Related
Is there any way to determine (programatically, of course) if a given pointer is "valid"? Checking for NULL is easy, but what about things like 0x00001234? When trying to dereference this kind of pointer an exception/crash occurs.
A cross-platform method is preferred, but platform-specific (for Windows and Linux) is also ok.
Update for clarification:
The problem is not with stale/freed/uninitialized pointers; instead, I'm implementing an API that takes pointers from the caller (like a pointer to a string, a file handle, etc.). The caller can send (in purpose or by mistake) an invalid value as the pointer. How do I prevent a crash?
Update for clarification: The problem is not with stale, freed or uninitialized pointers; instead, I'm implementing an API that takes pointers from the caller (like a pointer to a string, a file handle, etc.). The caller can send (in purpose or by mistake) an invalid value as the pointer. How do I prevent a crash?
You can't make that check. There is simply no way you can check whether a pointer is "valid". You have to trust that when people use a function that takes a pointer, those people know what they are doing. If they pass you 0x4211 as a pointer value, then you have to trust it points to address 0x4211. And if they "accidentally" hit an object, then even if you would use some scary operation system function (IsValidPtr or whatever), you would still slip into a bug and not fail fast.
Start using null pointers for signaling this kind of thing and tell the user of your library that they should not use pointers if they tend to accidentally pass invalid pointers, seriously :)
Here are three easy ways for a C program under Linux to get introspective about the status of the memory in which it is running, and why the question has appropriate sophisticated answers in some contexts.
After calling getpagesize() and rounding the pointer to a page
boundary, you can call mincore() to find out if a page is valid and
if it happens to be part of the process working set. Note that this requires
some kernel resources, so you should benchmark it and determine if
calling this function is really appropriate in your api. If your api
is going to be handling interrupts, or reading from serial ports
into memory, it is appropriate to call this to avoid unpredictable
behaviors.
After calling stat() to determine if there is a /proc/self directory available, you can fopen and read through /proc/self/maps
to find information about the region in which a pointer resides.
Study the man page for proc, the process information pseudo-file
system. Obviously this is relatively expensive, but you might be
able to get away with caching the result of the parse into an array
you can efficiently lookup using a binary search. Also consider the
/proc/self/smaps. If your api is for high-performance computing then
the program will want to know about the /proc/self/numa which is
documented under the man page for numa, the non-uniform memory
architecture.
The get_mempolicy(MPOL_F_ADDR) call is appropriate for high performance computing api work where there are multiple threads of
execution and you are managing your work to have affinity for non-uniform memory
as it relates to the cpu cores and socket resources. Such an api
will of course also tell you if a pointer is valid.
Under Microsoft Windows there is the function QueryWorkingSetEx that is documented under the Process Status API (also in the NUMA API).
As a corollary to sophisticated NUMA API programming this function will also let you do simple "testing pointers for validity (C/C++)" work, as such it is unlikely to be deprecated for at least 15 years.
Preventing a crash caused by the caller sending in an invalid pointer is a good way to make silent bugs that are hard to find.
Isn't it better for the programmer using your API to get a clear message that his code is bogus by crashing it rather than hiding it?
On Win32/64 there is a way to do this. Attempt to read the pointer and catch the resulting SEH exeception that will be thrown on failure. If it doesn't throw, then it's a valid pointer.
The problem with this method though is that it just returns whether or not you can read data from the pointer. It makes no guarantee about type safety or any number of other invariants. In general this method is good for little else other than to say "yes, I can read that particular place in memory at a time that has now passed".
In short, Don't do this ;)
Raymond Chen has a blog post on this subject: http://blogs.msdn.com/oldnewthing/archive/2007/06/25/3507294.aspx
AFAIK there is no way. You should try to avoid this situation by always setting pointers to NULL after freeing memory.
On Unix you should be able to utilize a kernel syscall that does pointer checking and returns EFAULT, such as:
#include <unistd.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <errno.h>
#include <stdbool.h>
bool isPointerBad( void * p )
{
int fh = open( p, 0, 0 );
int e = errno;
if ( -1 == fh && e == EFAULT )
{
printf( "bad pointer: %p\n", p );
return true;
}
else if ( fh != -1 )
{
close( fh );
}
printf( "good pointer: %p\n", p );
return false;
}
int main()
{
int good = 4;
isPointerBad( (void *)3 );
isPointerBad( &good );
isPointerBad( "/tmp/blah" );
return 0;
}
returning:
bad pointer: 0x3
good pointer: 0x7fff375fd49c
good pointer: 0x400793
There's probably a better syscall to use than open() [perhaps access], since there's a chance that this could lead to actual file creation codepath, and a subsequent close requirement.
Regarding the answer a bit up in this thread:
IsBadReadPtr(), IsBadWritePtr(), IsBadCodePtr(), IsBadStringPtr() for Windows.
My advice is to stay away from them, someone has already posted this one:
http://blogs.msdn.com/oldnewthing/archive/2007/06/25/3507294.aspx
Another post on the same topic and by the same author (I think) is this one:
http://blogs.msdn.com/oldnewthing/archive/2006/09/27/773741.aspx ("IsBadXxxPtr should really be called CrashProgramRandomly").
If the users of your API sends in bad data, let it crash. If the problem is that the data passed isn't used until later (and that makes it harder to find the cause), add a debug mode where the strings etc. are logged at entry. If they are bad it will be obvious (and probably crash). If it is happening way to often, it might be worth moving your API out of process and let them crash the API process instead of the main process.
Firstly, I don't see any point in trying to protect yourself from the caller deliberately trying to cause a crash. They could easily do this by trying to access through an invalid pointer themselves. There are many other ways - they could just overwrite your memory or the stack. If you need to protect against this sort of thing then you need to be running in a separate process using sockets or some other IPC for communication.
We write quite a lot of software that allows partners/customers/users to extend functionality. Inevitably any bug gets reported to us first so it is useful to be able to easily show that the problem is in the plug-in code. Additionally there are security concerns and some users are more trusted than others.
We use a number of different methods depending on performance/throughput requirements and trustworthyness. From most preferred:
separate processes using sockets (often passing data as text).
separate processes using shared memory (if large amounts of data to pass).
same process separate threads via message queue (if frequent short messages).
same process separate threads all passed data allocated from a memory pool.
same process via direct procedure call - all passed data allocated from a memory pool.
We try never to resort to what you are trying to do when dealing with third party software - especially when we are given the plug-ins/library as binary rather than source code.
Use of a memory pool is quite easy in most circumstances and needn't be inefficient. If YOU allocate the data in the first place then it is trivial to check the pointers against the values you allocated. You could also store the length allocated and add "magic" values before and after the data to check for valid data type and data overruns.
I've got a lot of sympathy with your question, as I'm in an almost identical position myself. I appreciate what a lot of the replies are saying, and they are correct - the routine supplying the pointer should be providing a valid pointer. In my case, it is almost inconceivable that they could have corrupted the pointer - but if they had managed, it would be MY software that crashes, and ME that would get the blame :-(
My requirement isn't that I continue after a segmentation fault - that would be dangerous - I just want to report what happened to the customer before terminating so that they can fix their code rather than blaming me!
This is how I've found to do it (on Windows): http://www.cplusplus.com/reference/clibrary/csignal/signal/
To give a synopsis:
#include <signal.h>
using namespace std;
void terminate(int param)
/// Function executed if a segmentation fault is encountered during the cast to an instance.
{
cerr << "\nThe function received a corrupted reference - please check the user-supplied dll.\n";
cerr << "Terminating program...\n";
exit(1);
}
...
void MyFunction()
{
void (*previous_sigsegv_function)(int);
previous_sigsegv_function = signal(SIGSEGV, terminate);
<-- insert risky stuff here -->
signal(SIGSEGV, previous_sigsegv_function);
}
Now this appears to behave as I would hope (it prints the error message, then terminates the program) - but if someone can spot a flaw, please let me know!
There are no provisions in C++ to test for the validity of a pointer as a general case. One can obviously assume that NULL (0x00000000) is bad, and various compilers and libraries like to use "special values" here and there to make debugging easier (For example, if I ever see a pointer show up as 0xCECECECE in visual studio I know I did something wrong) but the truth is that since a pointer is just an index into memory it's near impossible to tell just by looking at the pointer if it's the "right" index.
There are various tricks that you can do with dynamic_cast and RTTI such to ensure that the object pointed to is of the type that you want, but they all require that you are pointing to something valid in the first place.
If you want to ensure that you program can detect "invalid" pointers then my advice is this: Set every pointer you declare either to NULL or a valid address immediately upon creation and set it to NULL immediately after freeing the memory that it points to. If you are diligent about this practice, then checking for NULL is all you ever need.
Setting the pointer to NULL before and after using is a good technique. This is easy to do in C++ if you manage pointers within a class for example (a string):
class SomeClass
{
public:
SomeClass();
~SomeClass();
void SetText( const char *text);
char *GetText() const { return MyText; }
void Clear();
private:
char * MyText;
};
SomeClass::SomeClass()
{
MyText = NULL;
}
SomeClass::~SomeClass()
{
Clear();
}
void SomeClass::Clear()
{
if (MyText)
free( MyText);
MyText = NULL;
}
void SomeClass::Settext( const char *text)
{
Clear();
MyText = malloc( strlen(text));
if (MyText)
strcpy( MyText, text);
}
Indeed, something could be done under specific occasion: for example if you want to check whether a string pointer string is valid, using write(fd, buf, szie) syscall can help you do the magic: let fd be a file descriptor of temporary file you create for test, and buf pointing to the string you are tesing, if the pointer is invalid write() would return -1 and errno set to EFAULT which indicating that buf is outside your accessible address space.
Peeter Joos answer is pretty good. Here is an "official" way to do it:
#include <sys/mman.h>
#include <stdbool.h>
#include <unistd.h>
bool is_pointer_valid(void *p) {
/* get the page size */
size_t page_size = sysconf(_SC_PAGESIZE);
/* find the address of the page that contains p */
void *base = (void *)((((size_t)p) / page_size) * page_size);
/* call msync, if it returns non-zero, return false */
int ret = msync(base, page_size, MS_ASYNC) != -1;
return ret ? ret : errno != ENOMEM;
}
There isn't any portable way of doing this, and doing it for specific platforms can be anywhere between hard and impossible. In any case, you should never write code that depends on such a check - don't let the pointers take on invalid values in the first place.
As others have said, you can't reliably detect an invalid pointer. Consider some of the forms an invalid pointer might take:
You could have a null pointer. That's one you could easily check for and do something about.
You could have a pointer to somewhere outside of valid memory. What constitutes valid memory varies depending on how the run-time environment of your system sets up the address space. On Unix systems, it is usually a virtual address space starting at 0 and going to some large number of megabytes. On embedded systems, it could be quite small. It might not start at 0, in any case. If your app happens to be running in supervisor mode or the equivalent, then your pointer might reference a real address, which may or may not be backed up with real memory.
You could have a pointer to somewhere inside your valid memory, even inside your data segment, bss, stack or heap, but not pointing at a valid object. A variant of this is a pointer that used to point to a valid object, before something bad happened to the object. Bad things in this context include deallocation, memory corruption, or pointer corruption.
You could have a flat-out illegal pointer, such as a pointer with illegal alignment for the thing being referenced.
The problem gets even worse when you consider segment/offset based architectures and other odd pointer implementations. This sort of thing is normally hidden from the developer by good compilers and judicious use of types, but if you want to pierce the veil and try to outsmart the operating system and compiler developers, well, you can, but there is not one generic way to do it that will handle all of the issues you might run into.
The best thing you can do is allow the crash and put out some good diagnostic information.
In general, it's impossible to do. Here's one particularly nasty case:
struct Point2d {
int x;
int y;
};
struct Point3d {
int x;
int y;
int z;
};
void dump(Point3 *p)
{
printf("[%d %d %d]\n", p->x, p->y, p->z);
}
Point2d points[2] = { {0, 1}, {2, 3} };
Point3d *p3 = reinterpret_cast<Point3d *>(&points[0]);
dump(p3);
On many platforms, this will print out:
[0 1 2]
You're forcing the runtime system to incorrectly interpret bits of memory, but in this case it's not going to crash, because the bits all make sense. This is part of the design of the language (look at C-style polymorphism with struct inaddr, inaddr_in, inaddr_in6), so you can't reliably protect against it on any platform.
It's unbelievable how much misleading information you can read in articles above...
And even in microsoft msdn documentation IsBadPtr is claimed to be banned. Oh well - I prefer working application rather than crashing. Even if term working might be working incorrectly (as long as end-user can continue with application).
By googling I haven't found any useful example for windows - found a solution for 32-bit apps,
http://www.codeproject.com/script/Content/ViewAssociatedFile.aspx?rzp=%2FKB%2Fsystem%2Fdetect-driver%2F%2FDetectDriverSrc.zip&zep=DetectDriverSrc%2FDetectDriver%2Fsrc%2FdrvCppLib%2Frtti.cpp&obid=58895&obtid=2&ovid=2
but I need also to support 64-bit apps, so this solution did not work for me.
But I've harvested wine's source codes, and managed to cook similar kind of code which would work for 64-bit apps as well - attaching code here:
#include <typeinfo.h>
typedef void (*v_table_ptr)();
typedef struct _cpp_object
{
v_table_ptr* vtable;
} cpp_object;
#ifndef _WIN64
typedef struct _rtti_object_locator
{
unsigned int signature;
int base_class_offset;
unsigned int flags;
const type_info *type_descriptor;
//const rtti_object_hierarchy *type_hierarchy;
} rtti_object_locator;
#else
typedef struct
{
unsigned int signature;
int base_class_offset;
unsigned int flags;
unsigned int type_descriptor;
unsigned int type_hierarchy;
unsigned int object_locator;
} rtti_object_locator;
#endif
/* Get type info from an object (internal) */
static const rtti_object_locator* RTTI_GetObjectLocator(void* inptr)
{
cpp_object* cppobj = (cpp_object*) inptr;
const rtti_object_locator* obj_locator = 0;
if (!IsBadReadPtr(cppobj, sizeof(void*)) &&
!IsBadReadPtr(cppobj->vtable - 1, sizeof(void*)) &&
!IsBadReadPtr((void*)cppobj->vtable[-1], sizeof(rtti_object_locator)))
{
obj_locator = (rtti_object_locator*) cppobj->vtable[-1];
}
return obj_locator;
}
And following code can detect whether pointer is valid or not, you need probably to add some NULL checking:
CTest* t = new CTest();
//t = (CTest*) 0;
//t = (CTest*) 0x12345678;
const rtti_object_locator* ptr = RTTI_GetObjectLocator(t);
#ifdef _WIN64
char *base = ptr->signature == 0 ? (char*)RtlPcToFileHeader((void*)ptr, (void**)&base) : (char*)ptr - ptr->object_locator;
const type_info *td = (const type_info*)(base + ptr->type_descriptor);
#else
const type_info *td = ptr->type_descriptor;
#endif
const char* n =td->name();
This gets class name from pointer - I think it should be enough for your needs.
One thing which I'm still afraid is performance of pointer checking - in code snipet above there is already 3-4 API calls being made - might be overkill for time critical applications.
It would be good if someone could measure overhead of pointer checking compared for example to C#/managed c++ calls.
It is not a very good policy to accept arbitrary pointers as input parameters in a public API. It's better to have "plain data" types like an integer, a string or a struct (I mean a classical struct with plain data inside, of course; officially anything can be a struct).
Why? Well because as others say there is no standard way to know whether you've been given a valid pointer or one that points to junk.
But sometimes you don't have the choice - your API must accept a pointer.
In these cases, it is the duty of the caller to pass a good pointer. NULL may be accepted as a value, but not a pointer to junk.
Can you double-check in any way? Well, what I did in a case like that was to define an invariant for the type the pointer points to, and call it when you get it (in debug mode). At least if the invariant fails (or crashes) you know that you were passed a bad value.
// API that does not allow NULL
void PublicApiFunction1(Person* in_person)
{
assert(in_person != NULL);
assert(in_person->Invariant());
// Actual code...
}
// API that allows NULL
void PublicApiFunction2(Person* in_person)
{
assert(in_person == NULL || in_person->Invariant());
// Actual code (must keep in mind that in_person may be NULL)
}
Following does work in Windows (somebody suggested it before):
static void copy(void * target, const void* source, int size)
{
__try
{
CopyMemory(target, source, size);
}
__except(EXCEPTION_EXECUTE_HANDLER)
{
doSomething(--whatever--);
}
}
The function has to be static, standalone or static method of some class.
To test on read-only, copy data in the local buffer.
To test on write without modifying contents, write them over.
You can test first/last addresses only.
If pointer is invalid, control will be passed to 'doSomething',
and then outside the brackets.
Just do not use anything requiring destructors, like CString.
On Windows I use this code:
void * G_pPointer = NULL;
const char * G_szPointerName = NULL;
void CheckPointerIternal()
{
char cTest = *((char *)G_pPointer);
}
bool CheckPointerIternalExt()
{
bool bRet = false;
__try
{
CheckPointerIternal();
bRet = true;
}
__except (EXCEPTION_EXECUTE_HANDLER)
{
}
return bRet;
}
void CheckPointer(void * A_pPointer, const char * A_szPointerName)
{
G_pPointer = A_pPointer;
G_szPointerName = A_szPointerName;
if (!CheckPointerIternalExt())
throw std::runtime_error("Invalid pointer " + std::string(G_szPointerName) + "!");
}
Usage:
unsigned long * pTest = (unsigned long *) 0x12345;
CheckPointer(pTest, "pTest"); //throws exception
On macOS, you can do this with mach_vm_region, which as well as telling you if a pointer is valid, also lets you validate what access you have to the memory to which the pointer points (read/write/execute). I provided sample code to do this in my answer to another question:
#include <mach/mach.h>
#include <mach/mach_vm.h>
#include <stdio.h>
#include <stdbool.h>
bool ptr_is_valid(void *ptr, vm_prot_t needs_access) {
vm_map_t task = mach_task_self();
mach_vm_address_t address = (mach_vm_address_t)ptr;
mach_vm_size_t size = 0;
vm_region_basic_info_data_64_t info;
mach_msg_type_number_t count = VM_REGION_BASIC_INFO_COUNT_64;
mach_port_t object_name;
kern_return_t ret = mach_vm_region(task, &address, &size, VM_REGION_BASIC_INFO_64, (vm_region_info_t)&info, &count, &object_name);
if (ret != KERN_SUCCESS) return false;
return ((mach_vm_address_t)ptr) >= address && ((info.protection & needs_access) == needs_access);
}
#define TEST(ptr,acc) printf("ptr_is_valid(%p,access=%d)=%d\n", (void*)(ptr), (acc), ptr_is_valid((void*)(ptr),(acc)))
int main(int argc, char**argv) {
TEST(0,0);
TEST(0,VM_PROT_READ);
TEST(123456789,VM_PROT_READ);
TEST(main,0);
TEST(main,VM_PROT_READ);
TEST(main,VM_PROT_READ|VM_PROT_EXECUTE);
TEST(main,VM_PROT_EXECUTE);
TEST(main,VM_PROT_WRITE);
TEST((void*)(-1),0);
return 0;
}
The SEI CERT C Coding Standard recommendation MEM10-C. Define and use a pointer validation function says it is possible to do a check to some degree, especially under Linux OS.
The method described in the link is to keep track of the highest memory address returned by malloc and add a function that tests if someone tries to use a pointer greater than that value. It is probably of limited use.
IsBadReadPtr(), IsBadWritePtr(), IsBadCodePtr(), IsBadStringPtr() for Windows.
These take time proportional to the length of the block, so for sanity check I just check the starting address.
I have seen various libraries use some method to check for unreferenced memory and such. I believe they simply "override" the memory allocation and deallocation methods (malloc/free), which has some logic that keeps track of the pointers. I suppose this is overkill for your use case, but it would be one way to do it.
Technically you can override operator new (and delete) and collect information about all allocated memory, so you can have a method to check if heap memory is valid.
but:
you still need a way to check if pointer is allocated on stack ()
you will need to define what is 'valid' pointer:
a) memory on that address is
allocated
b) memory at that address
is start address of object (e.g.
address not in the middle of huge
array)
c) memory at that address
is start address of object of expected type
Bottom line: approach in question is not C++ way, you need to define some rules which ensure that function receives valid pointers.
There is no way to make that check in C++. What should you do if other code passes you an invalid pointer? You should crash. Why? Check out this link: http://blogs.msdn.com/oldnewthing/archive/2006/09/27/773741.aspx
Addendum to the accpeted answer(s):
Assume that your pointer could hold only three values -- 0, 1 and -1 where 1 signifies a valid pointer, -1 an invalid one and 0 another invalid one. What is the probability that your pointer is NULL, all values being equally likely? 1/3. Now, take the valid case out, so for every invalid case, you have a 50:50 ratio to catch all errors. Looks good right? Scale this for a 4-byte pointer. There are 2^32 or 4294967294 possible values. Of these, only ONE value is correct, one is NULL, and you are still left with 4294967292 other invalid cases. Recalculate: you have a test for 1 out of (4294967292+ 1) invalid cases. A probability of 2.xe-10 or 0 for most practical purposes. Such is the futility of the NULL check.
You know, a new driver (at least on Linux) that is capable of this probably wouldn't be that hard to write.
On the other hand, it would be folly to build your programs like this. Unless you have some really specific and single use for such a thing, I wouldn't recommend it. If you built a large application loaded with constant pointer validity checks it would likely be horrendously slow.
you should avoid these methods because they do not work. blogs.msdn.com/oldnewthing/archive/2006/09/27/773741.aspx – JaredPar Feb 15 '09 at 16:02
If they don't work - next windows update will fix it ?
If they don't work on concept level - function will be probably removed from windows api completely.
MSDN documentation claim that they are banned, and reason for this is probably flaw of further design of application (e.g. generally you should not eat invalid pointers silently - if you're in charge of design of whole application of course), and performance/time of pointer checking.
But you should not claim that they does not work because of some blog.
In my test application I've verified that they do work.
these links may be helpful
_CrtIsValidPointer
Verifies that a specified memory range is valid for reading and writing (debug version only).
http://msdn.microsoft.com/en-us/library/0w1ekd5e.aspx
_CrtCheckMemory
Confirms the integrity of the memory blocks allocated in the debug heap (debug version only).
http://msdn.microsoft.com/en-us/library/e73x0s4b.aspx
Is there any way to determine (programatically, of course) if a given pointer is "valid"? Checking for NULL is easy, but what about things like 0x00001234? When trying to dereference this kind of pointer an exception/crash occurs.
A cross-platform method is preferred, but platform-specific (for Windows and Linux) is also ok.
Update for clarification:
The problem is not with stale/freed/uninitialized pointers; instead, I'm implementing an API that takes pointers from the caller (like a pointer to a string, a file handle, etc.). The caller can send (in purpose or by mistake) an invalid value as the pointer. How do I prevent a crash?
Update for clarification: The problem is not with stale, freed or uninitialized pointers; instead, I'm implementing an API that takes pointers from the caller (like a pointer to a string, a file handle, etc.). The caller can send (in purpose or by mistake) an invalid value as the pointer. How do I prevent a crash?
You can't make that check. There is simply no way you can check whether a pointer is "valid". You have to trust that when people use a function that takes a pointer, those people know what they are doing. If they pass you 0x4211 as a pointer value, then you have to trust it points to address 0x4211. And if they "accidentally" hit an object, then even if you would use some scary operation system function (IsValidPtr or whatever), you would still slip into a bug and not fail fast.
Start using null pointers for signaling this kind of thing and tell the user of your library that they should not use pointers if they tend to accidentally pass invalid pointers, seriously :)
Here are three easy ways for a C program under Linux to get introspective about the status of the memory in which it is running, and why the question has appropriate sophisticated answers in some contexts.
After calling getpagesize() and rounding the pointer to a page
boundary, you can call mincore() to find out if a page is valid and
if it happens to be part of the process working set. Note that this requires
some kernel resources, so you should benchmark it and determine if
calling this function is really appropriate in your api. If your api
is going to be handling interrupts, or reading from serial ports
into memory, it is appropriate to call this to avoid unpredictable
behaviors.
After calling stat() to determine if there is a /proc/self directory available, you can fopen and read through /proc/self/maps
to find information about the region in which a pointer resides.
Study the man page for proc, the process information pseudo-file
system. Obviously this is relatively expensive, but you might be
able to get away with caching the result of the parse into an array
you can efficiently lookup using a binary search. Also consider the
/proc/self/smaps. If your api is for high-performance computing then
the program will want to know about the /proc/self/numa which is
documented under the man page for numa, the non-uniform memory
architecture.
The get_mempolicy(MPOL_F_ADDR) call is appropriate for high performance computing api work where there are multiple threads of
execution and you are managing your work to have affinity for non-uniform memory
as it relates to the cpu cores and socket resources. Such an api
will of course also tell you if a pointer is valid.
Under Microsoft Windows there is the function QueryWorkingSetEx that is documented under the Process Status API (also in the NUMA API).
As a corollary to sophisticated NUMA API programming this function will also let you do simple "testing pointers for validity (C/C++)" work, as such it is unlikely to be deprecated for at least 15 years.
Preventing a crash caused by the caller sending in an invalid pointer is a good way to make silent bugs that are hard to find.
Isn't it better for the programmer using your API to get a clear message that his code is bogus by crashing it rather than hiding it?
On Win32/64 there is a way to do this. Attempt to read the pointer and catch the resulting SEH exeception that will be thrown on failure. If it doesn't throw, then it's a valid pointer.
The problem with this method though is that it just returns whether or not you can read data from the pointer. It makes no guarantee about type safety or any number of other invariants. In general this method is good for little else other than to say "yes, I can read that particular place in memory at a time that has now passed".
In short, Don't do this ;)
Raymond Chen has a blog post on this subject: http://blogs.msdn.com/oldnewthing/archive/2007/06/25/3507294.aspx
AFAIK there is no way. You should try to avoid this situation by always setting pointers to NULL after freeing memory.
On Unix you should be able to utilize a kernel syscall that does pointer checking and returns EFAULT, such as:
#include <unistd.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <errno.h>
#include <stdbool.h>
bool isPointerBad( void * p )
{
int fh = open( p, 0, 0 );
int e = errno;
if ( -1 == fh && e == EFAULT )
{
printf( "bad pointer: %p\n", p );
return true;
}
else if ( fh != -1 )
{
close( fh );
}
printf( "good pointer: %p\n", p );
return false;
}
int main()
{
int good = 4;
isPointerBad( (void *)3 );
isPointerBad( &good );
isPointerBad( "/tmp/blah" );
return 0;
}
returning:
bad pointer: 0x3
good pointer: 0x7fff375fd49c
good pointer: 0x400793
There's probably a better syscall to use than open() [perhaps access], since there's a chance that this could lead to actual file creation codepath, and a subsequent close requirement.
Regarding the answer a bit up in this thread:
IsBadReadPtr(), IsBadWritePtr(), IsBadCodePtr(), IsBadStringPtr() for Windows.
My advice is to stay away from them, someone has already posted this one:
http://blogs.msdn.com/oldnewthing/archive/2007/06/25/3507294.aspx
Another post on the same topic and by the same author (I think) is this one:
http://blogs.msdn.com/oldnewthing/archive/2006/09/27/773741.aspx ("IsBadXxxPtr should really be called CrashProgramRandomly").
If the users of your API sends in bad data, let it crash. If the problem is that the data passed isn't used until later (and that makes it harder to find the cause), add a debug mode where the strings etc. are logged at entry. If they are bad it will be obvious (and probably crash). If it is happening way to often, it might be worth moving your API out of process and let them crash the API process instead of the main process.
Firstly, I don't see any point in trying to protect yourself from the caller deliberately trying to cause a crash. They could easily do this by trying to access through an invalid pointer themselves. There are many other ways - they could just overwrite your memory or the stack. If you need to protect against this sort of thing then you need to be running in a separate process using sockets or some other IPC for communication.
We write quite a lot of software that allows partners/customers/users to extend functionality. Inevitably any bug gets reported to us first so it is useful to be able to easily show that the problem is in the plug-in code. Additionally there are security concerns and some users are more trusted than others.
We use a number of different methods depending on performance/throughput requirements and trustworthyness. From most preferred:
separate processes using sockets (often passing data as text).
separate processes using shared memory (if large amounts of data to pass).
same process separate threads via message queue (if frequent short messages).
same process separate threads all passed data allocated from a memory pool.
same process via direct procedure call - all passed data allocated from a memory pool.
We try never to resort to what you are trying to do when dealing with third party software - especially when we are given the plug-ins/library as binary rather than source code.
Use of a memory pool is quite easy in most circumstances and needn't be inefficient. If YOU allocate the data in the first place then it is trivial to check the pointers against the values you allocated. You could also store the length allocated and add "magic" values before and after the data to check for valid data type and data overruns.
I've got a lot of sympathy with your question, as I'm in an almost identical position myself. I appreciate what a lot of the replies are saying, and they are correct - the routine supplying the pointer should be providing a valid pointer. In my case, it is almost inconceivable that they could have corrupted the pointer - but if they had managed, it would be MY software that crashes, and ME that would get the blame :-(
My requirement isn't that I continue after a segmentation fault - that would be dangerous - I just want to report what happened to the customer before terminating so that they can fix their code rather than blaming me!
This is how I've found to do it (on Windows): http://www.cplusplus.com/reference/clibrary/csignal/signal/
To give a synopsis:
#include <signal.h>
using namespace std;
void terminate(int param)
/// Function executed if a segmentation fault is encountered during the cast to an instance.
{
cerr << "\nThe function received a corrupted reference - please check the user-supplied dll.\n";
cerr << "Terminating program...\n";
exit(1);
}
...
void MyFunction()
{
void (*previous_sigsegv_function)(int);
previous_sigsegv_function = signal(SIGSEGV, terminate);
<-- insert risky stuff here -->
signal(SIGSEGV, previous_sigsegv_function);
}
Now this appears to behave as I would hope (it prints the error message, then terminates the program) - but if someone can spot a flaw, please let me know!
There are no provisions in C++ to test for the validity of a pointer as a general case. One can obviously assume that NULL (0x00000000) is bad, and various compilers and libraries like to use "special values" here and there to make debugging easier (For example, if I ever see a pointer show up as 0xCECECECE in visual studio I know I did something wrong) but the truth is that since a pointer is just an index into memory it's near impossible to tell just by looking at the pointer if it's the "right" index.
There are various tricks that you can do with dynamic_cast and RTTI such to ensure that the object pointed to is of the type that you want, but they all require that you are pointing to something valid in the first place.
If you want to ensure that you program can detect "invalid" pointers then my advice is this: Set every pointer you declare either to NULL or a valid address immediately upon creation and set it to NULL immediately after freeing the memory that it points to. If you are diligent about this practice, then checking for NULL is all you ever need.
Setting the pointer to NULL before and after using is a good technique. This is easy to do in C++ if you manage pointers within a class for example (a string):
class SomeClass
{
public:
SomeClass();
~SomeClass();
void SetText( const char *text);
char *GetText() const { return MyText; }
void Clear();
private:
char * MyText;
};
SomeClass::SomeClass()
{
MyText = NULL;
}
SomeClass::~SomeClass()
{
Clear();
}
void SomeClass::Clear()
{
if (MyText)
free( MyText);
MyText = NULL;
}
void SomeClass::Settext( const char *text)
{
Clear();
MyText = malloc( strlen(text));
if (MyText)
strcpy( MyText, text);
}
Indeed, something could be done under specific occasion: for example if you want to check whether a string pointer string is valid, using write(fd, buf, szie) syscall can help you do the magic: let fd be a file descriptor of temporary file you create for test, and buf pointing to the string you are tesing, if the pointer is invalid write() would return -1 and errno set to EFAULT which indicating that buf is outside your accessible address space.
Peeter Joos answer is pretty good. Here is an "official" way to do it:
#include <sys/mman.h>
#include <stdbool.h>
#include <unistd.h>
bool is_pointer_valid(void *p) {
/* get the page size */
size_t page_size = sysconf(_SC_PAGESIZE);
/* find the address of the page that contains p */
void *base = (void *)((((size_t)p) / page_size) * page_size);
/* call msync, if it returns non-zero, return false */
int ret = msync(base, page_size, MS_ASYNC) != -1;
return ret ? ret : errno != ENOMEM;
}
There isn't any portable way of doing this, and doing it for specific platforms can be anywhere between hard and impossible. In any case, you should never write code that depends on such a check - don't let the pointers take on invalid values in the first place.
As others have said, you can't reliably detect an invalid pointer. Consider some of the forms an invalid pointer might take:
You could have a null pointer. That's one you could easily check for and do something about.
You could have a pointer to somewhere outside of valid memory. What constitutes valid memory varies depending on how the run-time environment of your system sets up the address space. On Unix systems, it is usually a virtual address space starting at 0 and going to some large number of megabytes. On embedded systems, it could be quite small. It might not start at 0, in any case. If your app happens to be running in supervisor mode or the equivalent, then your pointer might reference a real address, which may or may not be backed up with real memory.
You could have a pointer to somewhere inside your valid memory, even inside your data segment, bss, stack or heap, but not pointing at a valid object. A variant of this is a pointer that used to point to a valid object, before something bad happened to the object. Bad things in this context include deallocation, memory corruption, or pointer corruption.
You could have a flat-out illegal pointer, such as a pointer with illegal alignment for the thing being referenced.
The problem gets even worse when you consider segment/offset based architectures and other odd pointer implementations. This sort of thing is normally hidden from the developer by good compilers and judicious use of types, but if you want to pierce the veil and try to outsmart the operating system and compiler developers, well, you can, but there is not one generic way to do it that will handle all of the issues you might run into.
The best thing you can do is allow the crash and put out some good diagnostic information.
In general, it's impossible to do. Here's one particularly nasty case:
struct Point2d {
int x;
int y;
};
struct Point3d {
int x;
int y;
int z;
};
void dump(Point3 *p)
{
printf("[%d %d %d]\n", p->x, p->y, p->z);
}
Point2d points[2] = { {0, 1}, {2, 3} };
Point3d *p3 = reinterpret_cast<Point3d *>(&points[0]);
dump(p3);
On many platforms, this will print out:
[0 1 2]
You're forcing the runtime system to incorrectly interpret bits of memory, but in this case it's not going to crash, because the bits all make sense. This is part of the design of the language (look at C-style polymorphism with struct inaddr, inaddr_in, inaddr_in6), so you can't reliably protect against it on any platform.
It's unbelievable how much misleading information you can read in articles above...
And even in microsoft msdn documentation IsBadPtr is claimed to be banned. Oh well - I prefer working application rather than crashing. Even if term working might be working incorrectly (as long as end-user can continue with application).
By googling I haven't found any useful example for windows - found a solution for 32-bit apps,
http://www.codeproject.com/script/Content/ViewAssociatedFile.aspx?rzp=%2FKB%2Fsystem%2Fdetect-driver%2F%2FDetectDriverSrc.zip&zep=DetectDriverSrc%2FDetectDriver%2Fsrc%2FdrvCppLib%2Frtti.cpp&obid=58895&obtid=2&ovid=2
but I need also to support 64-bit apps, so this solution did not work for me.
But I've harvested wine's source codes, and managed to cook similar kind of code which would work for 64-bit apps as well - attaching code here:
#include <typeinfo.h>
typedef void (*v_table_ptr)();
typedef struct _cpp_object
{
v_table_ptr* vtable;
} cpp_object;
#ifndef _WIN64
typedef struct _rtti_object_locator
{
unsigned int signature;
int base_class_offset;
unsigned int flags;
const type_info *type_descriptor;
//const rtti_object_hierarchy *type_hierarchy;
} rtti_object_locator;
#else
typedef struct
{
unsigned int signature;
int base_class_offset;
unsigned int flags;
unsigned int type_descriptor;
unsigned int type_hierarchy;
unsigned int object_locator;
} rtti_object_locator;
#endif
/* Get type info from an object (internal) */
static const rtti_object_locator* RTTI_GetObjectLocator(void* inptr)
{
cpp_object* cppobj = (cpp_object*) inptr;
const rtti_object_locator* obj_locator = 0;
if (!IsBadReadPtr(cppobj, sizeof(void*)) &&
!IsBadReadPtr(cppobj->vtable - 1, sizeof(void*)) &&
!IsBadReadPtr((void*)cppobj->vtable[-1], sizeof(rtti_object_locator)))
{
obj_locator = (rtti_object_locator*) cppobj->vtable[-1];
}
return obj_locator;
}
And following code can detect whether pointer is valid or not, you need probably to add some NULL checking:
CTest* t = new CTest();
//t = (CTest*) 0;
//t = (CTest*) 0x12345678;
const rtti_object_locator* ptr = RTTI_GetObjectLocator(t);
#ifdef _WIN64
char *base = ptr->signature == 0 ? (char*)RtlPcToFileHeader((void*)ptr, (void**)&base) : (char*)ptr - ptr->object_locator;
const type_info *td = (const type_info*)(base + ptr->type_descriptor);
#else
const type_info *td = ptr->type_descriptor;
#endif
const char* n =td->name();
This gets class name from pointer - I think it should be enough for your needs.
One thing which I'm still afraid is performance of pointer checking - in code snipet above there is already 3-4 API calls being made - might be overkill for time critical applications.
It would be good if someone could measure overhead of pointer checking compared for example to C#/managed c++ calls.
It is not a very good policy to accept arbitrary pointers as input parameters in a public API. It's better to have "plain data" types like an integer, a string or a struct (I mean a classical struct with plain data inside, of course; officially anything can be a struct).
Why? Well because as others say there is no standard way to know whether you've been given a valid pointer or one that points to junk.
But sometimes you don't have the choice - your API must accept a pointer.
In these cases, it is the duty of the caller to pass a good pointer. NULL may be accepted as a value, but not a pointer to junk.
Can you double-check in any way? Well, what I did in a case like that was to define an invariant for the type the pointer points to, and call it when you get it (in debug mode). At least if the invariant fails (or crashes) you know that you were passed a bad value.
// API that does not allow NULL
void PublicApiFunction1(Person* in_person)
{
assert(in_person != NULL);
assert(in_person->Invariant());
// Actual code...
}
// API that allows NULL
void PublicApiFunction2(Person* in_person)
{
assert(in_person == NULL || in_person->Invariant());
// Actual code (must keep in mind that in_person may be NULL)
}
Following does work in Windows (somebody suggested it before):
static void copy(void * target, const void* source, int size)
{
__try
{
CopyMemory(target, source, size);
}
__except(EXCEPTION_EXECUTE_HANDLER)
{
doSomething(--whatever--);
}
}
The function has to be static, standalone or static method of some class.
To test on read-only, copy data in the local buffer.
To test on write without modifying contents, write them over.
You can test first/last addresses only.
If pointer is invalid, control will be passed to 'doSomething',
and then outside the brackets.
Just do not use anything requiring destructors, like CString.
On Windows I use this code:
void * G_pPointer = NULL;
const char * G_szPointerName = NULL;
void CheckPointerIternal()
{
char cTest = *((char *)G_pPointer);
}
bool CheckPointerIternalExt()
{
bool bRet = false;
__try
{
CheckPointerIternal();
bRet = true;
}
__except (EXCEPTION_EXECUTE_HANDLER)
{
}
return bRet;
}
void CheckPointer(void * A_pPointer, const char * A_szPointerName)
{
G_pPointer = A_pPointer;
G_szPointerName = A_szPointerName;
if (!CheckPointerIternalExt())
throw std::runtime_error("Invalid pointer " + std::string(G_szPointerName) + "!");
}
Usage:
unsigned long * pTest = (unsigned long *) 0x12345;
CheckPointer(pTest, "pTest"); //throws exception
On macOS, you can do this with mach_vm_region, which as well as telling you if a pointer is valid, also lets you validate what access you have to the memory to which the pointer points (read/write/execute). I provided sample code to do this in my answer to another question:
#include <mach/mach.h>
#include <mach/mach_vm.h>
#include <stdio.h>
#include <stdbool.h>
bool ptr_is_valid(void *ptr, vm_prot_t needs_access) {
vm_map_t task = mach_task_self();
mach_vm_address_t address = (mach_vm_address_t)ptr;
mach_vm_size_t size = 0;
vm_region_basic_info_data_64_t info;
mach_msg_type_number_t count = VM_REGION_BASIC_INFO_COUNT_64;
mach_port_t object_name;
kern_return_t ret = mach_vm_region(task, &address, &size, VM_REGION_BASIC_INFO_64, (vm_region_info_t)&info, &count, &object_name);
if (ret != KERN_SUCCESS) return false;
return ((mach_vm_address_t)ptr) >= address && ((info.protection & needs_access) == needs_access);
}
#define TEST(ptr,acc) printf("ptr_is_valid(%p,access=%d)=%d\n", (void*)(ptr), (acc), ptr_is_valid((void*)(ptr),(acc)))
int main(int argc, char**argv) {
TEST(0,0);
TEST(0,VM_PROT_READ);
TEST(123456789,VM_PROT_READ);
TEST(main,0);
TEST(main,VM_PROT_READ);
TEST(main,VM_PROT_READ|VM_PROT_EXECUTE);
TEST(main,VM_PROT_EXECUTE);
TEST(main,VM_PROT_WRITE);
TEST((void*)(-1),0);
return 0;
}
The SEI CERT C Coding Standard recommendation MEM10-C. Define and use a pointer validation function says it is possible to do a check to some degree, especially under Linux OS.
The method described in the link is to keep track of the highest memory address returned by malloc and add a function that tests if someone tries to use a pointer greater than that value. It is probably of limited use.
IsBadReadPtr(), IsBadWritePtr(), IsBadCodePtr(), IsBadStringPtr() for Windows.
These take time proportional to the length of the block, so for sanity check I just check the starting address.
I have seen various libraries use some method to check for unreferenced memory and such. I believe they simply "override" the memory allocation and deallocation methods (malloc/free), which has some logic that keeps track of the pointers. I suppose this is overkill for your use case, but it would be one way to do it.
Technically you can override operator new (and delete) and collect information about all allocated memory, so you can have a method to check if heap memory is valid.
but:
you still need a way to check if pointer is allocated on stack ()
you will need to define what is 'valid' pointer:
a) memory on that address is
allocated
b) memory at that address
is start address of object (e.g.
address not in the middle of huge
array)
c) memory at that address
is start address of object of expected type
Bottom line: approach in question is not C++ way, you need to define some rules which ensure that function receives valid pointers.
There is no way to make that check in C++. What should you do if other code passes you an invalid pointer? You should crash. Why? Check out this link: http://blogs.msdn.com/oldnewthing/archive/2006/09/27/773741.aspx
Addendum to the accpeted answer(s):
Assume that your pointer could hold only three values -- 0, 1 and -1 where 1 signifies a valid pointer, -1 an invalid one and 0 another invalid one. What is the probability that your pointer is NULL, all values being equally likely? 1/3. Now, take the valid case out, so for every invalid case, you have a 50:50 ratio to catch all errors. Looks good right? Scale this for a 4-byte pointer. There are 2^32 or 4294967294 possible values. Of these, only ONE value is correct, one is NULL, and you are still left with 4294967292 other invalid cases. Recalculate: you have a test for 1 out of (4294967292+ 1) invalid cases. A probability of 2.xe-10 or 0 for most practical purposes. Such is the futility of the NULL check.
You know, a new driver (at least on Linux) that is capable of this probably wouldn't be that hard to write.
On the other hand, it would be folly to build your programs like this. Unless you have some really specific and single use for such a thing, I wouldn't recommend it. If you built a large application loaded with constant pointer validity checks it would likely be horrendously slow.
you should avoid these methods because they do not work. blogs.msdn.com/oldnewthing/archive/2006/09/27/773741.aspx – JaredPar Feb 15 '09 at 16:02
If they don't work - next windows update will fix it ?
If they don't work on concept level - function will be probably removed from windows api completely.
MSDN documentation claim that they are banned, and reason for this is probably flaw of further design of application (e.g. generally you should not eat invalid pointers silently - if you're in charge of design of whole application of course), and performance/time of pointer checking.
But you should not claim that they does not work because of some blog.
In my test application I've verified that they do work.
these links may be helpful
_CrtIsValidPointer
Verifies that a specified memory range is valid for reading and writing (debug version only).
http://msdn.microsoft.com/en-us/library/0w1ekd5e.aspx
_CrtCheckMemory
Confirms the integrity of the memory blocks allocated in the debug heap (debug version only).
http://msdn.microsoft.com/en-us/library/e73x0s4b.aspx
I have a function
void fname(char* Ptr)
{
...
}
I want to know inside this function whether this pointer Ptr holds the address of dynamically allocated memory using new char[] or the address of locally allocated memory in the calling function. Is there any way I can determine that? I think <typeinfo> doesn't help here.
One way to do this is to have your own operator new functions and keep track of everything allocated so that you can just ask your allocation library if the address given is one it allocated. The custom allocator then just calls the standard one to actually do the allocation.
Another approach (messy and details highly OS dependent) may be to examine the process layout in virtual memory and hence determine which addresses refer to which areas of memory.
You can combine these ideas by actually managing your own memory pools. So if you get a single large chunk of system memory with known address bounds and use that for all new'd memory, you can just check that an address in is the given range to answer your question.
However: Any of these ideas is a lot of work and not appropriate if this problem is the only purpose in doing so.
Having said all that, if you do want to implement something, you will need to work carefully through all the ways that an address might be generated.
For example (and surely I've missed some):
Stack
Return from new
Inside something returned from new.
Was returned from new but already deleted (hopefully not, but that's why we need diagnostics)
statically allocated
static constant memory
command line arguments/ environment
code addresses.
Now, ignoring all that for a moment, and assuming this is for some debug purpose rather than system design, you might be able to try this kind of thing:
This is ugly, unreliable, not guaranteed by the standard, etc etc, but might work . . .
char* firstStack = 0;
bool isOnStack(const void* p)
{
char* check =(char*)p;
char * here = (char*)✓
int a = firstStack - check;
int b = check - here;
return (a*b > 0);
}
void g(const char* p)
{
bool onStack = isOnStack(p);
std::cout << p << (onStack ? "" : " not" ) << " on stack " << std::endl;
}
void f()
{
char stuff[1024] = "Hello";
g(stuff);
}
void h()
{
char* nonsense = new char[1024];
strcpy(nonsense, "World");
g(nonsense);
delete [] nonsense;
}
int main()
{
int var = 0;
firstStack = (char*)&var;
f();
h();
}
Output:
Hello on stack
World not on stack
The short answer: no, you can't. You have no way of knowing whether Ptr is a pointer to a single char, the start of a statically allocated array, a pointer to a single dynamically allocated char, or the start of an array thereof.
If you really wanted to, you try an overload like so:
template <std::size_t N>
void fname(char Ptr[N])
{
// ...
}
which would match when passed a statically allocated array, whereas the first version would be picked when dealing with dynamically allocated memory or a pointer to a single char.
(But note that function overloading rules are a bit complicated in the presence of templates -- in particular, a non-template function is preferred if it matches. So you might need to make the original function take a "dummy" template parameter if you go for this approach.)
In vc++ there is an assertion _CrtIsMemoryBlock (http://msdn.microsoft.com/en-us/library/ww5t02fa.aspx#BKMK_CRT_assertions) that can be used to check if a pointer was allocated from the heap. This will only work when a debug heap is being used but this is fine if you are just wanting to add some 'debug only' assertions. This method has worked well for me in the past under Windows.
For Linux however I know of no such equivalent.
Alternatively you could use an inline assembler block to try to determine the if it is a stack address or not. This would be hardware dependent as it would rely heavily not only on the processor type but also on the memory model being used (flat address model vs segmented etc). Its probably best to avoid this type of approach.
This is kind of pseudo code but it should make clear what I want to know. I see all 3 variants in different code.
My question is which is the correct way of doing this and why? (Also see comments in code snippets)
test.h First way:
class Test {
public:
Test()
:_buffer(NULL)
{
_buffer = new char[1024];
}
~Test() {
delete _buffer;
}
int Function() {
//use some function like inet_ntop doesn't work _buffer is not filled
inet_ntop(p->ai_family, addr, _buffer, sizeof(_buffer)-1);
//here sizeof(_buffer) returns 4, WHY ?
cout << sizeof(_buffer) << endl;
}
private:
char *_buffer;
};
test.h Second way:
class Test {
public:
Test() {
//_buffer is never initialized WHY ?
}
~Test() {
//_buffer is never deleted WHY ?
}
int Function() {
//use some function like inet_ntop works correctly here _buffer is filled
inet_ntop(p->ai_family, addr, _buffer, sizeof(_buffer)-1);
//here sizeof(_buffer) returns 1024, WHY ?
cout << sizeof(_buffer) << endl;
}
private:
char _buffer[1024];
};
test.h Third way:
class Test {
public:
Test() {
}
~Test() {
}
int Function() {
char buffer[1024];
//use some function like inet_ntop works correctly here _buffer is filled
inet_ntop(p->ai_family, addr, _buffer, sizeof(_buffer)-1);
//here sizeof(_buffer) returns 1024
cout << sizeof(_buffer) << endl;
}
private:
};
C++ What is the right way of declaring a char array in a class?
Neither.
In C++ the correct way is to use:
std::string buffer;
This is precisely the reason C++ provides std::string. It gives you freedom from:
explicitly managing memory as in #1 &
overwriting the bounds of statically allocated array as in #2.
Note that the 3 examples you show are not equivalent.
#1 & #2 bind the lifetime of the character buffer to your object instance,
While #3 does not do the same.
Note that if you need a local buffer(who's size is fixed) just to pass to an c-style api, then that usage doesn't make good use of the goodies offered by std::string and probably a statically allocated character array is much more suitable.
If your requirement is as in #1 and #2 then the better option is ofcourse std::string.
First variant: character array is allocated from the heap. IIRC, the delete in the destructor should be delete [] _buffer.
Second variant: character array is part of the class, and lives and dies with the class. Could be allocated from the heap or stack, depending on how the class is instantiated.
Third variant: character array is allocated on the stack, and is released when the enclosing scope — in this case, Function() — ends.
Having said that, unless you really do need an array of characters for a justifiable reason, using std::string is far better.
I don't believe there is a "one true way" for what you are trying to do. Each of the methods involve a trade off. Specifically:
Method 1) You allocate memory on the heap. You incur a (slight) performance penalty. However, the size of your class in memory is reduced. If you allocate your class on the stack, you waste less stack space this way. As others have mentioned, you need to use the delete [] statement.
Regarding your comment, sizeof(buffer) returns 4 because buffer is a char pointer. Your platform defines pointers to be 4 bytes big. It doesn't report the size of the allocated array, as sizeof works on the type described to it. inet_ntop doesn't fill your buffer as you tell it your buffer is only 4 bytes big. inet_ntop simply fails as that buffer is much to small.
Method 2) This trades method 1's extra heap allocation for increased class size.
Regarding comments, the buffer is not initialized or deleted because C++ handles that. Since you instructed the compiler to provide you with a char array of size 1024 bytes, it provides you with one. You are not required to initialize/cleanup for the compiler. Also, sizeof returns 1024 as the type is a char array of 1024 bytes, thus the compiler know this and gives the array size. It doesn't return the size of a pointer here because you didn't ask for a pointer.
Method 3) This method instead allocates the buffer every time the function is called, and puts it on the stack. Depending upon what you intend to do with the data, this might be the best solution, or not applicable at all. If you don't need the buffer after the function ends, then it's a good choice.
Okay so you have and array A[]... that is passed to you in some function say with the following function prototype:
void foo(int A[]);
Okay, as you know it's kind of hard to find the size of that array without knowing some sort of ending variable or knowing the size already...
Well here is the deal though. I have seem some people figure it out on a challenge problem, and I don't understand how they did it. I wasn't able to see their source code of course, that is why I am here asking.
Does anyone know how it would even be remotely possible to find the size of that array?? Maybe something like what the free() function does in C??
What do you think of this??
template<typename E, int size>
int ArrLength(E(&)[size]){return size;}
void main()
{
int arr[17];
int sizeofArray = ArrLength(arr);
}
The signature of that function is not that of a function taking an array, but rather a pointer to int. You cannot obtain the size of the array within the function, and will have to pass it as an extra argument to the function.
If you are allowed to change the signature of the function there are different alternatives:
C/C++ (simple):
void f( int *data, int size ); // function
f( array, sizeof array/sizeof array[0] ); // caller code
C++:
template <int N>
void f( int (&array)[N] ); // Inside f, size N embedded in type
f( array ); // caller code
C++ (though a dispatch):
template <int N>
void f( int (&array)[N] ) { // Dispatcher
f( array, N );
}
void f( int *array, int size ); // Actual function, as per option 1
f( array ); // Compiler processes the type as per 2
You cannot do that. Either you have a convention to signal the end of the array (e.g. that it is made of non-zero integers followed by a 0), or you transmit the size of the array (usually as an additional argument).
If you use the Boehm garbage collector (which has a lot of benefit, in particular you allocate with GC_malloc and friends but you don't care about free-ing memory explicitly), you could use the GC_size function to give you the size of a GC_malloc-ed memory zone, but standard malloc don't have this feature.
You're asking what we think of the following code:
template<typename E, int size>
int ArrLength(E(&)[size]){return size;}
void main()
{
int arr[17];
int sizeofArray = ArrLength(arr);
}
Well, void main has never been standard, neither in C nor in C++.
It's int main.
Regarding the ArrLength function, a proper implementation does not work for local types in C++98. It does work for local types by C++11 rules. But in C++11 you can write just end(a) - begin(a).
The implementation you show is not proper: it should absolutely not have int template argument. Make that a ptrdiff_t. For example, in 64-bit Windows the type int is still 32-bit.
Finally, as general advice:
Use std::vector and std::array.
One relevant benefit of this approach is that it avoid throwing away the size information, i.e. it avoids creating the problem you're asking about. There are also many other advantages. So, try it.
The first element could be a count, or the last element could be a sentinel. That's about all I can think of that could work portably.
In new code, for container-agnostic code prefer passing two iterators (or pointers in C) as a much better solution than just passing a raw array. For container-specific code use the C++ containers like vector.
No you can't. Your prototype is equivalent to
void foo(int * A);
there is obviously no size information. Also implementation dependent tricks can't help:
the array variable can be allocated on the stack or be static, so there is no information provided by malloc or friends
if allocated on the heap, a user of that function is not forced to call it with the first element of an allocation.
e.g the following are valid
int B[22];
foo(B);
int * A = new int[33];
foo(A + 25);
This is something that I would not suggest doing, however if you know the address of the beginning of the array and the address of the next variable/structure defined, you could subtract the address. Probably not a good idea though.
Probably an array allocated at compile time has information on its size in the debug information of the executable. Moreover one could search in the code for all the address corresponding to compile time allocated variables and assume the size of the array is minus the difference between its starting address and the next closest starting address of any variable.
For a dinamically allocated variable it should be possible to get its size from the heap data structures.
It is hacky and system dependant, but it is still a possible solution.
One estimate is as follows: if you have for instance an array of ints but know that they are between (stupid example) 0..80000, the first array element that's either negative or larger than 80000 is potentially right past the end of the array.
This can sometimes work because the memory right past the end of the array (I'm assuming it was dynamically allocated) won't have been initialized by the program (and thus might contain garbage values), but might still be part of the allocated pages, depending on the size of the array. In other cases it will crash or fail to provide meaningful output.
All of the other answers are probably better, i.e. you either have to pass the length of the array or terminate it with a special byte sequence.
The following method is not portable, but it works for me in VS2005:
int getSizeOfArray( int* ptr )
{
int size = 0;
void* ptrToStruct = ptr;
long adr = (long)ptrToStruct;
adr = adr - 0x10;
void* ptrToSize = (void*)adr;
size = *(int*)ptrToSize;
size /= sizeof(int);
return size;
}
This is entirely dependent of the memory model of your compiler and system so, again, it is not portable. I bet there are equivalent methods for other platforms. I would never use this in a production environment, merely stating this as an alternative.
You can use this: int n = sizeof(A) / sizeof(A[0]);