I have a large vector (10^9 elements) of chars, and I was wondering what is the fastest way to write such vector to a file. So far I've been using next code:
vector<char> vs;
// ... Fill vector with data
ofstream outfile("nanocube.txt", ios::out | ios::binary);
ostream_iterator<char> oi(outfile, '\0');
copy(vs.begin(), vs.end(), oi);
For this code it takes approximately two minutes to write all data to file. The actual question is: "Can I make it faster using STL and how"?
With such a large amount of data to be written (~1GB), you should write to the output stream directly, rather than using an output iterator. Since the data in a vector is stored contiguously, this will work and should be much faster.
ofstream outfile("nanocube.txt", ios::out | ios::binary);
outfile.write(&vs[0], vs.size());
There is a slight conceptual error with your second argument to ostream_iterator's constructor. It should be NULL pointer, if you don't want a delimiter (although, luckily for you, this will be treated as such implicitly), or the second argument should be omitted.
However, this means that after writing each character, the code needs to check for the pointer designating the delimiter (which might be somewhat inefficient).
I think, if you want to go with iterators, perhaps you could try ostreambuf_iterator.
Other options might include using the write() method (if it can handle output this large, or perhaps output it in chunks), and perhaps OS-specific output functions.
Since your data is contiguous in memory (as Charles said), you can use low level I/O. On Unix or Linux, you can do your write to a file descriptor. On Windows XP, use file handles. (It's a little trickier on XP, but well documented in MSDN.)
XP is a little funny about buffering. If you write a 1GB block to a handle, it will be slower than if you break the write up into smaller transfer sizes (in a loop). I've found the 256KB writes are most efficient. Once you've written the loop, you can play around with this and see what's the fastest transfer size.
OK, I did write method implementation with for loop that writes 256KB blocks (as Rob suggested) of data at each iteration and result is 16 seconds, so problem solved. This is my humble implementation so feel free to comment:
void writeCubeToFile(const vector<char> &vs)
{
const unsigned int blocksize = 262144;
unsigned long blocks = distance(vs.begin(), vs.end()) / blocksize;
ofstream outfile("nanocube.txt", ios::out | ios::binary);
for(unsigned long i = 0; i <= blocks; i++)
{
unsigned long position = blocksize * i;
if(blocksize > distance(vs.begin() + position, vs.end())) outfile.write(&*(vs.begin() + position), distance(vs.begin() + position, vs.end()));
else outfile.write(&*(vs.begin() + position), blocksize);
}
outfile.write("\0", 1);
outfile.close();
}
Thnx to all of you.
If you have other structure this method is still valid.
For example:
typedef std::pair<int,int> STL_Edge;
vector<STL_Edge> v;
void write_file(const char * path){
ofstream outfile(path, ios::out | ios::binary);
outfile.write((const char *)&v.front(), v.size()*sizeof(STL_Edge));
}
void read_file(const char * path,int reserveSpaceForEntries){
ifstream infile(path, ios::in | ios::binary);
v.resize(reserveSpaceForEntries);
infile.read((char *)&v.front(), v.size()*sizeof(STL_Edge));
}
Instead of writing via the file i/o methods, you could try to create a memory-mapped file, and then copy the vector to the memory-mapped file using memcpy.
Use the write method on it, it is in ram after all and you have contigous memory.. Fastest, while looking for flexibility later? Lose the built-in buffering, hint sequential i/o, lose the hidden things of iterator/utility, avoid streambuf when you can but do get dirty with boost::asio ..
Related
I have pixels from an image which are stored in a binary file.
I would like to use a function to quickly read this file.
For the moment I have this:
std::vector<int> _data;
std::ifstream file(_rgbFile.string(), std::ios_base::binary);
while (!file.eof())
{
char singleByte[1];
file.read(singleByte, 1);
int b = singleByte[0];
_data.push_back(b);
}
std::cout << "end" << std::endl;
file.close();
But on 4096 * 4096 * 3 images it already takes a little time.
Is it possible to optimize this function?
You could make this faster by reading the whole file in one go, and preallocating the necessary storage in the vector beforehand:
std::ifstream file(_rgbFile.string(), std::ios_base::binary);
std::streampos posStart = file.tellg();
file.seekg(0, std::ios::end);
std::streampos posEnd = file.tellg();
file.seekg(posStart);
std::vector<char> _data;
_data.resize(posEnd - posStart, 0);
file.read(&_data[0], posEnd - posStart);
std::cout << "end" << std::endl;
file.close();
Avoiding unnecessary i/o
By reading the file as a whole in one read() call you can avoid a lot of read calls, and buffering of the ifstream. If the file is very large and you don't want to load it all in memory at once, then you can load smaller chunks of maybe a few MB each.
Also you avoid lots of functions calls - by reading it byte-by-byte you need to issue ifstream::read 50'331'648 times!
vector preallocation
std::vector grows dynamically when you try to insert new elements but no space is left. Each time the vector resizes, it needs to allocate a new, larger, memory area and copy all current elements in the vector over to the new location.
Most vector implementions choose a growth factor between 1.5 - 2, so each time the vector needs to resize it'll be a 1.5-2x larger allocation.
This can be completely avoided by calling std::vector::reserve or std::vector::resize.
With these functions the vector memory only needs to be allocated once, with at least as many elements as you requested.
Godbolt example
Here's a godbolt example that shows the performance improvement.
testing a ~5MB file (4096*4096*3 bytes)
gcc 11.2, with optimizations disabled:
Old
New
1300ms
16ms
gcc 11.2, -O3
Old
New
878ms
13ms
Small bug in the code
As #TedLyngmo has pointed out your code also contains a small bug.
The EOF marker will only be set once you tried to read past the end of the file. see this question
So the last read that sets the EOF bit didn't actually read a byte, so you have one more byte in your array that contains uninitialized garbage.
You could fix this by checking for EOF directly after the read:
while(true) {
char singleByte[1];
file.read(singleByte, 1);
if(file.eof()) break;
int b = singleByte[0];
_data.push_back(b);
}
I want rewrite file with 0's. It only write a few bytes.
My code:
int fileSize = boost::filesystem::file_size(filePath);
int zeros[fileSize] = { 0 };
boost::filesystem::path rewriteFilePath{filePath};
boost::filesystem::ofstream rewriteFile{rewriteFilePath, std::ios::trunc};
rewriteFile << zeros;
Also... Is this enough to shred the file? What should I do next to make the file unrecoverable?
EDIT: Ok. I rewrited my code to this. Is this code ok to do this?
int fileSize = boost::filesystem::file_size(filePath);
boost::filesystem::path rewriteFilePath{filePath};
boost::filesystem::ofstream rewriteFile{rewriteFilePath, std::ios::trunc};
for(int i = 0; i < fileSize; i++) {
rewriteFile << 0;
}
There are several problems with your code.
int zeros[fileSize] = { 0 };
You are creating an array that is sizeof(int) * fileSize bytes in size. For what you are attempting, you need an array that is fileSize bytes in size instead. So you need to use a 1-byte data type, like (unsigned) char or uint8_t.
But, more importantly, since the value of fileSize is not known until runtime, this type of array is known as a "Variable Length Array" (VLA), which is a non-standard feature in C++. Use std::vector instead if you need a dynamically allocated array.
boost::filesystem::ofstream rewriteFile{rewriteFilePath, std::ios::trunc};
The trunc flag truncates the size of an existing file to 0. What that entails is to update the file's metadata to reset its tracked byte size, and to mark all of the file's used disk sectors as available for reuse. The actual file bytes stored in those sectors are not wiped out until overwritten as sectors get reused over time. But any bytes you subsequently write to the truncated file are not guaranteed to (and likely will not) overwrite the old bytes on disk. So, do not truncate the file at all.
rewriteFile << zeros;
ofstream does not have an operator<< that takes an int[], or even an int*, as input. But it does have an operator<< that takes a void* as input (to output the value of the memory address being pointed at). An array decays into a pointer to the first element, and void* accepts any pointer. This is why only a few bytes are being written. You need to use ofstream::write() instead to write the array to file, and be sure to open the file with the binary flag.
Try this instead:
int fileSize = boost::filesystem::file_size(filePath);
std::vector<char> zeros(fileSize, 0);
boost::filesystem::path rewriteFilePath(filePath);
boost::filesystem::ofstream rewriteFile(rewriteFilePath, std::ios::binary);
rewriteFile.write(zeros.data()/*&zeros[0]*/, fileSize);
That being said, you don't need a dynamically allocated array at all, let alone one that is allocated to the full size of the file. That is just a waste of heap memory, especially for large files. You can do this instead:
int fileSize = boost::filesystem::file_size(filePath);
const char zeros[1024] = {0}; // adjust size as desired...
boost::filesystem::path rewriteFilePath(filePath);
boost::filesystem::ofstream rewriteFile(rewriteFilePath, std::ios::binary);
int loops = fileSize / sizeof(zeros);
for(int i = 0; i < loops; ++i) {
rewriteFile.write(zeros, sizeof(zeros));
}
rewriteFile.write(zeros, fileSize % sizeof(zeros));
Alternatively, if you open a memory-mapped view of the file (MapViewOfFile() on Windows, mmap() on Linux, etc) then you can simply use std::copy() or std::memset() to zero out the bytes of the entire file directly on disk without using an array at all.
Also... Is this enough to shred the file?
Not really, no. At the physical hardware layer, overwriting the file just one time with zeros can still leave behind remnant signals in the disk sectors, which can be recovered with sufficient tools. You should overwrite the file multiple times, with varying types of random data, not just zeros. That will more thoroughly scramble the signals in the sectors.
I cannot stress strongly enough the importance of the comments that overwriting a file's contents does not guarantee that any of the original data is overwritten. ALL OTHER ANSWERS TO THIS QUESTION ARE THEREFORE IRRELEVANT ON ANY RECENT OPERATING SYSTEM.
Modern filing systems are extents based, meaning that files are stored as a linked list of allocated chunks. Updating a chunk may be faster for the filing system to write a whole new chunk and simply adjust the linked list, so that's what they do. Indeed copy-on-write filing systems always write a copy of any modified chunk and update their B-tree of currently valid extents.
Furthermore, even if your filing system doesn't do this, your hard drive may use the exact same technique also for performance, and any SSD almost certainly always uses this technique due to how flash memory works. So overwriting data to "erase" it is meaningless on modern systems. Can't be done. The only safe way to keep old data hidden is full disk encryption. Anything else you are deceiving yourself and your users.
Just for fun, overwriting with random data:
Live On Coliru
#include <boost/iostreams/device/mapped_file.hpp>
#include <random>
namespace bio = boost::iostreams;
int main() {
bio::mapped_file dst("main.cpp");
std::mt19937 rng { std::random_device{} () };
std::uniform_int_distribution<char> dist;
std::generate_n(dst.data(), dst.size(), [&] { return dist(rng); });
}
Note that it scrambles its own source file after compilation :)
Follow-up question on an earlier question I had, that has been perfectly answered. To quickly recap, I had trouble creating a class holding a huge array (stack overflow error). In the answers, some users recommended I use std::vector instead.
The function to read in the data looks like this:
Test()
{
memset(myarray, 0, sizeof(myarray));
FILE* fstr = fopen("myfile.dat", "rb");
size_t success= fread(myarray, sizeof(myarray), 1, fstr);
fclose(fstr);
}
for a myarray which looked like this:
int myarray[45000000];
My question is: How can I read this into a preferable:
std::vector<int> myvector;
I searched google , and have found multiple answers, usually pointing to the following code:
std::ifstream input("myfile.dat", std::ios::in | std::ifstream::binary);
std::copy(std::istream_iterator<int>(input),
std::istream_iterator<int>(),
std::back_inserter(myvector));
After implementing this, and when calling myvector.size() I get 16 (for whatever reason), and accessing a vector element leads to an immediate crash for going out of the vector bounds.
So what do I have to do to get this right? I once read somewhere that I could just simply use the "old" method, and then reading the array into the vector, but this seems to defeat the purpose of using the vector in the first place.
fread() reads your file binary, while ifstream_iterator tries to extract formatted ints (like 42).
You want to resize your vector and use input.read(...) instead:
const size_t size = 45000000; // change this to the appropriate value
std::vector<char> myvector(size, 0);
std::ifstream input("myfile.dat", std::ios::in | std::ifstream::binary);
input.read(&myvector[0], myvector.size());
Note that you need to use a std::vector<char> since read expects the first parameter to be a char *. You can use other types T if you cast the type correctly:
input.read(reinterpret_cast<char*>(&myvector[0]), myvector.size() * sizeof(T));
If you're using C++ you should try to avoid using the C FILE APIs all together -- so you're on the right track. The problem you're having is that istream_iterator reads input as text, not binary -- it's expecting ASCII digits. This this out instead:
std::vector<int> vec(45000000);
std::filebuf fb;
fb.open("myfile.dat", std::ios_base::in | std::ios_base::binary);
fb.sgetn((char*)&vec[0], vec.size() * sizeof(vec[0]));
I have an array of precomputed integers, it's fixed size of 15M values. I need to load these values at the program start. Currently it takes up to 2 mins to load, file size is ~130MB. Is it any way to speed-up loading. I'm free to change save process as well.
std::array<int, 15000000> keys;
std::string config = "config.dat";
// how array is saved
std::ofstream out(config.c_str());
std::copy(keys.cbegin(), keys.cend(),
std::ostream_iterator<int>(out, "\n"));
// load of array
std::ifstream in(config.c_str());
std::copy(std::istream_iterator<int>(in),
std::istream_iterator<int>(), keys.begin());
in_ranks.close();
Thanks in advance.
SOLVED. Used the approach proposed in accepted answer. Now it takes just a blink.
Thanks all for your insights.
You have two issues regarding the speed of your write and read operations.
First, std::copy cannot do a block copy optimization when writing to an output_iterator because it doesn't have direct access to underlying target.
Second, you're writing the integers out as ascii and not binary, so for each iteration of your write output_iterator is creating an ascii representation of your int and on read it has to parse the text back into integers. I believe this is the brunt of your performance issue.
The raw storage of your array (assuming a 4 byte int) should only be 60MB, but since each character of an integer in ascii is 1 byte any ints with more than 4 characters are going to be larger than the binary storage, hence your 130MB file.
There is not an easy way to solve your speed problem portably (so that the file can be read on different endian or int sized machines) or when using std::copy. The easiest way is to just dump the whole of the array to disk and then read it all back using fstream.write and read, just remember that it's not strictly portable.
To write:
std::fstream out(config.c_str(), ios::out | ios::binary);
out.write( keys.data(), keys.size() * sizeof(int) );
And to read:
std::fstream in(config.c_str(), ios::in | ios::binary);
in.read( keys.data(), keys.size() * sizeof(int) );
----Update----
If you are really concerned about portability you could easily use a portable format (like your initial ascii version) in your distribution artifacts then when the program is first run it could convert that portable format to a locally optimized version for use during subsequent executions.
Something like this perhaps:
std::array<int, 15000000> keys;
// data.txt are the ascii values and data.bin is the binary version
if(!file_exists("data.bin")) {
std::ifstream in("data.txt");
std::copy(std::istream_iterator<int>(in),
std::istream_iterator<int>(), keys.begin());
in.close();
std::fstream out("data.bin", ios::out | ios::binary);
out.write( keys.data(), keys.size() * sizeof(int) );
} else {
std::fstream in("data.bin", ios::in | ios::binary);
in.read( keys.data(), keys.size() * sizeof(int) );
}
If you have an install process this preprocessing could also be done at that time...
Attention. Reality check ahead:
Reading integers from a large text file is an IO bound operation unless you're doing something completely wrong (like using C++ streams for this). Loading 15M integers from a text file takes less than 2 seconds on an AMD64#3GHZ when the file is already buffered (and only a bit long if had to be fetched from a sufficiently fast disk). Here's a quick & dirty routine to prove my point (that's why I do not check for all possible errors in the format of the integers, nor close my files at the end, because I exit() anyway).
$ wc nums.txt
15000000 15000000 156979060 nums.txt
$ head -n 5 nums.txt
730547560
-226810937
607950954
640895092
884005970
$ g++ -O2 read.cc
$ time ./a.out <nums.txt
=>1752547657
real 0m1.781s
user 0m1.651s
sys 0m0.114s
$ cat read.cc
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#include <vector>
int main()
{
char c;
int num=0;
int pos=1;
int line=1;
std::vector<int> res;
while(c=getchar(),c!=EOF)
{
if (c>='0' && c<='9')
num=num*10+c-'0';
else if (c=='-')
pos=0;
else if (c=='\n')
{
res.push_back(pos?num:-num);
num=0;
pos=1;
line++;
}
else
{
printf("I've got a problem with this file at line %d\n",line);
exit(1);
}
}
// make sure the optimizer does not throw vector away, also a check.
unsigned sum=0;
for (int i=0;i<res.size();i++)
{
sum=sum+(unsigned)res[i];
}
printf("=>%d\n",sum);
}
UPDATE: and here's my result when read the text file (not binary) using mmap:
$ g++ -O2 mread.cc
$ time ./a.out nums.txt
=>1752547657
real 0m0.559s
user 0m0.478s
sys 0m0.081s
code's on pastebin:
http://pastebin.com/NgqFa11k
What do I suggest
1-2 seconds is a realistic lower bound for a typical desktop machine for load this data. 2 minutes sounds more like a 60 Mhz micro controller reading from a cheap SD card. So either you have an undetected/unmentioned hardware condition or your implementation of C++ stream is somehow broken or unusable. I suggest to establish a lower bound for this task on your your machine by running my sample code.
if the integers are saved in binary format and you're not concerned with Endian problems, try reading the entire file into memory at once (fread) and cast the pointer to int *
You could precompile the array into a .o file, which wouldn't need to be recompiled unless the data changes.
thedata.hpp:
static const int NUM_ENTRIES = 5;
extern int thedata[NUM_ENTRIES];
thedata.cpp:
#include "thedata.hpp"
int thedata[NUM_ENTRIES] = {
10
,200
,3000
,40000
,500000
};
To compile this:
# make thedata.o
Then your main application would look something like:
#include "thedata.hpp"
using namespace std;
int main() {
for (int i=0; i<NUM_ENTRIES; i++) {
cout << thedata[i] << endl;
}
}
Assuming the data doesn't change often, and that you can process the data to create thedata.cpp, then this is effectively instant loadtime. I don't know if the compiler would choke on such a large literal array though!
Save the file in a binary format.
Write the file by taking a pointer to the start of your int array and convert it to a char pointer. Then write the 15000000*sizeof(int) chars to the file.
And when you read the file, do the same in reverse: read the file as a sequence of chars, take a pointer to the beginning of the sequence, and convert it to an int*.
of course, this assumes that endianness isn't an issue.
For actually reading and writing the file, memory mapping is probably the most sensible approach.
If the numbers never change, preprocess the file into a C++ source and compile it into the application.
If the number can change and thus you have to keep them in separate file that you have to load on startup then avoid doing that number by number using C++ IO streams. C++ IO streams are nice abstraction but there is too much of it for such simple task as loading a bunch of number fast. In my experience, huge part of the run time is spent in parsing the numbers and another in accessing the file char by char.
(Assuming your file is more than single long line.) Read the file line by line using std::getline(), parse numbers out of each line using not streams but std::strtol(). This avoids huge part of the overhead. You can get more speed out of the streams by crafting your own variant of std::getline(), such that reads the input ahead (using istream::read()); standard std::getline() also reads input char by char.
Use a buffer of 1000 (or even 15M, you can modify this size as you please) integers, not integer after integer. Not using a buffer is clearly the problem in my opinion.
If the data in the file is binary and you don't have to worry about endianess, and you're on a system that supports it, use the mmap system call. See this article on IBM's website:
High-performance network programming, Part 2: Speed up processing at both the client and server
Also see this SO post:
When should I use mmap for file access?
I've got a struct with 2 integers, and I want to store them in a binary file and read it again.
Here is my code:
static const char *ADMIN_FILE = "admin.bin";
struct pw {
int a;
int b;
};
void main(){
pw* p = new pw();
pw* q = new pw();
std::ofstream fout(ADMIN_FILE, ios_base::out | ios_base::binary | ios_base::trunc);
std::ifstream fin(ADMIN_FILE, ios_base::in | ios_base::binary);
p->a=123;
p->b=321;
fout.write((const char*)p, sizeof(pw));
fin.read((char*)q, sizeof(pw));
fin.close();
cout << q->a << endl;
}
The output I get is 0. Can anyone tell me what is the problem?
You probably want to flush fout before you read from it.
To flush the stream, do the following:
fout.flush();
The reason for this is that fstreams generally want to buffer the output as long as possible to reduce cost. To force the buffer to be emptied, you call flush on the stream.
When storing integers to files, you can use the htonl(), ntohl() family of functions to ensure that they will be read back in the correct format regardless of whether the file is written out on a big-endian machine, and read back later on a small-endian machine. The functions were intended for network use, but can be valuable when writing to files.
fin.write((char*)q, sizeof(pw));
Should probably be
fin.read((char*)q, sizeof(pw));
Be warned that your method assumes things about the size and endianness of your integers and the packing of your structures, none of which is necessarily going to be true if your code gets ported to another machine.
For portability reasons, you want to have output routines that output the fields of structures separately, and that output numbers at specific bitwidths with specific endianness. This is why there are serialization packages.
try this:
fout.write((const char*)&p, sizeof(pw));
fin.read((char*)&q, sizeof(pw));
instead of
fout.write((const char*)p, sizeof(pw));
fin.read((char*)q, sizeof(pw));
vagothcpp (yournotsosmartc++programmer=p)