Random Complete System Unresponsiveness Running Mathematical Functions - c++

I have a program that loads a file (anywhere from 10MB to 5GB) a chunk at a time (ReadFile), and for each chunk performs a set of mathematical operations (basically calculates the hash).
After calculating the hash, it stores info about the chunk in an STL map (basically <chunkID, hash>) and then writes the chunk itself to another file (WriteFile).
That's all it does. This program will cause certain PCs to choke and die. The mouse begins to stutter, the task manager takes > 2 min to show, ctrl+alt+del is unresponsive, running programs are slow.... the works.
I've done literally everything I can think of to optimize the program, and have triple-checked all objects.
What I've done:
Tried different (less intensive) hashing algorithms.
Switched all allocations to nedmalloc instead of the default new operator
Switched from stl::map to unordered_set, found the performance to still be abysmal, so I switched again to Google's dense_hash_map.
Converted all objects to store pointers to objects instead of the objects themselves.
Caching all Read and Write operations. Instead of reading a 16k chunk of the file and performing the math on it, I read 4MB into a buffer and read 16k chunks from there instead. Same for all write operations - they are coalesced into 4MB blocks before being written to disk.
Run extensive profiling with Visual Studio 2010, AMD Code Analyst, and perfmon.
Set the thread priority to THREAD_MODE_BACKGROUND_BEGIN
Set the thread priority to THREAD_PRIORITY_IDLE
Added a Sleep(100) call after every loop.
Even after all this, the application still results in a system-wide hang on certain machines under certain circumstances.
Perfmon and Process Explorer show minimal CPU usage (with the sleep), no constant reads/writes from disk, few hard pagefaults (and only ~30k pagefaults in the lifetime of the application on a 5GB input file), little virtual memory (never more than 150MB), no leaked handles, no memory leaks.
The machines I've tested it on run Windows XP - Windows 7, x86 and x64 versions included. None have less than 2GB RAM, though the problem is always exacerbated under lower memory conditions.
I'm at a loss as to what to do next. I don't know what's causing it - I'm torn between CPU or Memory as the culprit. CPU because without the sleep and under different thread priorities the system performances changes noticeably. Memory because there's a huge difference in how often the issue occurs when using unordered_set vs Google's dense_hash_map.
What's really weird? Obviously, the NT kernel design is supposed to prevent this sort of behavior from ever occurring (a user-mode application driving the system to this sort of extreme poor performance!?)..... but when I compile the code and run it on OS X or Linux (it's fairly standard C++ throughout) it performs excellently even on poor machines with little RAM and weaker CPUs.
What am I supposed to do next? How do I know what the hell it is that Windows is doing behind the scenes that's killing system performance, when all the indicators are that the application itself isn't doing anything extreme?
Any advice would be most welcome.

I know you said you had monitored memory usage and that it seems minimal here, but the symptoms sound very much like the OS thrashing like crazy, which would definitely cause general loss of OS responsiveness like you're seeing.
When you run the application on a file say 1/4 to 1/2 the size of available physical memory, does it seem to work better?
What I suspect may be happening is that Windows is "helpfully" caching your disk reads into memory and not giving up that cache memory to your application for use, forcing it to go to swap. Thus, even though swap use is minimal (150MB), it's going in and out constantly as you calculate the hash. This then brings the system to its knees.

Some things to check:
Antivirus software. These often scan files as they're opened to check for viruses. Is your delay occuring before any data is read by the application?
General system performance. Does copying the file using Explorer also show this problem?
Your code. Break it down into the various stages. Write a program that just reads the file, then one that reads and writes the files, then one that just hashes random blocks of ram (i.e. remove the disk IO part) and see if any particular step is problematic. If you can get a profiler then use this as well to see if there any slow spots in your code.
EDIT
More ideas. Perhaps your program is holding on to the GDI lock too much. This would explain everything else being slow without high CPU usage. Only one app at a time can have the GDI lock. Is this a GUI app, or just a simple console app?
You also mentioned RtlEnterCriticalSection. This is a costly operation, and can hang the system quite easily, i.e. mismatched Enters and Leaves. Are you multi-threading at all? Is the slow down due to race conditions between threads?

XPerf is your guide here - watch the PDC Video about it, and then take a trace of the misbehaving app. It will tell you exactly what's happening throughout the system, it is extremely powerful.

I like the disk-caching/thrashing suggestions, but if that's not it, here are some scattershot suggestions:
What non-MSVC libraries, if any, are you linking to?
Can your program be modified (#ifdef'd) to run without a GUI? Does the problem occur?
You added ::Sleep(100) after each loop in each thread, right? How many threads are you talking about? A handful or hundreds? How long does each loop take, roughly? What happens if you make that ::Sleep(10000)?
Is your program perhaps doing something else that locks a limited resources (ProcExp can show you what handles are being acquired ... of course you might have difficulty with ProcExp not responding:-[)
Are you sure CriticalSections are userland-only? I recall that was so back when I worked on Windows (or so I believed), but Microsoft could have modified that. I don't see any guarantee in the MSDN article Critical Section Objects (http://msdn.microsoft.com/en-us/library/ms682530%28VS.85%29.aspx) ... and this leads me to wonder: Anti-convoy locks in Windows Server 2003 SP1 and Windows Vista
Hmmm... presumably we're all multi-processor now, so are you setting the spin count on the CS?
How about running a debugging version of one of these OSes and monitoring the kernel debugging output (using DbgView)... possibly using the kernel debugger from the Platform SDK ... if MS still calls it that?
I wonder whether VMMap (another SysInternal/MS utility) might help with the Disk caching hypothesis.

It turns out that this is a bug in the Visual Studio compiler. Using a different compiler resolves the issue entirely.
In my case, I installed and used the Intel C++ Compiler and even with all optimizations disabled I did not see the fully-system hang that I was experiencing w/ the Visual Studio 2005 - 2010 compilers on this library.
I'm not certain as to what is causing the compiler to generate such broken code, but it looks like we'll be buying a copy of the Intel compiler.

It sounds like you're poking around fixing things without knowing what the problem is. Take stackshots. They will tell you what your program is doing when the problem occurs. It might not be easy to get the stackshots if the problem occurs on other machines where you cannot use an IDE or a stack sampler. One possibility is to kill the app and get a stack dump when it's acting up. You need to reproduce the problem in an environment where you can get a stack dump.
Added: You say it performs well on OSX and Linux, and poorly on Windows. I assume the ratio of completion time is some fairly large number, like 10 or 100, if you've even had the patience to wait for it. I said this in the comment, but it is a key point. The program is waiting for something, and you need to find out what. It could be any of the things people mentioned, but it is not random.
Every program, all the time while it runs, has a call stack consisting of a hierarchy of call instructions at specific addresses. If at a point in time it is calculating, the last instruction on the stack is a non-call instruction. If it is in I/O the stack may reach into a few levels of library calls that you can't see into. That's OK. Every call instruction on the stack is waiting. It is waiting for the work it requested to finish. If you look at the call stack, and look at where the call instructions are in your code, you will know what your program is waiting for.
Your program, since it is taking so long to complete, is spending nearly all of its time waiting for something to finish, and as I said, that's what you need to find out. Get a stack dump while it's being slow, and it will give you the answer. The chance that it will miss it is 1/the-slowness-ratio.
Sorry to be so elemental about this, but lots of people (and profiler makers) don't get it. They think they have to measure.

Related

Interlocked API between Windows CE 5 and 6

I'm currently porting a VS2005 C++ application from CE5 to CE6 and I'm experiencing severe performance problems. This goes so far that a single HTTP request retrieving dynamic content takes 40ms on CE5 and 350ms on CE6. These values used to be worse due to a bunch of inefficiencies that I already cleaned up, improving performance on both systems, but at the moment I'm stuck at that latency. For the record, both tests are made on the same machine and the webserver is not the one supplied with CE but a custom one implemented in C++. Note also that the problem is not the network IO, CE6 even outperforms CE5 on the same machine when serving static files, but it's the dynamic content handling.
While trying to figure out why the program performs so badly, I stumbled across something that puzzled me: Under CE5, the Interlocked* API for x86 use neither the compiler intrinsics nor real function calls but inline assembly code. This code has a comment saying that the intrinsic includes lock prefixes that are only required for multi-processor systems and that slow down code running on just a single core like CE5. On CE6, these functions are implemented using the compiler intrinsics including the lock prefix. Since these functions are used by e.g. Boost and STLport, both of which are used inside the webserver, I was wondering if those could be the culprit.
Another thing I noticed was that some string parsing functions take extremely long. Worse, it seems that calling the same function a second time after the first time takes less time, so it seems as if some kind of caching was going on. Since this is a short (<1kB) string received via TCP that is parsed in memory, I can't imagine which cache could be responsible for that. The only cache could be the instruction cache, but the program is not larger than the CE5 version and if the code was running from uncached memory it would not show these caching effects.
TLDR - Questions:
Is CE6 capable of handling multiple processors at all?
Is there an easy way to tell the compiler that it should omit the lock prefix? My current approach to achieve that is to simply copy the inline assembly from the CE5 SDK, but that's beyond ugly.
I'd also appreciate any other suggestions what to look at or what to try. Many thanks in advance!
Summary There is no problem that depends on the executable, let alone on the Interlocked API. Running the same executable proved that. However, running on a different machine with a different platform setup made a difference. We're now back to Platform Builder, trying to figure out the differences between the two platforms.
No. WEC7 is required for SMP support. Most likely in CE6 the OEM has disabled the other cores.
None that I am aware of.
Either use the performance profiling tools or instrument your code with timing calls to narrow down where things are taking too long.
I have finally found the reason for the performance behaviour, it's simply paging. CE6 has a pool manager (see http://blogs.msdn.com/b/ce_base/archive/2008/01/19/paging-and-the-windows-ce-paging-pool.aspx) which handles paging out unused mapped DLLs and EXEs. When the amount of mapped binaries exceeds a certain size, it starts (with low priority) to page out memory. The limit when it starts paging out is just 3MiB by default, which is rather low for current applications. Also, the cache is not an LRU cache but simply discarding the pages in the order they were loaded.
It turns out that our system exceeded this limit, which causes the paging to begin. Due to the algorithm used, it will always throw out used ones that will then have to be paged in again. The code that serves static files is small, so this wasn't affected as much by this limit. The code that serves dynamic pages is much larger though, so it wreaks havoc on the overall system with IO. This also explains why the problem couldn't be attributed to a specific piece of code, it wasn't the code itself but loading it.
I have detected this via IOCTL_HAL_GET_POOL_PARAMETERS, which gave me the relevant configuration parameters, current state, how often the pageout-thread ran and for how long (although the latter is only the time it took to swap out pages). I should be able to find the resulting page faults in the kernel tracker, too, now that I know what I'm looking for. I could also observe that the activity LED on the CF card adapter now lights up when first loading a file, but not on subsequent requests, where it is taken from cache. This used to always cause the LED to flash on dynamic pages.
The simple solution is to increase the limit for the pool manager, so it doesn't start throwing out things. This can be done easily in config.bib by patching kernel.dll with the according values. Alternatively, reducing the executable size would help, but that's not so easy.

Increasing C++ Program CPU Use

I have a program written in C++ that runs a number of for loops per second without using anything that would make it wait for any reason. It consistently uses 2-10% of the CPU. Is there any way to force it to use more of the CPU and do a greater number of calculations without making the program more complex? Additionally, I compile with C::B on a Windows computer. Essentially, I'm asking whether there is a way to make my program faster by increasing usage of CPU, and if so, how.
That depends on why it's only using 10% of the CPU. If it's because you're using a multi-CPU machine and your program is using only one CPU, then no, you will have to introduce concurrency into your code to use that additional horsepower.
If it's being limited by something else (e.g. copying data to and from the disk), then you don't need to focus on CPU, you need to focus on whatever the bottleneck is. Most likely, the limiter will be reading from the disk, which you can improve by using better caching mechanisms.
Assuming your application has the power (PROCESS_SET_INFORMATION access right), you can use SetPriorityClass to bump up your priortiy (to the usual detriment of all other processes, of course).
You can go ABOVE_NORMAL_PRIORITY_CLASS (try this one first), HIGH_PRIORITY_CLASS (be very careful with this one) or REALTIME_PRIORITY_CLASS (I would strongly suggest that you probably shouldn't give this one a shot).
If you try the higher priorities and it's still clocking pretty low, then that's probably because you're not CPU-bound (such as if you're writing data to an output file). If that's the case, you'll probably have to find a way to make yourself CPU bound.
Just keep in mind that doing so may not be necessary (or even desirable). If you're running at a higher priority than other threads and you're still not sucking up a lot of CPU, it's probably because Windows has (most likely, rightfully) decided you don't need it.
It's really not the program's right or responsibility to demand additional resources from the system. That's the OS' job, as resource scheduler.
If it is necessary to use more CPU time than the OS sees fit, you should request that from the OS using the platform-dependent API. In this case, that seems to be something along the lines of SetPriorityClass or SetThreadPriority.
Creating a thread & giving higher priority to the thread might be one way.
If you use C++, consider using Intel Threading Building Block. You can find some examples here.
Some profilers give very nice indications of where bottlenecks in your code are. For example - the CodeAnalyst (for AMD chips only) has the instructions per cycle ratio. I'm sure intel profilers are similar.
As Billy O'Neal says though, if your runnning on an 8-core, being stuck on 10 percent of cpu is about right. If this is your problem then Windows msvc++ has a parallel mode (the parallel patterns library) for the standard algorithms. This can give parallelisation for free if have written your loops the c++ way (its still your responsibility to make sure your loops are thread safe). I've not used the msvc version but the gnu::__parallel_for_each etc work a treat.

Measuring device drivers CPU/IO utilization caused by my program

Sometimes code can utilize device drivers up to the point where the system is unresponsive.
Lately I've optimized a WIN32/VC++ code which made the system almost unresponsive. The CPU usage, however, was very low. The reason was 1000's of creations and destruction of GDI objects (pens, brushes, etc.). Once I refactored the code to create all objects only once - the system became responsive again.
This leads me to the question: Is there a way to measure CPU/IO usage of device drivers (GPU/disk/etc) for a given program / function / line of code?
You can use various tools from SysInternals Utilities (now a Microsoft product, see http://technet.microsoft.com/en-us/sysinternals/bb545027) to give a basic idea before jumping in. In your case process explorer (procexp) and process monitor (procmon) performs a decent job. They can be used to get you a basic idea about what type of slowness it is before doing profiling drill down.
Then you can use xperf http://msdn.microsoft.com/en-us/performance/default to drill down. With correct setup, this tool can bring you to the exact function that causes slowness without injecting profiling code into your existing program. There's already a PDC video talking about how to use it http://www.microsoftpdc.com/2009/CL16 and I highly recommend this tool. Per my own experience, it's always better to observe using procexp/procmon first, then targeting your suspects with xperf, because xperf can generate overwhelming load of information if not filtered in a smart way.
In certain hard cases that involving locking contentions, Debugging Tools for Windows (windbg) will be very handy, and there are dedicated books talking about its usage. These books typically talk about hang detection and there are quite a few techniques here can be used to detect slowness, too. (e.g. !runaway)
Maybe you could use ETW for this? Not so sure it will help you see what line causes what, but it should give you a good overall picture of how your app is doing.
To find the CPU/memory/disk usage of the program in real time, you can use the resource monitor and task manager programs that come with windows. You can find the amount of time that a block of code takes relative to the other blocks of code by printing out the systime. Remember not to do too much monitoring at once, because that can throw off your calculations.
If you know how much CPU time that the program takes and what percentage of time the block of code takes, then you can estimate approximately how much CPU time that a block of code takes.

What to do when an out-of-memory error occurs? [duplicate]

This question already has answers here:
Closed 12 years ago.
Possible Duplicate:
What's the graceful way of handling out of memory situations in C/C++?
Hi,
this seems to be a simple question a first glance. And I don't want to start a huge discussion on what-is-the-best-way-to-do-this....
Context: Windows >= 5, 32 bit, C++, Windows SDK / Win32 API
But after asking a similar question, I read some MSDN and about the Win32 memory management, so now I'm even more confused on what to do if an allocation fails, let's say the C++ new operator.
So I'm very interested now in how you implement (and implicitly, if you do implement) an error handling for OOM in your applications.
If, where (main function?), for which operations (allocations) , and how you handle an OOM error.
(I don't really mean that subjectively, turning this into a question of preference, I just like to see different approaches that account for different conditions or fit different situations. So feel free to offer answers for GUI apps, services - user-mode stuff ....)
Some exemplary reactions to OOM to show what I mean:
GUI app: Message box, exit process
non-GUI app: Log error, exit process
service: try to recover, e.g. kill the thread that raised an exception, but continue execution
critical app: try again until an allocation succeeds (reducing the requested amount of memory)
hands from OOM, let STL / boost / OS handle it
Thank you for your answers!
The best-explained way will receive the great honour of being an accepted answer :D - even if it only consists of a MessageBox line, but explains why evering else was useless, wrong or unneccessary.
Edit: I appreciate your answers so far, but I'm missing a bit of an actual answer; what I mean is most of you say don't mind OOM since you can't do anything when there's no memory left (system hangs / poor performance). But does that mean to avoid any error handling for OOM? Or only do a simple try-catch in the main showing a MessageBox?
On most modern OSes, OOM will occur long after the system has become completely unusable, since before actually running out, the virtual memory system will start paging physical RAM out to make room for allocating additional virtual memory and in all likelihood the hard disk will begin to thrash like crazy as pages have to be swapped in and out at higher and higher frequencies.
In short, you have much more serious concerns to deal with before you go anywhere near OOM conditions.
Side note: At the moment, the above statement isn't as true as it used to be, since 32-bit machines with loads of physical RAM can exhaust their address space before they start to page. But this is still not common and is only temporary, as 64-bit ramps up and approaches mainstream adoption.
Edit: It seems that 64-bit is already mainstream. While perusing the Dell web site, I couldn't find a single 32-bit system on offer.
You do the exact same thing you do when:
you created 10,000 windows
you allocated 10,000 handles
you created 2,000 threads
you exceeded your quota of kernel pool memory
you filled up the hard disk to capacity.
You send your customer a very humble message where you apologize for writing such crappy code and promise a delivery date for the bug fix. Any else is not nearly good enough. How you want to be notified about it is up to you.
Basically, you should do whatever you can to avoid having the user lose important data. If disk space is available, you might write out recovery files. If you want to be super helpful, you might allocate recovery files while your program is open, to ensure that they will be available in case of emergency.
Simply display a message or dialog box (depending on whether your in a terminal or window system), saying "Error: Out of memory", possibly with debugging info, and include an option for your user to file a bug report, or a web link to where they can do that.
If your really out of memory then, in all honesty, there's no point doing anything other than gracefully exiting, trying to handle the error is useless as there is nothing you can do.
In my case, what happens when you have an app that fragments the memory up so much it cannot allocate the contiguous block needed to process the huge amount of nodes?
Well, I split the processing up as much as I could.
For OOM, you can do the same thing, chop your processes up into as many pieces as possible and do them sequentially.
Of course, for handling the error until you get to fix it (if you can!), you typically let it crash. Then you determine that those memory allocs are failing (like you never expected) and put a error message direct to the user along the lines of "oh dear, its all gone wrong. log a call with the support dept". In all cases, you inform the user however you like. Though, its established practice to use whatever mechanism the app currently uses - if it writes to a log file, do that, if it displays an error dialog, do the same, if it uses the Windows 'send info to microsoft' dialog, go right ahead and let that be the bearer of bad tidings - users are expecting it, so don't try to be clever and do something else.
It depends on your app, your skill level, and your time. If it needs to be running 24/7 then obviously you must handle it. It depends on the situation. Perhaps it may be possible to try a slower algorithm but one that requires less heap. Maybe you can add functionality so that if OOM does occur your app is capable of cleaning itself up, and so you can try again.
So I think the answer is 'ALL OF THE ABOVE!', apart from LET IT CRASH. You take pride in your work, right?
Don't fall into the 'there's loads of memory so it probably won't happen' trap. If every app writer took that attitude you'd see OOM far more often, and not all apps are running on a desktop machines, take a mobile phone for example, it's highly likely for you to run into OOM on a RAM starved platform like that, trust me!
If all else fails display a useful message (assuming there's enough memory for a MessageBox!)

How to avoid HDD thrashing

I am developing a large program which uses a lot of memory. The program is quite experimental and I add and remove big chunks of code all the time. Sometimes I will add a routine that is rather too memory hungry and the HDD drive will start thrashing and the program (and the whole system) will slow to a snails pace. It can easily take 5 mins to shut it down!
What I would like is a mechanism for avoiding this scenario. Either a run time procedure or even something to be done before running the program, which can say something like "If you run this program there is a risk of HDD thrashing - aborting now to avoid slowing to a snails pace".
Any ideas?
EDIT: Forgot to mention, my program uses multiple threads.
You could consider using SetProcessWorkingSetSize . This would be useful in debugging, because your app will crash with a fatal exception when it runs out of memory instead of dragging your machine into a thrashing situation.
http://msdn.microsoft.com/en-us/library/ms686234%28VS.85%29.aspx
Similar SO question
Set Windows process (or user) memory limit
Windows XP is terrible when there are multiple threads or processes accessing the disk at the same time. This is effectively what you experience when your application begins to swap, as the OS is writing out some pages while reading in others. Windows XP (and Server 2003 for that matter) is utterly trash for this. This is a real shame, as it means that swapping is almost synonymous with thrashing on these systems.
Your options:
Microsoft fixed this problem in Vista and Server 2008. So stop using a 9 year old OS. :)
Use unbuffered I/O to read/write data to a file, and implement your own paging inside your application. Implementing your own "swap" like this enables you to avoid thrashing.
See here many more details of this problem: How to obtain good concurrent read performance from disk
I'm not familiar with Windows programming, but under Unix you can limit the amount of memory that a program can use with setrlimit(). Maybe there is something similar. The goal is to get the program to abort once it uses to much memory, rather than thrashing. The limit would be a bit less than the total physical memory on the machine. I would guess somewhere between 75% and 90%, but some experimentation would be necessary to find the optimal setting.
Chances are your program could use some memory management. While there are a few programs that do need to hold everything in memory at once, odds are good that with a little bit of foresight you might be able to rework your program to reuse or discard a lot of the memory you need.
Your program will run much faster too. If you are using that much memory, then basically all of your built-in first and second level caches are likely overflowing, meaning the CPU is mostly waiting on memory loads instead of processing your code's instructions.
I'd rather determine reasonable minimum requirements for the computer your program is supposed to run on, and during installation either warn the user if there's not enough memory available, or refuse to install.
Telling him each time he's starting the program is nonsensical.