Get stack trace from uncaught exception? - c++

I realise this will be platform specific: is there any way to get a stack trace from an uncaught C++ exception, but from the point at which the exception is thrown?
I have a Windows Structured Exception Handler to catch access violations, etc. and generate a minidump. But of course that won't get called in the event of termination due to an uncaught C++ exception, and so there is no crash dump.
I'm looking for a Windows solution at the moment (no matter how dirty!), but would like to hear about other platforms if possible.
Thanks.

We implemented MiniDumps for unhandled exceptions in our last title using the information from this site:
http://beefchunk.com/documentation/sys-programming/os-win32/debug/www.debuginfo.com/articles/effminidumps.html
And to catch the unhandled exceptions on windows have a look at:
SetUnhandledExceptionFilter (http://msdn.microsoft.com/en-us/library/ms680634%28VS.85%29.aspx).
As an aisde, we spent a lot of time experimenting with the different levels of minidump until we settled on one. This proved to be of no real use in real world crashes as we had no idea what they would be at the time the minidumps were implemented. It's very application specific, and also crash specific, so my recommendation is to add the minidump handler as early as possible, it will grow with the project and through QA and it will be a life saver at somepoint (and hopefully out in the real world too).

You can use the try-except Statement to "convert" a C++ exception to a structured exception (out of which you can then get a nice stack trace). Consider this:
// Your function to get a backtrace from a CONTEXT
const char *readBacktrace( CONTEXT &ctx );
extern "C"
static DWORD exceptFilter( struct _EXCEPTION_POINTERS* exInf )
{
OutputDebugStringA( readBacktrace( *exInf->ContextRecord ) );
return EXCEPTION_EXECUTE_HANDLER;
}
try {
// your C++ code which might yield exceptions
} catch ( ... ) {
// In case a C++ exception occurs, raise a structured exception and catch it immediately
// so that we get a CONTEXT object which we can use to generate a stack trace.
__try {
RaiseException( 1, 0, 0, NULL );
} __except( exceptFilter( GetExceptionInformation() ) ) {
}
}
This is a little clumsy, but the nice thing is that you can put the __try { } __except() { } part into a general purpose dumpStackTrace() function. You can then yield stack traces from any point in your program, as you like.

Try using set_terminate to install terminate handler. And in it grab stack trace using mini dump funcitons. Maybe it will work.

Related

Catch C++ exception over VCL exception routine

I would like to handle of all the C++ exceptions with C++ Builder to generate a crash report that could help me to debug applications when they are installed and used at the clients' places.
I tried to use the function SetUnhandledExceptionFilter but it does not work cause the VCL intercepts the exceptions and does not throw them again.
So I tried this, it doesn't work as well:
unsigned int Filter( unsigned int uiExCode, EXCEPTION_POINTERS *pt )
{
// might create the crash dump....
MessageBox( NULL, L"ENFIN", L"", 0 );
return EXCEPTION_CONTINUE_SEARCH;
}
int WINAPI _tWinMain(HINSTANCE, HINSTANCE, LPTSTR, int)
{
try
{
Application->Initialize();
Application->MainFormOnTaskBar = true;
Application->CreateForm(__classid(TForm1), &Form1);
Application->Run();
}
__except( Filter( GetExceptionCode(), GetExceptionInformation() ) )
{
// Some code to clear
}
return 0;
}
I don't want to use external libs such as EurekaLog or MadExcept.
Is anyone has an idea how to prevent the VCL from catching all of the exception ?
Thanks.
In my opinion, an automated mapping between VCL and STL is a very big deal.
The solution described in Translate C++ Exceptions to VCL Exceptions causes two hierarchies of logic to be managed, so you will have to catch both EOutOfRange and CppStdOutOfRange if you don't know if the called implementation is VCL or STL... And it's also error prone as the frameworks may evolve.
My advice is to catch every "expectable" "foreign" exception very early and translate it into the appropriate exception of the the one exception hierarchy of your choice: Make sure that all exception classes (that will actually "fly" through your application) inherit (mostly indirectly) from one base class.
One important point that you may have forgotten is, as Hans Passant mentioned, to catch not only the application setup exception (as you currently do), but also the runtime exceptions (i.e. all exceptions thrown within the call of the method TApplication::Run). This can only be done by assigning the event Application->OnException - re-read the docs concerning how to do that technically.
My warm suggestion for a reasonable global exception handler is to show and log a message, then terminate the application. Or even better in this order:
log the message
store it to a global buffer
leave Run by calling Application->Terminate
display the message box in main
a modal message box will keep your poisoned program running - and you don't really know what it does.
As far as I know, there's no straightforward way to achieve what you want. Here's an interesting article that provides information on the subject and explores some possible solutions: http://www.audacia-software.de/en/bcb/external-exception-eefface.htm

Recoverying from exceptions

In our application (c++) we load 3rd party DLLs using LoadLibrary.
Sometimes these DLLs cause exceptions, such as "Access violation reading location 0x00000000..".
Is it possible to recover from such an exception, for example using try & catch or some other mechanism? in other world, is that possible to create a sandbox within the same process that withstand such events?
Thank you
No. It's not. A DLL has unrestricted access to the process context that calls it. You need to run untrustable DLLs in their own process context.
In Windows, with VisualStudio compiler, may use SEH mechanism.
__try
{
char* ptr = 0;
char val = *ptr;
}
__except(GetExceptionCode() == EXCEPTION_ACCESS_VIOLATION)
{
std::cout<<"AV"<<std::endl;
}
Use option /EHa.
You could try a different type of exception handler:
__try
{
// Code that might cause an access violation goes here.
}
__except (EXCEPTION_EXECUTE_HANDLER)
{
int code = _exception_code();
}
Beware though, such handlers can't be used in any routine where C++ objects need stack unwinding as the compiler will warn you (irritatingly).
You can try the /EH flag - http://msdn.microsoft.com/en-us/library/1deeycx5%28v=vs.80%29.aspx - in Visual Studio, but access violation exceptions most likely mean you're doing something very wrong. I'd let the program crash and try to solve the exception, rather than catching it.
It is not possible in c++ if, it is not possible throws a crossmodules exceptions anymore in any case you will have a memory corruption in your application so you have to find out what is going wrong in your dll. You can check the reason you cant throw exception from dll here:
http://www.codeproject.com/Articles/28969/HowTo-Export-C-classes-from-a-DLL
The people behind Runtime-Compiled C++ are using a thing called Structured Exception Handling for their DLL crash-handling routines. Dig into their website or ask them if you want some code samples.
According to the MSDN, the /EHa switch enables "C++ exception handling with structured exception handling exceptions". So if you're using the msvc compiler, you might want to try this.

Temporally disable first-chance exceptions

Is there a way of temporally disable first-chance exceptions in Visual C++?
Something like this:
void someFunc() {
disableFirstChanceExceptions();
try {
// some code
}
catch (std::exception& e) {
// some code
}
catch (...) {
// some code
}
enableFirstChanceExceptions();
}
I know what first-chance-exceptions are and how to use them.
The problem is, that I am distributing a DLL, in which exceptions are used.
Unfortunately if a customer is using a debugger with his program, he will notice my intern exceptions.
It is not that I want to hide them, it is more that I want to get rid of these support questions.
Your code throws exceptions.
Your customers insist on running debuggers against your code, and explicitly configure it to break on first-chance exceptions.
You have basically two options:
don't throw exceptions, or
ignore when your customer is being stupid. What your code does internally is none of their business as long as it works as intended.
I'd suggest the latter. If they have a problem with exceptions being thrown and caught inside third-party code, they'll find themselves unable to use a lot of libraries. They'll need to grow up and start acting like they know what they're doing.
First chance exceptions are not something that can be turned on and off in your code (speaking only about windows, vs, c++ chain, not familiar with other platforms). This is construct is built into the run time system to make debugging possible. The debugger can be configured to ignore some or all first chance exceptions. You can use ctrl + alt + e to bring up the VS debugger's exception handling behavior menu. This will allow clients debugging to filter what the want caught by the debugger.

C++ catching all exceptions

Is there a c++ equivalent of Java's
try {
...
}
catch (Throwable t) {
...
}
I am trying to debug Java/jni code that calls native windows functions and the virtual machine keeps crashing. The native code appears fine in unit testing and only seems to crash when called through jni. A generic exception catching mechanism would prove extremely useful.
try{
// ...
} catch (...) {
// ...
}
will catch all C++ exceptions, but it should be considered bad design. You can use c++11's new current_exception mechanism, but if you don't have the ability to use c++11 (legacy code systems requiring a rewrite), then you have no named exception pointer to use to get a message or name. You may want to add separate catch clauses for the various exceptions you can catch, and only catch everything at the bottom to record an unexpected exception. E.g.:
try{
// ...
} catch (const std::exception& ex) {
// ...
} catch (const std::string& ex) {
// ...
} catch (...) {
// ...
}
Someone should add that one cannot catch "crashes" in C++ code. Those don't throw exceptions, but do anything they like. When you see a program crashing because of say a null-pointer dereference, it's doing undefined behavior. There is no std::null_pointer_exception. Trying to catch exceptions won't help there.
Just for the case someone is reading this thread and thinks he can get the cause of the program crashes. A Debugger like gdb should be used instead.
This is how you can reverse-engineer the exception type from within catch(...) should you need to (may be useful when catching unknown from a third party library) with GCC:
#include <iostream>
#include <exception>
#include <typeinfo>
#include <stdexcept>
int main()
{
try {
throw ...; // throw something
}
catch(...)
{
std::exception_ptr p = std::current_exception();
std::clog <<(p ? p.__cxa_exception_type()->name() : "null") << std::endl;
}
return 1;
}
and if you can afford using Boost you can make your catch section even simpler (on the outside) and potentially cross-platform
catch (...)
{
std::clog << boost::current_exception_diagnostic_information() << std::endl;
}
try {
// ...
} catch (...) {
// ...
}
Note that the ... inside the catch is a real ellipsis, ie. three dots.
However, because C++ exceptions are not necessarily subclasses of a base Exception class, there isn't any way to actually see the exception variable that is thrown when using this construct.
it is not possible (in C++) to catch all exceptions in a portable manner. This is because some exceptions are not exceptions in a C++ context. This includes things like division by zero errors and others. It is possible to hack about and thus get the ability to throw exceptions when these errors happen, but it's not easy to do and certainly not easy to get right in a portable manner.
If you want to catch all STL exceptions, you can do
try { ... } catch( const std::exception &e) { ... }
Which will allow you do use e.what(), which will return a const char*, which can tell you more about the exception itself. This is the construct that resembles the Java construct, you asked about, the most.
This will not help you if someone is stupid enough to throw an exception that does not inherit from std::exception.
In short, use catch(...). However, note that catch(...) is meant to be used in conjunction with throw; basically:
try{
foo = new Foo;
bar = new Bar;
}
catch(...) // will catch all possible errors thrown.
{
delete foo;
delete bar;
throw; // throw the same error again to be handled somewhere else
}
This is the proper way to use catch(...).
it is possible to do this by writing:
try
{
//.......
}
catch(...) // <<- catch all
{
//.......
}
But there is a very not noticeable risk here: you can not find the exact type of error that has been thrown in the try block, so use this kind of catch when you are sure that no matter what the type of exception is, the program must persist in the way defined in the catch block.
You can use
catch(...)
but that is very dangerous. In his book Debugging Windows, John Robbins tells a war story about a really nasty bug that was masked by a catch(...) command. You're much better off catching specific exceptions. Catch whatever you think your try block might reasonably throw, but let the code throw an exception higher up if something really unexpected happens.
Let me just mention this here: the Java
try
{
...
}
catch (Exception e)
{
...
}
may NOT catch all exceptions! I've actually had this sort of thing happen before, and it's insantiy-provoking; Exception derives from Throwable. So literally, to catch everything, you DON'T want to catch Exceptions; you want to catch Throwable.
I know it sounds nitpicky, but when you've spent several days trying to figure out where the "uncaught exception" came from in code that was surrounded by a try ... catch (Exception e)" block comes from, it sticks with you.
Well, if you would like to catch all exception to create a minidump for example...
Somebody did the work on Windows.
See http://www.codeproject.com/Articles/207464/Exception-Handling-in-Visual-Cplusplus
In the article, he explains how he found out how to catch all kind of exceptions and he provides code that works.
Here is the list you can catch:
SEH exception
terminate
unexpected
pure virtual method call
invalid parameter
new operator fault
SIGABR
SIGFPE
SIGILL
SIGINT
SIGSEGV
SIGTERM
Raised exception
C++ typed exception
And the usage:
CCrashHandler ch;
ch.SetProcessExceptionHandlers(); // do this for one thread
ch.SetThreadExceptionHandlers(); // for each thred
By default, this creates a minidump in the current directory (crashdump.dmp)
Be aware
try{
// ...
} catch (...) {
// ...
}
catches only language-level exceptions, other low-level exceptions/errors like Access Violation and Segmentation Fault wont be caught.
A generic exception catching mechanism
would prove extremely useful.
Doubtful. You already know your code is broken, because it's crashing. Eating exceptions may mask this, but that'll probably just result in even nastier, more subtle bugs.
What you really want is a debugger...
Can you run your JNI-using Java application from a console window (launch it from a java command line) to see if there is any report of what may have been detected before the JVM was crashed. When running directly as a Java window application, you may be missing messages that would appear if you ran from a console window instead.
Secondly, can you stub your JNI DLL implementation to show that methods in your DLL are being entered from JNI, you are returning properly, etc?
Just in case the problem is with an incorrect use of one of the JNI-interface methods from the C++ code, have you verified that some simple JNI examples compile and work with your setup? I'm thinking in particular of using the JNI-interface methods for converting parameters to native C++ formats and turning function results into Java types. It is useful to stub those to make sure that the data conversions are working and you are not going haywire in the COM-like calls into the JNI interface.
There are other things to check, but it is hard to suggest any without knowing more about what your native Java methods are and what the JNI implementation of them is trying to do. It is not clear that catching an exception from the C++ code level is related to your problem. (You can use the JNI interface to rethrow the exception as a Java one, but it is not clear from what you provide that this is going to help.)
For the real problem about being unable to properly debug a program that uses JNI (or the bug does not appear when running it under a debugger):
In this case it often helps to add Java wrappers around your JNI calls (i.e. all native methods are private and your public methods in the class call them) that do some basic sanity checking (check that all "objects" are freed and "objects" are not used after freeing) or synchronization (just synchronize all methods from one DLL to a single object instance). Let the java wrapper methods log the mistake and throw an exception.
This will often help to find the real error (which surprisingly is mostly in the Java code that does not obey the semantics of the called functions causing some nasty double-frees or similar) more easily than trying to debug a massively parallel Java program in a native debugger...
If you know the cause, keep the code in your wrapper methods that avoids it. Better have your wrapper methods throw exceptions than your JNI code crash the VM...
If you are looking for Windows-specific solution then there is structured exception handling:
https://learn.microsoft.com/en-us/cpp/cpp/try-except-statement
The code looks as follows
__try
{
// code here may throw or make access violation
}
__except( EXCEPTION_EXECUTE_HANDLER )
{
// after exception code here, e.g. log the error
}
It will catch not only C++ exceptions but also access violations or other system exceptions.
Well this really depends on the compiler environment.
gcc does not catch these.
Visual Studio and the last Borland that I used did.
So the conclusion about crashes is that it depends on the quality of your development environment.
The C++
specification says that catch(...) must catch any exceptions, but it doesn't in all cases.
At least from what I tried.

Finding out the source of an exception in C++ after it is caught?

I'm looking for an answer in MS VC++.
When debugging a large C++ application, which unfortunately has a very extensive usage of C++ exceptions. Sometimes I catch an exception a little later than I actually want.
Example in pseudo code:
FunctionB()
{
...
throw e;
...
}
FunctionA()
{
...
FunctionB()
...
}
try
{
Function A()
}
catch(e)
{
(<--- breakpoint)
...
}
I can catch the exception with a breakpoint when debugging. But I can't trace back if the exception occurred in FunctionA() or FunctionB(), or some other function. (Assuming extensive exception use and a huge version of the above example).
One solution to my problem is to determine and save the call stack in the exception constructor (i.e. before it is caught). But this would require me to derive all exceptions from this base exception class. It would also require a lot of code, and perhaps slow down my program.
Is there an easier way that requires less work? Without having to change my large code base?
Are there better solutions to this problem in other languages?
You pointed to a breakpoint in the code. Since you are in the debugger, you could set a breakpoint on the constructor of the exception class, or set Visual Studio debugger to break on all thrown exceptions (Debug->Exceptions Click on C++ exceptions, select thrown and uncaught options)
If you are just interested in where the exception came from, you could just write a simple macro like
#define throwException(message) \
{ \
std::ostringstream oss; \
oss << __FILE __ << " " << __LINE__ << " " \
<< __FUNC__ << " " << message; \
throw std::exception(oss.str().c_str()); \
}
which will add the file name, line number and function name to the exception text (if the compiler provides the respective macros).
Then throw exceptions using
throwException("An unknown enum value has been passed!");
There's an excellent book written by John Robbins which tackles many difficult debugging questions. The book is called Debugging Applications for Microsoft .NET and Microsoft Windows. Despite the title, the book contains a host of information about debugging native C++ applications.
In this book, there is a lengthy section all about how to get the call stack for exceptions that are thrown. If I remember correctly, some of his advice involves using structured exception handling (SEH) instead of (or in addition to) C++ exceptions. I really cannot recommend the book highly enough.
Put a breakpoint in the exception object constructor. You'll get your breakpoint before the exception is thrown.
There is no way to find out the source of an exception after it's caught, unless you include that information when it is thrown. By the time you catch the exception, the stack is already unwound, and there's no way to reconstruct the stack's previous state.
Your suggestion to include the stack trace in the constructor is your best bet. Yes, it costs time during construction, but you probably shouldn't be throwing exceptions often enough that this is a concern. Making all of your exceptions inherit from a new base may also be more than you need. You could simply have the relevant exceptions inherit (thank you, multiple inheritance), and have a separate catch for those.
You can use the StackTrace64 function to build the trace (I believe there are other ways as well). Check out this article for example code.
Here's how I do it in C++ using GCC libraries:
#include <execinfo.h> // Backtrace
#include <cxxabi.h> // Demangling
vector<Str> backtrace(size_t numskip) {
vector<Str> result;
std::vector<void*> bt(100);
bt.resize(backtrace(&(*bt.begin()), bt.size()));
char **btsyms = backtrace_symbols(&(*bt.begin()), bt.size());
if (btsyms) {
for (size_t i = numskip; i < bt.size(); i++) {
Aiss in(btsyms[i]);
int idx = 0; Astr nt, addr, mangled;
in >> idx >> nt >> addr >> mangled;
if (mangled == "start") break;
int status = 0;
char *demangled = abi::__cxa_demangle(mangled.c_str(), 0, 0, &status);
Str frame = (status==0) ? Str(demangled, demangled+strlen(demangled)) :
Str(mangled.begin(), mangled.end());
result.push_back(frame);
free(demangled);
}
free(btsyms);
}
return result;
}
Your exception's constructor can simply call this function and store away the stack trace. It takes the param numskip because I like to slice off the exception's constructor from my stack traces.
There's no standard way to do this.
Further, the call stack must typically be recorded at the time of the exception being thrown; once it has been caught the stack has unrolled, so you no longer know what was going on at the point of being thrown.
In VC++ on Win32/Win64, you might get usable-enough results by recording the value from the compiler intrinsic _ReturnAddress() and ensuring that your exception class constructor is __declspec(noinline). In conjunction with the debug symbol library, I think you could probably get the function name (and line number, if your .pdb contains it) that corresponds to the return address using SymGetLineFromAddr64.
In native code you can get a shot at walking the callstack by installing a Vectored Exception handler. VC++ implements C++ exceptions on top of SEH exceptions and a vectored exception handler is given first shot before any frame based handlers. However be really careful, problems introduced by vectored exception handling can be difficult to diagnose.
Also Mike Stall has some warnings about using it in an app that has managed code. Finally, read Matt Pietrek's article and make sure you understand SEH and vectored exception handling before you try this. (Nothing feels quite so bad as tracking down a critical problem to code you added help track down critical problems.)
I believe MSDev allows you to set break points when an exception is thrown.
Alternatively put the break point on the constructor of your exception object.
If you're debugging from the IDE, go to Debug->Exceptions, click Thrown for C++ exceptions.
Other languages? Well, in Java you call e.printStackTrace(); It doesn't get much simpler than that.
In case anyone is interested, a co-worker replied to this question to me via email:
Artem wrote:
There is a flag to MiniDumpWriteDump() that can do better crash dumps that will allow seeing full program state, with all global variables, etc. As for call stacks, I doubt they can be better because of optimizations... unless you turn (maybe some) optimizations off.
Also, I think disabling inline functions and whole program optimization will help quite a lot.
In fact, there are many dump types, maybe you could choose one small enough but still having more info
http://msdn.microsoft.com/en-us/library/ms680519(VS.85).aspx
Those types won't help with call stack though, they only affect the amount of variables you'll be able to see.
I noticed some of those dump types aren't supported in dbghelp.dll version 5.1 that we use. We could update it to the newest, 6.9 version though, I've just checked the EULA for MS Debugging Tools -- the newest dbghelp.dll is still ok to redistribute.
I use my own exceptions. You can handle them quite simple - also they contain text. I use the format:
throw Exception( "comms::serial::serial( )", "Something failed!" );
Also I have a second exception format:
throw Exception( "comms::serial::serial( )", ::GetLastError( ) );
Which is then converted from a DWORD value to the actual message using FormatMessage. Using the where/what format will show you what happened and in what function.
By now, it has been 11 years since this question was asked and today, we can solve this problem using only standard C++11, i.e. cross-platform and without the need for a debugger or cumbersome logging.
You can trace the call stack that led to an exception
Use std::nested_exception and std::throw_with_nested
This won't give you a stack unwind, but in my opinion the next best thing.
It is described on StackOverflow here and here, how you can get a backtrace on your exceptions inside your code without need for a debugger or cumbersome logging, by simply writing a proper exception handler which will rethrow nested exceptions.
It will, however, require that you insert try/catch statements at the functions you wish to trace (i.e. functions without this will not appear in your trace).
You could automate this with macros, reducing the amount of code you have to write/change.
Since you can do this with any derived exception class, you can add a lot of information to such a backtrace!
You may also take a look at my MWE on GitHub, where a backtrace would look something like this:
Library API: Exception caught in function 'api_function'
Backtrace:
~/Git/mwe-cpp-exception/src/detail/Library.cpp:17 : library_function failed
~/Git/mwe-cpp-exception/src/detail/Library.cpp:13 : could not open file "nonexistent.txt"