Boost multi-index container with index based on nested values - c++

If I have an object like this:
struct Bar {
std::string const& property();
};
I can create a multi-index container for it like this:
struct tag_prop {};
typedef boost::multi_index_container<
Bar,
boost::multi_index::indexed_by<
boost::multi_index::ordered_non_unique<
boost::multi_index::tag<tag_prop>,
boost::multi_index::const_mem_fun<
Bar, const std::string&, &Bar::property
>
>
>
, ... other indexes
> BarContainer;
But if I have a class like this:
struct Foo {
Bar const& bar();
};
How can I construct an index on .bar().property() for a container of Foo objects?
Normally I would nest calls to boost::bind, but I can't figure out how to make it work in the context of a multi-index container.

Rather than providing a user-defined comparator, you can write a user-defined key extractor:
struct FooBarPropertyExtractor
{
typedef std::string result_type;
const result_type& oeprator()(const Foo& f)
{
return f.bar().property();
}
};
...
typedef boost::multi_index_container<
Bar,
boost::multi_index::indexed_by<
boost::multi_index::ordered_non_unique<
boost::multi_index::tag<tag_prop>,
FooBarPropertyExtractor
>
>
, ... other indexes
> FooContainer;
See Advanced features of Boost.MultiIndex key extractors

I believe you need to create a predicate object that takes two instances of Foo and its operator() can call Foo::bar() on both instances.
Something like
struct MyPredicate
{
bool operator() (const Foo& obj1, const Foo& obj2) const
{
// fill in here
}
};
and then use
...
boost::multi_index::ordered_unique<boost::multi_index::tag<tag_prop>,
boost::multi_index::identity<Foo>, MyPredicate>,
...
Check out MultiIndex Ordered indices reference

As much as I like using lambdas to do simple things, this can quickly degenerate :)
In your case, since it's a bit more complicated, I would rely either on a free function or a predicate comparator.
The predicate has the advantage of defining types more clearly so it's usually easier to actually bring it in.
Also, for readability's sake, I usually typedef my indexes, which gives:
namespace mi = boost::multi_index;
struct FooComparator
{
bool operator()(Foo const& lhs, Foo const& rhs) const
{
return lhs.bar().property() < rhs.bar().property();
}
};
typedef mi::ordered_unique <
mi::tag<tag_prop>,
mi::identity<Foo>,
FooComparator
> foo_bar_index_t;
typedef boost::multi_index_container <
Foo,
mi::indexed_by <
foo_bar_index_t,
// ... other indexes
>
> foo_container_t;
The predicate approach requires more boilerplate code, but it allows to nicely separate the comparison logic from the index definition, which is itself separated from the container definition.
Clear separation makes it easier to view the structure at a glance.

Related

using a map with a comparator as a std::map parameter

Say I define a map with a custom comparator such as
struct Obj
{
int id;
std::string data;
std::vector<std::string> moreData;
};
struct Comparator
{
using is_transparent = std::true_type;
bool operator()(Obj const& obj1, Obj const& obj2) { return obj1.id < obj2.id; };
}
std::map<Obj,int,Comparator> compMap;
is there a good way to ensure that downstream users don't have to implement the comparator to use the map as a map?
for instance my compiler throws an error if I try to pass it to a function with a similar type.
template<class T>
inline void add(std::map<T, int>& theMap, T const & keyObj)
{
auto IT = theMap.find(keyObj);
if (IT != theMap.end())
IT->second++;
else
theMap[keyObj] = 1;
}
add(compMap,newObj); //type error here
EDIT:
I kinda over santitized this to make a generic case. and then overlooked the obvious
template<class T, class Comp, class Alloc>
inline void add(std::map<T, int, Comp, Alloc>& theMap, T const & keyObj)
still having issues with one use not being able to deduce T, but went from 80 erros to 1 so... progress
thanks everyone.
You can typedef the specialised type and use that type inplace of
std::map<...
typedef std::map<Obj,int,Comparator> compMap_t;
inline void add(compMap_t& theMap, Obj const & keyObj)
...
Downstream users either use the type declared by you
using my_important_map = std::map<Obj,int,Comparator>;
or better use functions which take a generic map type,
auto some_function(auto const& map_)
{
//do something with the map and don't care about the ordering
return map_.find(Obj(1));
}

Modify std::less on a shared_ptr

This is what I have:
struct Foo {
int index;
}
std::set<std::shared_ptr<Foo>> bar;
I want to order bar's elements by their indices instead of by the default std::less<std::shared_ptr<T>> function, which relates the pointers.
I read I can type std::set<std::shared_ptr<Foo>, std::owner_less<std::shared_ptr<Foo>>> bar, but I'd prefer to stick to the previous syntax.
I tried defining std::less<std::shared_ptr<Foo>>, but it's not actually being used by the set functions. Is there a way I can achieve this?
If you want to compare by their indices, you'll have to write a comparator that checks by their indices. std::less<> will do the wrong thing (since it won't know about index) and std::owner_less<> will do the wrong thing (since it still won't compare the Foos, but rather has to do with ownership semantics of them).
You have to write:
struct SharedFooComparator {
bool operator()(const std::shared_ptr<Foo>& lhs,
const std::shared_ptr<Foo>& rhs) const
{
return lhs->index < rhs->index;
}
};
and use it:
std::set<std::shared_ptr<Foo>, SharedFooComparator> bar;
You could additionally generalize this to a generic comparator for shared_ptr's:
struct SharedComparator {
template <typename T>
bool operator()(const std::shared_ptr<T>& lhs,
const std::shared_ptr<T>& rhs) const
{
return (*lhs) < (*rhs);
}
};
and then simply make Foo comparable.
You can provide your own specialization of less<shared_ptr<Foo>> in the std namespace.
namespace std
{
template<>
class less<shared_ptr<Foo>>
{
public:
bool operator()(const shared_ptr<Event>& a, const shared_ptr<Event>& b)
{
// Compare *a and *b in some way
}
};
}
Then you can form a set<shared_ptr<Foo>> without a comparator. I needed this for a priority_queue<shared_ptr<Foo>>, where I didn't want to use a priority_queue<Foo*, vector<Foo*>, int (*)(const Foo*, const Foo*)>. I am not proud of it, but it works.

How can I use C++11 variadic templates to define a vector-of-tuples backed by a tuple-of-vectors?

Suppose I have a bunch of vectors:
vector<int> v1;
vector<double> v2;
vector<int> v3;
all of the same length. Now, for every index i, I would like to be able to treat (v1[i], v2[i], v3[i]) as a tuple, and maybe pass it around. In fact, I want to have a a vector-of-tuples rather than a tuple-of-vectors, using which I can do the above. (In C terms, I might say an array-of-structs rather than a struct-of-arrays). I do not want to effect any data reordering (think: really long vectors), i.e. the new vector is backed by the individual vectors I pass in. Let's .
Now, I want the class I write (call it ToVBackedVoT for lack of a better name) to support any arbitrary choice of vectors to back it (not just 3, not int, double and int, not every just scalars). I want the vector-of-tuples to be mutable, and for no copies to be made on construction/assignments.
If I understand correctly, variadic templates and the new std::tuple type in C++11 are the means for doing this (assuming I don't want untyped void* arrays and such). However, I only barely know them and have never worked with them. Can you help me sketch out how such a class will look like? Or how, given
template <typename ... Ts>
I can express something like "the list of template arguments being the replacement of each typename in the original template arguments with a vector of elements of this type"?
Note: I think I might also want to later be able to adjoin additional vectors to the backing vectors, making an instance of ToVBackedVoT<int, double, int> into, say, an instance of ToVBackedVoT<int, double, int, unsigned int>. So, bear that in mind when answering. This is not critically important though.
One idea is to keep the storage in the "struct of array" style in form of vectors for good performance if only a subset of the fields are used for a particular task. Then, for each kind of task requiring a different set of fields, you can write a lightweight wrapper around some of those vectors, giving you a nice random access iterator interface similar to what std::vector supports.
Concerning the syntax of variadic templates, this is how a wrapper class (without any iterators yet) could look like:
template<class ...Ts> // Element types
class WrapMultiVector
{
// references to vectors in a TUPLE
std::tuple<std::vector<Ts>&...> m_vectors;
public:
// references to vectors in multiple arguments
WrapMultiVector(std::vector<Ts> & ...vectors)
: m_vectors(vectors...) // construct tuple from multiple args.
{}
};
To construct such a templated class, it's often preferred to have a template type deducting helper function available (similar to those make_{pair|tuple|...} functions in std):
template<class ...Ts> // Element types
WrapMultiVector<Ts...> makeWrapper(std::vector<Ts> & ...vectors) {
return WrapMultiVector<Ts...>(vectors...);
}
You already see different types of "unpacking" the type list.
Adding iterators suitable to your application (you requested in particular random access iterators) is not so easy. A start could be forward only iterators, which you might extend to random access iterators.
The following iterator class is capable of being constructed using a tuple of element iterators, being incremented and being dereferenced to obtain a tuple of element references (important for read-write access).
class iterator {
std::tuple<typename std::vector<Ts>::iterator...> m_elemIterators;
public:
iterator(std::tuple<typename std::vector<Ts>::iterator...> elemIterators)
: m_elemIterators(elemIterators)
{}
bool operator==(const iterator &o) const {
return std::get<0>(m_elemIterators) == std::get<0>(o.m_elemIterators);
}
bool operator!=(const iterator &o) const {
return std::get<0>(m_elemIterators) != std::get<0>(o.m_elemIterators);
}
iterator& operator ++() {
tupleIncrement(m_elemIterators);
return *this;
}
iterator operator ++(int) {
iterator old = *this;
tupleIncrement(m_elemIterators);
return old;
}
std::tuple<Ts&...> operator*() {
return getElements(IndexList());
}
private:
template<size_t ...Is>
std::tuple<Ts&...> getElements(index_list<Is...>) {
return std::tie(*std::get<Is>(m_elemIterators)...);
}
};
For demonstration purposes, two different patterns are in this code which "iterate" over a tuple in order to apply some operation or construct a new tuple with some epxression to be called per element. I used both in order to demonstrate alternatives; you can also use the second method only.
tupleIncrement: You can use a helper function which uses meta programming to index a single entry and advance the index by one, then calling a recursive function, until the index is at the end of the tuple (then there is a special case implementation which is triggered using SFINAE). The function is defined outside of the class and not above; here is its code:
template<std::size_t I = 0, typename ...Ts>
inline typename std::enable_if<I == sizeof...(Ts), void>::type
tupleIncrement(std::tuple<Ts...> &tup)
{ }
template<std::size_t I = 0, typename ...Ts>
inline typename std::enable_if<I < sizeof...(Ts), void>::type
tupleIncrement(std::tuple<Ts...> &tup)
{
++std::get<I>(tup);
tupleIncrement<I + 1, Ts...>(tup);
}
This method can't be used to assign a tuple of references in the case of operator* because such a tuple has to be initialized with references immediately, which is not possible with this method. So we need something else for operator*:
getElements: This version uses an index list (https://stackoverflow.com/a/15036110/592323) which gets expanded too and then you can use std::get with the index list to expand full expressions. The IndexList when calling the function instantiates an appropriate index list which is only required for template type deduction in order to get those Is.... The type can be defined in the wrapper class:
// list of indices
typedef decltype(index_range<0, sizeof...(Ts)>()) IndexList;
More complete code with a little example can be found here: http://ideone.com/O3CPTq
Open problems are:
If the vectors have different sizes, the code fails. Better would be to check all "end" iterators for equality; if one iterator is "at end", we're also "at end"; but this would require some logic more than operator== and operator!= unless it's ok to "fake" it in; meaning that operator!= could return false as soon as any operator is unequal.
The solution is not const-correct, e.g. there is no const_iterator.
Appending, inserting etc. is not possible. The wrapper class could add some insert or and / or push_back function in order to make it work similar to std::vector. If your goal is that it's syntactically compatible to a vector of tuples, reimplement all those relevant functions from std::vector.
Not enough tests ;)
An alternative to all the variadic template juggling is to use the boost::zip_iterator for this purpose. For example (untested):
std::vector<int> ia;
std::vector<double> d;
std::vector<int> ib;
std::for_each(
boost::make_zip_iterator(
boost::make_tuple(ia.begin(), d.begin(), ib.begin())
),
boost::make_zip_iterator(
boost::make_tuple(ia.end(), d.end(), ib.end())
),
handle_each()
);
Where your handler, looks like:
struct handle_each :
public std::unary_function<const boost::tuple<const int&, const double&, const int&>&, void>
{
void operator()(const boost::tuple<const int&, const double&, const int&>& t) const
{
// Now you have a tuple of the three values across the vector...
}
};
As you can see, it's pretty trivial to expand this to support an arbitrary set of vectors..
From asker's clarification on how this would be used (code that takes a tuple), I'm going to propose this instead.
//give the i'th element of each vector
template<typename... Ts>
inline tuple<Ts&...> ith(size_t i, vector<Ts>&... vs){
return std::tie(vs[i]...);
}
There's a proposal to allow parameter packs to be saved as members of classes (N3728). Using that, here's some untested and untestable code.
template<typename... Types>
class View{
private:
vector<Types>&... inner;
public:
typedef tuple<Types&...> reference;
View(vector<Types>&... t): inner(t...) {}
//return smallest size
size_t size() const{
//not sure if ... works with initializer lists
return min({inner.size()...});
}
reference operator[](size_t i){
return std::tie(inner[i]...);
}
};
And iteration:
public:
iterator begin(){
return iterator(inner.begin()...);
}
iterator end(){
return iterator(inner.end()...);
}
//for .begin() and .end(), so that ranged-based for can be used
class iterator{
vector<Types>::iterator... ps;
iterator(vector<Types>::iterator... its):ps(its){}
friend View;
public:
//pre:
iterator operator++(){
//not sure if this is allowed.
++ps...;
//use this if not:
// template<typename...Types> void dummy(Types... args){} //global
// dummy(++ps...);
return *this;
}
iterator& operator--();
//post:
iterator operator++(int);
iterator operator--(int);
//dereference:
reference operator*()const{
return std::tie(*ps...);
}
//random access:
iterator operator+(size_t i) const;
iterator operator-(size_t i) const;
//need to be able to check end
bool operator==(iterator other) const{
return std::make_tuple(ps...) == std::make_tuple(other.ps...);
}
bool operator!=(iterator other) const{
return std::make_tuple(ps...) != std::make_tuple(other.ps...);
}
};
You may use something like:
#if 1 // Not available in C++11, so write our own
// class used to be able to use std::get<Is>(tuple)...
template<int... Is>
struct index_sequence { };
// generator of index_sequence<Is>
template<int N, int... Is>
struct make_index_sequence : make_index_sequence<N - 1, N - 1, Is...> { };
template<int... Is>
struct make_index_sequence<0, Is...> : index_sequence<Is...> { };
#endif
// The 'converting' class
// Note that it doesn't check that vector size are equal...
template<typename ...Ts>
class ToVBackedVoT
{
public:
explicit ToVBackedVoT(std::vector<Ts>&... vectors) : data(vectors...) {}
std::tuple<const Ts&...> operator [] (unsigned int index) const
{
return at(index, make_index_sequence<sizeof...(Ts)>());
}
std::tuple<Ts&...> operator [] (unsigned int index)
{
return at(index, make_index_sequence<sizeof...(Ts)>());
}
private:
template <int... Is>
std::tuple<const Ts&...> at(unsigned int index, index_sequence<Is...>) const
{
return std::tie(std::get<Is>(data)[index]...);
}
template <int... Is>
std::tuple<Ts&...> at(unsigned int index, index_sequence<Is...>)
{
return std::tie(std::get<Is>(data)[index]...);
}
private:
std::tuple<std::vector<Ts>&...> data;
};
And to iterate, create an 'IndexIterator' like the one in https://stackoverflow.com/a/20272955/2684539
To adjoin additional vectors, you have to create an other ToVBackedVoT as std::tuple_cat does for std::tuple
Conversion to a std::tuple of vectors (vector::iterators):
#include <iostream>
#include <vector>
// identity
// ========
struct identity
{
template <typename T>
struct apply {
typedef T type;
};
};
// concat_operation
// ================
template <typename Operator, typename ...> struct concat_operation;
template <
typename Operator,
typename ...Types,
typename T>
struct concat_operation<Operator, std::tuple<Types...>, T>
{
private:
typedef typename Operator::template apply<T>::type concat_type;
public:
typedef std::tuple<Types..., concat_type> type;
};
template <
typename Operator,
typename ...Types,
typename T,
typename ...U>
struct concat_operation<Operator, std::tuple<Types...>, T, U...>
{
private:
typedef typename Operator::template apply<T>::type concat_type;
public:
typedef typename concat_operation<
Operator,
std::tuple<Types..., concat_type>,
U...>
::type type;
};
template <
typename Operator,
typename T,
typename ...U>
struct concat_operation<Operator, T, U...>
{
private:
typedef typename Operator::template apply<T>::type concat_type;
public:
typedef typename concat_operation<
Operator,
std::tuple<concat_type>,
U...>
::type type;
};
// ToVectors (ToVBackedVoT)
// =========
template <typename ...T>
struct ToVectors
{
private:
struct to_vector {
template <typename V>
struct apply {
typedef typename std::vector<V> type;
};
};
public:
typedef typename concat_operation<to_vector, T...>::type type;
};
// ToIterators
// ===========
template <typename ...T>
struct ToIterators;
template <typename ...T>
struct ToIterators<std::tuple<T...>>
{
private:
struct to_iterator {
template <typename V>
struct apply {
typedef typename V::iterator type;
};
};
public:
typedef typename concat_operation<to_iterator, T...>::type type;
};
int main() {
typedef ToVectors<int, double, float>::type Vectors;
typedef ToVectors<Vectors, int, char, bool>::type MoreVectors;
typedef ToIterators<Vectors>::type Iterators;
// LOG_TYPE(Vectors);
// std::tuple<
// std::vector<int, std::allocator<int> >,
// std::vector<double, std::allocator<double> >,
// std::vector<float, std::allocator<float> > >
// LOG_TYPE(Iterators);
// std::tuple<
// __gnu_cxx::__normal_iterator<int*, std::vector<int, std::allocator<int> > >,
// __gnu_cxx::__normal_iterator<double*, std::vector<double, std::allocator<double> > >,
// __gnu_cxx::__normal_iterator<float*, std::vector<float, std::allocator<float> > > >
}
As an alternative similar to boost::zip_iterator I wrote a zip function with a very simple interface:
vector<int> v1;
vector<double> v2;
vector<int> v3;
auto vec_of_tuples = zip(v1, v2, v3);
For example, iterate over these tuples:
for (auto tuple : zip(v1, v2, v3)) {
int x1; double x2; int x3;
std::tie(x1, x2, x3) = tuple;
//...
}
Here, zip() takes any number of ranges of any type. It returns an adaptor which can be seen as a lazily evaluated range over a tuple of elements originating from the wrapped ranges.
The adaptor is part of my Haskell-style functional library "fn" and implemented using variadic templates.
Currently it doesn't support modification of the original ranges' values via the adaptor because of the design of the library (it's intended to be used with non-mutable ranges like in functional programming).
A brief explanation on how this is done is: zip(...) returns an adaptor object which implements begin() and end(), returning an iterator object. The iterator holds a tuple of iterators to the wrapped ranges. Incrementing the iterator increments all wrapped iterators (which is implemented using an index list and unpacking an incrementing expression into a series of expressions: ++std::get<I>(iterators)...). Dereferencing the iterator will decrement all wrapped iterators and pass it to std::make_tuple (which is also implemented as unpacking the expression *std::get<I>(iterators)...).
P.S. Its implementation is based on a lot of ideas coming from answers to this question.

Large POD as tuple for sorting

I have a POD with about 30 members of various types and I will be wanting to store thousands of the PODs in a container, and then sort that container by one of those members.
For example:
struct Person{
int idNumber;
....many other members
}
Thousands of Person objects which I want to sort by idNumber or by any other member I choose to sort by.
I've been researching this for a while today and it seems the most efficient, or at least, simplest, solution to this is not use struct at all, and rather use tuple for which I can pass an index number to a custom comparison functor for use in std::sort. (An example on this page shows one way to implement this type of sort easily, but does so on a single member of a struct which would make templating this not so easy since you must refer to the member by name, rather than by index which the tuple provides.)
My two-part question on this approach is 1) Is it acceptable for a tuple to be fairly large, with dozens of members? and 2) Is there an equally elegant solution for continuing to use struct instead of tuple for this?
You can make a comparator that stores a pointer to member internaly so it knows which member to take for comparison:
struct POD {
int i;
char c;
float f;
long l;
double d;
short s;
};
template<typename C, typename T>
struct Comp {
explicit Comp(T C::* p) : ptr(p) {}
bool operator()(const POD& p1, const POD& p2) const
{
return p1.*ptr < p2.*ptr;
}
private:
T C::* ptr;
};
// helper function to make a comparator easily
template<typename C, typename T>
Comp<C,T> make_comp( T C::* p)
{
return Comp<C,T>(p);
}
int main()
{
std::vector<POD> v;
std::sort(v.begin(), v.end(), make_comp(&POD::i));
std::sort(v.begin(), v.end(), make_comp(&POD::d));
// etc...
}
To further generalize this, make make_comp take a custom comparator, so you can have greater-than and other comparisons.
1) Is it acceptable for a tuple to be fairly large, with dozens of members?
Yes it is acceptable. However it won't be easy to maintain since all you'll have to work with is an index within the tuple, which is very akin to a magic number. The best you could get is reintroduce a name-to-index mapping using an enum which is hardly maintainable either.
2) Is there an equally elegant solution for continuing to use struct instead of tuple for this?
You can easily write a template function to access a specific struct member (to be fair, I didn't put much effort into it, it's more a proof of concept than anything else so that you get an idea how it can be done):
template<typename T, typename R, R T::* M>
R get_member(T& o) {
return o.*M;
}
struct Foo {
int i;
bool j;
float k;
};
int main() {
Foo f = { 3, true, 3.14 };
std::cout << get_member<Foo, float, &Foo::k>(f) << std::endl;
return 0;
}
From there, it's just as easy to write a generic comparator which you can use at your leisure (I'll leave it to you as an exercise). This way you can still refer to your members by name, yet you don't need to write a separate comparator for each member.
You could use a template to extract the sort key:
struct A
{
std::string name;
int a, b;
};
template<class Struct, typename T, T Struct::*Member>
struct compare_member
{
bool operator()(const Struct& lh, const Struct& rh)
{
return lh.*Member < rh.*Member;
}
};
int main()
{
std::vector<A> values;
std::sort(begin(values), end(values), compare_member<A, int, &A::a>());
}
Maybe you want to have a look at boost::multi_index_container which is a very powerful container if you want to index (sort) object by different keys.
Create a class which can use a pointer to a Person member data to use for comparison:
std::sort(container.begin(), container.end(), Compare(&Person::idNumber));
Where Compare is:
template<typename PointerToMemberData>
struct Compare {
Compare(PointerToMemberData pointerToMemberData) :
pointerToMemberData(pointerToMemberData) {
}
template<typename Type
bool operator()(Type lhs, Type rhs) {
return lhs.*pointerToMemberData < rhs.*pointerToMemberData
}
PointerToMemberData pointerToMemberData;
};

Keys / Values Functionality to Iterators in C++

I know this questions has come up in various guises before, but this is slightly different.
I have a class which contains a std::map. Although I wish to use the map for other purposes inside the class, externally I want to expose an iterator adapter to just the values inside the map (ie the second item in the std::pair).
For example in python I might do something like this:
def __iter__(self):
return self._dict.itervalues()
How do I go about doing this in c++, hiding the implementation inside the class?
Thanks,
Dan
Have a look at Boost's transform_iterator which provides exactly this kind of functionality:
template <typename K, typename V>
struct get_value {
const V& operator ()(std::pair<K, V> const& p) { return p.second; }
};
class your_class {
typedef map<int, float> TMap;
TMap mymap;
public:
typedef get_value<TMap::key_type, TMap::data_type> F;
typedef
boost::transform_iterator<F, TMap::iterator>
value_iterator;
value_iterator begin() { return make_transform_iterator(mymap.begin(), F()); }
value_iterator end() { return make_transform_iterator(mymap.end(), F()); }
// TODO Same for const versions.
// Rest of the interface …
};
Now you can iterate over the values, e.g. like this:
your_class c;
// Fill c with some values …
copy(c.begin(), c.end(), ostream_iterator<float>(cout, " "));