enumeration(++index, trail);
trail -> pop_back();
}
return;
}
First I look for characters in st, and mark them as needed to found in my boolean array target.
Then, I use DFS to enumerate all possible combinations. For the above example of "doomdogged" and "dg", d exists in 0, 4, 9. And g exist in 6, 7. I will get 06, 07, 46, 47, 96, 97.
Lastly, I count those which make sense, and output the answer. For some reason, my code doesn't work and generate an runtime error concerning memory at the line I've marked.
DFS_Enumeration might increment index any number of times, so st[index] could likely be past the end of the string st.

Floating point exception( core dump

Program: So I made a program that take two numbers, N and L. N is the size of a 2D array and L is a number from 3 - 16. The program builds the array and starts at the center and works its way out in a counter clockwise spiral. I is the value of the center and its as you go through the array( in the spiral ) the value will increase by one. It it is prime, that number will be assigned to that spot and if not it * will take its place instead.
Error: I'm getting a "Floating point exception " error, how would I solve this?
Code:
void Array_Loop( int *Array, int n, int L ) ;
int Is_Prime( int Number ) ;
int main( int argc, char *argv[] ){
int **Array ;
int n, L ;
n = atoi( argv[1] ) ;
L = atoi( argv[2] ) ;
Matrix_Build( &Array, n, n ) ;
Array_Loop( Array, n, L ) ;
return 0 ;
}
void Array_Loop( int *Array, int n, int L ){
int i, j, k, h ;
int lctn, move;
lctn = n / 2 + 1 ;
i = lctn ;
j = lctn ;
move = 1
while( i != 0 && j != n ){
for( j = lctn ; j < lctn + move ; j++ ){
if( L % 2 == 2) Array[i][j] = -1 ;
else Array[i][j] = Is_Prime( L ) ;
L++ ;
}
move = move * -1 ;
for( i = i ; i > lctn - move ; i-- ){
if( L % 2 == 2) Array[i][j] = -1 ;
else Array[i][j] = Is_Prime( L ) ;
L++ ;
}
move-- ;
for( j = j ; j > lctn - move ; j-- ){
if( L % 2 == 2) Array[i][j] = -1 ;
else Array[i][j] = Is_Prime( L ) ;
L++ ;
}
move = move * -1 ;
for( i = i ; i < lctn - move ; i-- ){
if( L % 2 == 2) Array[i][j] = -1 ;
else Array[i][j] = Is_Prime( L ) ;
L++ ;
}
move++ ;
}
}
int Is_Prime( int Number ){
int i ;
for( i = 0 ; i < Number / 2 ; i++ ){
if( Number % i != 0 ) return -1 ;
}
return Number ;
}
You are getting Floating point exception because Number % i, when i is 0:
int Is_Prime( int Number ){
int i ;
for( i = 0 ; i < Number / 2 ; i++ ){
if( Number % i != 0 ) return -1 ;
}
return Number ;
}
Just start the loop at i = 2. Since i = 1 in Number % i it always be equal to zero, since Number is a int.
Floating Point Exception happens because of an unexpected infinity or NaN.
You can track that using gdb, which allows you to see what is going on inside your C program while it runs. For more details:
https://www.cs.swarthmore.edu/~newhall/unixhelp/howto_gdb.php
In a nutshell, these commands might be useful...
gcc -g myprog.c
gdb a.out
gdb core a.out
ddd a.out