Get pContext in Try/Catch handler? - c++

When an exception happens, as you know, it passes pContext to the SEH. Is there anyways to access the pContext in a Try/Catch? I guess I could have the exception class grab it when being initiated but that would only work for that class and not for every exception.

Hard to know what you're looking for...
THE Guide for SEH: http://www.microsoft.com/msj/0197/Exception/Exception.aspx
Have a look to that as well:
http://www.programmingunlimited.net/siteexec/content.cgi?page=mingw-seh
http://msdn.microsoft.com/en-us/library/swezty51(VS.80).aspx
Note: take care depending on the version of your compiler C++ exceptions and SEH exceptions might not be handle all together: http://www.thunderguy.com/semicolon/2002/08/15/visual-c-exception-handling/

Related

Why wouldn't you declare main() using a function-try-block?

There are a few SO posts about whether or not declaring main() using function-try-block syntax is valid syntax, and the general consensus seems to be that it's perfectly valid. This left me wondering... is there any reason (performance, style, thread synchronization, multithreading) why one wouldn't use this syntax for main() as a general rule to catch any unhandled exceptions anywhere more gracefully?
Obviously, ideally there won't be unhandled exceptions, but they happen and I think it'd be nice to provide something more informative than the OS-specific default handler. For example, in my case, I'd like to provide a support email address to the user so they can report the crash and have my program submit a log to my cloud-based crash log.
For example, in my case, I'd like to provide a support email address to the user
Well, how are you going to do that in a server with no user-facing interface?
Actually, how are you going to do that even in a process with user-facing components, if you have no way to tell in the catch block what state they're in?
And, for those processes where you can't show the user anything useful (or don't have any concept of a "user" in the first place), what would you do in your catch block that would be better than the default terminate?
As for
... more informative than the OS-specific default handler ...
many OS' default behaviour will be to save a complete snapshot of the process execution state, at the point the un-handled exception is thrown, to a file for debugging. As the developer, I can't think of many default behaviours that would be more informative.
Admittedly I'd prefer something more polished as the end user of a desktop app, but that's a pretty small subset of C++ programs.
You can easily convert
int main() try {
// The real code of main
}
catch (...)
{
}
to
int realMain()
{
// The real code of main
}
int main()
{
try
{
return realMain();
}
catch ( ... )
{
}
}
without losing functionality/behavior.
I am going to guess that whether you use the first version or the second version is a matter of coding practices of a team. From a compiler and run time standpoint, I don't see any semantic difference.
If you happened to have a variable that you want to access in your catch block, you would need the curly braces to provide visibility. But even that could be handled with nested try/catch...
why one wouldn't use this syntax for main() as a general rule to catch
any unhandled exceptions anywhere more gracefully?
compatibility with C.
Sometimes there is no way to handle unhandled exceptions more gracefully.
Obviously, ideally there won't be unhandled exceptions, but they
happen and I think it'd be nice to provide something more informative
than the OS-specific default handler. For example, in my case, I'd
like to provide a support email address to the user so they can report
the crash and have my program submit a log to my cloud-based crash
log.
If unexpected exception happens you can not be sure that it is possible to handle it correctly. What are you going to do if there is a network error exception in your example. And trying to send e-mail causes another exception? There can be other errors when you can not be sure that your data is not corrupted and you can not be sure that your program can run correctly after this error. So if you don't know what error happened it is better to allow your program to crash.
You can implement another "watcher" service that checks if process is running and if it has been crashed it can send e-mail to your users with the logs and core dumps.
If you catch the (otherwise) uncaught object, you won't be able to figure out how the execution reached the throw by inspecting the stack trace, because when exception handler is executed, the stack has already been unwound.
If you let the unexpected exception to be uncaught, you may be able to inspect the stack trace in the terminate handler - this is not guaranteed by the standard, but that's not a big deal since there is no standard way to inspect the stack trace either (in C++). You can either use platform specific API within the program, or an external debugger for the inspection.
So for example in your case, the advantage of not catching the exception would be that you can attach a stack trace to the log entry that you intend to submit.
Also, there are cases where an exception can not be handled by a catch block. For example, when you throw from a destructor that is being executed as a result of throwing an exception. So, to handle these "uncatchable" exceptions, you need a terminate handler anyway, so there is little advantage in duplicating the functionality in the case of uncaught exceptions.
As for the syntax that you use to catch the exception, there is no difference. The case where the function try block is different is a constructor, where it allows catching exceptions thrown by sub object constructors.

MS Visual Studio 2005 C++ exception handling

I have a C++ application built in MS Visual Studio 2005 that links to a 3rd party library. For a certain input, the application crashes in the 3rd party library (apparently somewhere in realloc.c; so has to be a memory issue of some kind). I ran in release because the input is huge. So I ran until it crashes and then choose to debug. While I separately debug the guilty function, I was hoping to use some exception handling to prevent the application from crashing and instead exit cleanly. So I used something like:
try {
//- call 3rd party application function that fails
}
catch(...) {
//- handle exception or whatever
Logger::Fatal("Fatal error: Exiting...");
return false;
}
But to my surprise the application still crashes! I was expecting to see it display the error message since I've presumably caught all exceptions with the ellipsis (...); what am I missing here? I even tried setting /EHca (was /EHsc) in Project Properties -> C/C++ -> Code Configuration -> Enable Exception Handling. On a related note about what might be causing the problem, is the following usage correct?
my_class* mc[] = {nil, nil, nil};
for (int i = 0; i < 3; ++i) {
mc[i] = new my_class();
//-Do stuff with mc[i]
if (mc[i] != nil) {
delete mc[i];
mc[i] = nil;
}
}
The failure to get the exception handling working is rather puzzling. I would certainly appreciate ideas/insights from the C++ gurus out there. BTW, the same problem also occurs on Linux (RHEL5) but I am currently trying to get the exception handling to work on Windows.
NOTE: When I let it debug after the crash. I do get an "Access violation..unable to read location" message. With this updated info, I was hoping something in C++ would still work on both Windows & Linux for such crashes.
Have you tried catching the crash by calling SetUnhandledExceptionFilter?
As Miguel suggested, a correct way to solve your problem is probably to use SetUnhandledExceptionFilter. But I'd like to explain your phenomena in details nevertheless.
First of all, not all the program "crashes" are related to exceptions. For instance, CRT may trigger program termination upon errors, such as invalid element access in a vector, or a pure virtual destructor call. If you want to cover those cases as well - see set_unexpected, set_terminate and etc.
Besides of this, catch block may only catch exceptions thrown from the appropriate code block. OTOH there may be functions that are called elsewhere, such as window procedures (if applicable), other threads and etc.
Now, regarding your problem. Let's first realize why things like catch(...) may catch things like access violation, and etc, and why this does not always happen (like in your case).
Windows provides its own exception handling mechanism - SEH, structured exception handling. It's far superior to C++ exception handling. In addition hardware interrupts (caused by CPU) are automatically "converted" into SEH exceptions, so that the code that uses SEH handles both software exceptions and hardware failures.
Microsoft C++ compilers actually implement C++ exceptions via SEH. That is throw is implemented via RaiseException with specifying C++ - specific exception code and parameters, catch is a C++ - specific wrapper for __except, and for every object with destructor the compiler generates something similar to __finally block. And this also works vice-versa. When a non-C++ exception is raised - the same code generated for C++ exceptions is executed.
In addition there are so-called compiler exception handling options that affect both the compiler exception handling code generation, and its behavior in runtime. They are called exception handling models:
synchronous. The compiler generates a code that is guaranteed to work correctly only if exceptions are raised explicitly. This includes throw statments, and all the "foreign" functions whose code is not visible to the compiler (in some variations - only C++ foreign functions). In particular reading from memory is considered "safe".
asynchronous. The compiler is not allowed to assume anything about where exceptions may arise. Hence it generates the code that should work correctly even if exception is arises from accessing a memory address.
In addition, CRT code that's invoked in catch (...) deliberately ignores non-C++ exceptions, unless asynchronous EH model is choosen.
So that if you want catch (...) to catch non-C++ exceptions - you must choose the asynchronous EH model.
Once I've written an article on the codeproject, after I had a related problem in driver development. It explains all this in details.

Convert std::exception to EXCEPTION_POINTERS

I may be completely misunderstanding how to use the Google Breakpad API, and am open to comments / suggestions / rude remarks if that is the case. I am trying to call the following C++ function:
bool WriteMinidumpForException(EXCEPTION_POINTERS* exinfo);
I have a reference to a std::exception:
try {
return QApplication::notify(receiver, event);
} catch (std::exception &ex) {
eh_.WriteMinidumpForException(?????);
// ... do some more stuff and ultimately kill this process
}
(eh_ is a google_breakpad::ExceptionHandler.)
What do I put in the ?????
Background: The reason this is necessary (I think) is that Qt will not support an exception thrown in an event handler. It will not propagate correctly, and thus the minidump that Breakpad produces is completely useless because the actual context of the exception has been lost. Instead, you must catch all exceptions and handle them in the override of QApplication::notify(), which is what I am trying to do. In the case of an exception, I want to immediately write my minidump for that exception (which is sounds like WriteMinidumpForException will do) and then notify the user and quit the application. But I am not sure what to pass as the EXCEPTION_POINTERS* parameter.
In the MSVC compiler, C++ exceptions piggy-back onto the native Windows exception plumbing (SEH, Structured Exception Handling). There's a pretty big impedance mismatch though, the concept of an exception filter is doesn't have a good match in C++. By the time the catch handler catches an exception, the SEH exception is already handled and the stack unwound. The EXCEPTION_POINTERS info is gonzo. The exception filters actually exist, that's how it filters for the specific type you want to catch, they are however auto-generated by the compiler. No reasonable C++ syntax exists to make them useful.
You need to dip into the compiler support for handling SEH exceptions. Use the __try, __except keywords (__finally is optional) and have your filter catch the exception code for a C++ exception, 0xe04d5343 ('MSC'). You do however lose the ability to catch a specific C++ exception type, that plumbing is buried in the CRT without source. Put a C++ try inside the __try to fix that so your __except only sees exceptions that the C++ code didn't filter.
Using SetUnhandledExceptionFilter() is another way to do this btw, you really should consider it to act as the ultimate backstop of any unhandled exception, independent of the code location. It is the best way to create a minidump of a crashing app. Last but not least, creating a minidump of a crashing app inside the process itself isn't the best approach. There are plenty of odds that this won't work well, the process state can be corrupted pretty badly. One failure mode is having the process heap locked. Not unlikely considering that heap damage is a very common crash reason. Fix that with a "guard process", use a named event to signal it to make a minidump. Your exception filter only needs to set the event, that always works.
Windows SEH and c++ exceptions are not intertwined in any way - the easy way to solve this is to use your own __try __except wrapping e.g. a dereference of a null pointer.
Something like:
__try {
* (int *) 0 = 0;
}
__except
(
eh_.WriteMinidumpForException(GetExceptionInformation()), EXCEPTION_EXECUTE_HANDLER
)
{
}

Using only std::exception in exception specification

It seems it is general accepted that exception specifications are not helping as much as one thinks. But I wonder if a specification which only uses std::exception might be a good compromise:
void someFunction()
throw ( std::exception );
It documents the fact that this method/function might throw an exception.
It would make sure that only exceptions derived from std::exception are thrown and not some exotic classes like std::string or int.
So, would this be better then not having any specification at all?
Update:
Regarding the Runtime-Overhead: Think of it like the usage of asserts. You are using asserts regardless of the runtime-overhead, right? I know you usually can disable them for a release-build, so maybe a better approach would be to wrap the exception specification in a macro so you can disable it for a release build. Something like:
#ifdef DEBUG
#define THROW( exception ) throw ( exception )
#else
#define THROW( exception )
#endif
void someFunction()
THROW( std::exception );
Yes but what do you expect to happen when something that is not derived from std::exception is thrown?
Would you like the application to terminate.
No stack unwinding not destructors being called to tidy up the code, just the application exiting.
The difference between Java and C++ exception specifications is that Java checks the specifications at compile-time. C++ on the other hand does all the checking at run-time. So by the time your specifications have been violated it is already too late.
Even in Java code there is a movement to stop to using them. What tends to happen there is at the start of the project the exception specifications are tightly defined. But as the code grows and becomes more complex the specifications are diluted to a more and more general form. This is because as the code grows more exceptions can be thrown and if they can not be handled immediately you need to modify the exception specifications of the whole call chain back to the point where they can be handled. (Note I am not a Java Expert but I do play in a mature Java code base).
The only exception specification (I think) that is worth much is the no throw specification. This does have a valid application (but you have to use it with the try/catch(...) block).
Also read Herb Sutters article:
And this thread on SO: Should I use an exception specifier in C++?
Exception specifications are essentially useless. Martin York already linked to Herb Sutter's post about them, but in short, you run up against the following problems:
They're ignored by MSVC, and
Their effect is nothing like in
Java. The specifications are checked
at runtime, causing a performance
hit, witout giving you the
compile-time validation you get in
Java. All you're saying is "Insert extra code, such that when an
exception is thrown, its type is inspected, and then
either throw it as normal, or call
unexpected() instead.
So all you're doing is making it harder to catch the exceptions that may be thrown, while at the same time slowing down your program. There really isn't much point.
On a conforming compiler, adding a non-empty exception specification generates the equivalent of a try/catch block around the function. Although it's possible to implement this in a way that has no run-time overhead, on some current compilers you do get an overhead.
So there may be a cost, and all you gain is that, if someFunction or something it calls raises on non-std::exception-derived exception, std::unexpected is called, rather than the unhandled exception mechanism.
So I guess my answer's 'No' :-)
I tipically would do this:
void someFunction() /* throw (std::exception) */;
The only effect of the throw statement in the function declaration is to modify its signature: a pointer to "void x()" and a pointer to "void x() throw y" are two different types.
In this way you are still documenting that the function might throw something, and you are losing nothing since the c++ compiler does not enforce any constraint anyway.

How do you catch a managed exception (from a delegate) in unmanaged C++?

I have unmanaged C++ calling a managed delegate via the function pointer provided by Marshal::GetFunctionPointerForDelegate. This delegate has the potential to throw an exception. I need to be able to properly handle this exception in my unmanaged C++ to ensure things like pointer cleanup, and potentially rethrow the exception up into more managed code. The call stack is similar to this:
Managed Code -> Unmanaged C++ -> callback to Managed Code via delegate (exception can be thrown here).
Anyone have pointers for properly handling this situation so that the resources in unmanaged code can be cleaned up and a usable exception can be thrown out to the managed code which initiated the whole call stack?
Catching from managed code with
try
{
throw gcnew InvalidOperationException();
}
catch(InvalidOperationException^ e)
{
// Process e
throw;
}
And an
[assembly:RuntimeCompatibility(WrapNonExceptionThrows = true)];
on your assembly catches managed and unmanaged exceptions
Don't even remotely try to make the "unmanaged" code aware of the fact that it will have to deal with .NET.
Return a non-zero value from your callback to signal the presence of an error. Provide a (thread local) global string object describing the error so that you can retrieve a helpful error message for the user.
This may involve wrapping your delegate into another function under the scenes, which will catch all the exceptions and return the error code.
One approach would be to use SEH, and do the cleanup in the exception filter before continuing the exception propagation. But I'm not sure that is overly legal since you would be doing a lot of work in the filter. You also wouldn't know anything about the managed exception being propagated.
An alternative is to wrap the managed delegate with your own managed function that catches the exception and in turn throws an unmanaged exception ... which you can then catch in your unmanaged code.
When the unmanaged code has done its cleanup use another helper managed function to re-throw the original managed exception
Managed code represents exceptions as hardware exceptions, unlike C++. You could use SEH. Remember that you always get the chance to run the exception filter.
http://msdn.microsoft.com/en-us/library/ms680657(v=VS.85).aspx
I was told...{the vector can't show if variables a&b weren't declared in the scope process. After a bit of digging figured out that the loop hole was as follows--- weibull_distribution> unmanaged_code